

The Multivariate Flavors of JMP: From Continuous to Categorical to Multiple-Source Data

Laura Castro-Schilo, Ph.D. Sr. Associate Research Statistician Developer JMP Division, SAS Institute

Copyright © 2013, SAS Institute Inc. All rights reserved.

SSAS. THE POWER TO KNOW.

BASIC STRUCTURE OF A MATRIX

- Decomposition of matrix into its characteristic components
 - Singular value decomposition (SVD)
 - Represent data as product of 3 matrices

$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

BASIC STRUCTURE OF A MATRIX

SINGULAR VALUE DECOMPOSITION

$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

=

Dim1	Dim2	Dim3
0.1989212	0.3202258	-0.126323
0.2208073	0.453361	-0.226535
0.1705592	0.3085778	-0.172721
0.3112392	0.3111744	0.3299106
0.2027492	0.4074437	-0.194208
0.2594041	0.1130174	0.4615508
0.2724333	-0.146537	0.0175289
0.1675449	-0.031407	0.5650599
0.1930972	-0.091533	0.2783023
0.1247567	0.1256511	0.018387
0.444887	-0.336456	-0.159485
0.4166369	-0.307906	-0.075486
0.3881544	-0.257781	-0.338794

Dim1	Dim2	Dim3
21.305092	0	C
0	17.023785	C
0	0	7.6370028

Woody	Fruity	Spicy
0.5700669	0.4908194	0.6588779
-0.153595	0.8514739	-0.501399
0.8071136	-0.184631	-0.560784

S

Data

Χ

Left Singular Vectors Dimensions of row variables

U

Singular Values Importance of dimensions (ordered)

Right Singular Vectors Dimensions of column variables

SINGULAR VALUE DECOMPOSITION

• Singular vectors (**U**, **V**) are orthogonal to each other and have unit length (orthonormal). $\mathbf{U}^{T}\mathbf{U} = \mathbf{V}^{T}\mathbf{V} = \mathbf{I}$

 Singular values, S, can be used to stretch out the vectors in U and V so they're no longer normalized but reflect the importance of each dimension.

SINGULAR VALUE DECOMPOSITION

- If **X** is symmetric, the singular vectors **U** and **V** will be identical.
 - Because pre- or post-multiplying a matrix by its transpose makes it symmetric, the basic structure matrices of X, X^TX, and XX^T, reveal the same basic structure.
 - Eigenvalue decomposition can also reveal the basic structure of X

$$\begin{aligned} \mathbf{X}^{\mathrm{T}}\mathbf{X} &= \mathbf{V}\mathbf{S}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}} &= \mathbf{V}\mathbf{S}^{2}\mathbf{V}^{\mathrm{T}}\\ \mathbf{X}\mathbf{X}^{\mathrm{T}} &= \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}\mathbf{V}\mathbf{S}\mathbf{U}^{\mathrm{T}} &= \mathbf{U}\mathbf{S}^{2}\mathbf{U}^{\mathrm{T}} \end{aligned}$$

SINGULAR VALUE DECOMPOSITION

 $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

"The basic structure of a matrix is like the layers of an onion; the components can be peeled off, one by one, and reassembled partially, or in whole" Weller & Romney (1990)

*î*mp

DIMENSION REDUCTION

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

Х

=

Dim1	Dim2	Dim3
0.1989212	0.3202258	-0.126323
0.2208073	0.453361	-0.226535
0.1705592	0.3085778	-0.172721
0.3112392	0.3111744	0.3299106
0.2027492	0.4074437	-0.194208
0.2594041	0.1130174	0.4615508
0.2724333	-0.146537	0.0175289
0.1675449	-0.031407	0.5650599
0.1930972	-0.091533	0.2783023
0.1247567	0.1256511	0.018387
0.444887	-0.336456	-0.159485
0.4166369	-0.307906	-0.075486
0.3881544	-0.257781	-0.338794

U

Dim1	Dim2	Dim3
21.305092	0	C
0	17.023785	C
0	0	7.6370028

Woody	Fruity	Spicy
0.5700669	0.4908194	0.6588779
-0.153595	0.8514739	-0.501399
0.8071136	-0.184631	-0.560784

VT

S

One-dimensional

estimate of **X**

Woody	Fruity	Spicy
2.42	2.08	2.79
2.68	2.31	3.1
2.07	1.78	2.39
3.78	3.25	4.37
2.46	2.12	2.85
3.15	2.71	3.64
3.31	2.85	3.82
2.03	1.75	2.35
2.35	2.02	2.71
1.52	1.3	1.75
5.4	4.65	6.25
5.06	4.36	5.85
4.71	4.06	5.45

Ϊmp

DIMENSION REDUCTION

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

Х

=

Dim1	Dim2	Dim3
0.1989212	0.3202258	-0.126323
0.2208073	0.453361	-0.226535
0.1705592	0.3085778	-0.172721
0.3112392	0.3111744	0.3299106
0.2027492	0.4074437	-0.194208
0.2594041	0.1130174	0.4615508
0.2724333	-0.146537	0.0175289
0.1675449	-0.031407	0.5650599
0.1930972	-0.091533	0.2783023
0.1247567	0.1256511	0.018387
0.444887	-0.336456	-0.159485
0.4166369	-0.307906	-0.075486
0.3881544	-0.257781	-0.338794

U

Dim1	Dim2	Dim3
21.305092	0	C
0	17.023785	C
0	0	7.6370028

Woody	Fruity	Spicy
0.5700669	0.4908194	0.6588779
-0.153595	0.8514739	-0.501399
0.8071136	-0.184631	-0.560784

VT

S

Two-dimensional

estimate of **X**

Weedy	Fruity	Spicy
1.58	6.72	0.06
1.5	8.88	-0.77
1.26	6.26	-0.24
2.97	7.77	1.71
1.4	8.03	-0.63
2.86	4.35	2.68
3.69	0.72	5.08
2.12	1.3	2.62
2.58	0.69	3.49
1.19	3.13	0.68
6.28	-0.22	9.12
5.87	-0.11	8.48
5.39	0.32	7.65

WHY THE LONG INTRO?

- All multivariate techniques in this session are based on:
 - Decompositions of transformed matrices:
 - Center, normalize, proportion, double-center, etc.*
 - Dimension reduction
- The techniques only differ in:
 - Pre-decomposition transformations of **X**
 - Post-decomposition transformations of **U** and **V**
- * Note: transformations are sometimes implied (e.g., correlation matrices)

PRINCIPAL COMPONENTS ANALYSIS

- Used with continuous data
- Goals of Analysis:
 - Identify underlying structure of data
 - Study inter-association of variables
 - Reduce dimensionality of data
 - Simplify ensuing analyses
 - Study inter-individual variability
 - Extract dimensions that distinguish individuals
 - Identify multivariate outliers
 - Measure latent variables (but Factor Analysis can be better for this)

PRINCIPAL COMPONENTS ANALYSIS

- Key output:
 - Eigenvalues (aka squared singular values)
 - Eigenvectors
 - Loadings
 - Percent of variance explained by each dimension
 - Principal component scores

Most often known as the result of eigenvalue decomposition on a correlation (or covariance) matrix

PRINCIPAL COMPONENTS ANALYSIS

Unit length eigenvectors indicating main directions in data

Magnitude of each dimension from most to least important

Rescaled eigenvectors

3-D Cloud for illustration

Eigenvalue decomposition of the covariance matrix of X:

- Center X
- Sum of squares of centered X
- Divide all entries by *N*-1

PRINCIPAL COMPONENTS ANALYSIS

Alternatively, SVD of:

- Center X
- Multiply each row by $\frac{1}{\sqrt{N-1}}$
- Multiply each column by the inverse of its corresponding standard deviation

Eigenvalue decomposition of the correlation matrix of X:

- Center X
- Sum of squares of centered X
- Multiply each row and column by the inverse of the corresponding standard deviation
- Divide all entries by N-1

- Center X
- Multiply each row by $\frac{1}{\sqrt{N-1}}$
- Multiply each column by the inverse of its corresponding standard deviation

PRINCIPAL COMPONENTS ANALYSIS

SVD of:

$\boldsymbol{D}_r^{-\frac{1}{2}} \big(\boldsymbol{X} - \boldsymbol{1} \widehat{\boldsymbol{\mu}}^T \big) \boldsymbol{D}_c^{-\frac{1}{2}} = \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^T$

Eigenvalues:S2Eigenvectors:VLoadings:VSScores:US

MOTIVATING EXAMPLE

Smell Study at SAS Headquarters

Rated 8 Scents:

Sweet Orange, Lavender
 Peppermint, Lemon, Lavender
 Tea Tree
 Eucalyptus, Rosemary
 Tea Tree, Eucalyptus, Lemon
 Peppermint, Sweet Orange
 Rosemary, Frankincense
 ALL

PRINCIPAL COMPONENTS ANALYSIS

🛄 All_Smell_Stud	y - JMP Pro [2]															
File Edit Tabl	es Rows Co	ls DOE	Analyz	e Grapł	n Tools	Add-Ins	View Win	dow Help								
i 🛤 🐑 📂 🔒	🐰 🗈 🛍 📙			⊻ <u>x</u> ≽■	2											
▼All_Smell ▷	👌 70/0 Cols 💌															
Source		ID	Age	Sex	UsePerf	UseOils	SR_Smell	P1Sweet	P1Woody	P1Fresh	P1Citrus	P1Spicy	P1Herbal	P1Like	P1Comment	
	1	ID12	30-41	Male	4	4	3	6	5	4	7	3	2	3		A.
Columns (75	2	ID13	30-41	Female	1	1	4	6	2	6	7	2	3	3		
🔥 Source 🚳 🔺	3	ID14	30-41	Female	5	1	3	4	1	3	7	1	1	3	Smells like oranges	
🔥 Time 🕷 🛛 🗧	4	ID20	30-41	Female	5	4	4	6	1	7	6	1	6	5	I really like this scent —	
L ID	5	ID24	18-29	Male	1	1	2	6	2	5	7	1	4	5	Smells like lysol or wood	
Age Sev	6	ID01	42-53	Female	5	3	4	7	1	5	7	1	1	4		Ξ
Con,Sex]	7	ID02	53-64	Female	5	1	5	4	2	6	6	2	3	4	Citrusy bit not too flowe	
🆺 Region 📾	8	ID22	42-53	Female	3	1	3	3	1	7	7	1	2	4	Refreshing	
🆺 Name 📾	9	ID08	30-41	Female	5	1	3	7	1	5	7	1	1	2		
UsePerf	10	ID15	53-64	Male	1	1	3	4	1	3	4	5	5	3		
SR Small	11	ID11	65+	Male	1	1	2	1	2	5	5	1	3	4	Citrus more than others	
A D1 Swoot	12	ID25	30-41	Female	5	5	5	5	1	6	7	5	5	4		
Rows	13	ID06	30-41	Male	3	1	1	4	2	5	5	2	2	2	I can barely smell this or	
All rows 27	14	ID10	53-64	Male	2	1	3	5	3	7	2	2	6	3		
Selected 0	15	ID09	42-53	Female	4	1	3	7	2	7	6	1	3	5		
Excluded 0	16	ID16	42-53	Male	1	1	1	3	2	4	5	1	2	3		
Labelled 0	17	ID17	30-41	Male	5	1	4	2	1	4	5	1	1	4		Ŧ
		•													•	
															☆ 🔲 🔻	

Data

Copyright © 2013, SAS Institute Inc. All rights reserved.

Eigenva	alues			
Number	Eigenvalue	Percent	20 40 60 80	Cum Percent
1	3.0161	50.268		50.268
2	1.3619	22.698		72.966
3	0.6764	11.273		84.239
4	0.5379	8.965		93.205
5	0.2186	3.644		96.849
6	0.1891	3.151		100.000

- Determine ideal number of dimensions (most popular):
 - Scree plot: Number of eigenvalues before the elbow
 - Number of eigenvalues larger than 1

- Dimensions that sum up to ~80% of variance
- All dimensions with coherent substantive meaning

PRINCIPAL COMPONENTS ANALYSIS

Sas

THE POWER TO KNOW

PRINCIPAL COMPONENTS ANALYSIS

\land -83/2 Cols 💌									Γ
	P5Sweet	P5Woody	P5Fresh	P5Citrus	P5Herbal	P5Spicy	Prin1	Prin2	
1	3	4	3	4	4	7	0.1271634586	-0.803718291	
2	1	5	4	3	5	5	0.9373510535	-0.677519483	
3	3	1	4	7	4	1	-2.744656595	-0.215015613	1
4	2	1	2	4	5	1	-1.551618211	-1.508841984	-
5	5	3	4	4	5	1	-1.826963841	0.6089708875	
6	1	7	7	2	7	7	2.5998245145	1.1043223099	
7	4	3	5	4	5	3	-1.06571194	0.6704409028	
8	5	6	7	3	6	2	-0.331369201	2.3996353047	
9	4	1	2	2	1	1	-2.29510529	-1.598492863	+
	4							÷.	

- **Component Scores** characterize the degree of endorsement of each dimension for every observation
- PCA Scores can be used in a variety of subsequent analyses (e.g., predictive models)
- Score plot facilitates identification of observations with very high/low scores and those close to the centroid

PRINCIPAL COMPONENTS ANALYSIS

- New to JMP 14: **Outlier Analysis**
- Enables identification of out-of-control points (multivariate outliers) through the T² statistic

• **Contribution plots** indicate exactly which variables are contributing most to the extreme observations

lmo

PRINCIPAL COMPONENTS ANALYSIS

- **Supplementary variables** can be included to enrich interpretation of components
- Supplementary points are displayed at the averages of the scores of the corresponding respondents
 - E.g., Average of component scores for males and females results in coordinates for points in each dimension/component
- Creating "interaction" variables enables more nuanced interpretation of the plots

MULTIPLE CORRESPONDENCE ANALYSIS

- Used with categorical data (ordinal or nominal)
- Goals of Analysis:
 - Goals are similar to PCA but there is much more emphasis on graphical displays
 - Identify underlying structure of data
 - Study inter-association of variable *categories*
 - Study inter-individual variability
 - Extract dimensions that distinguish individuals
 - Identify multivariate outliers

MULTIPLE CORRESPONDENCE ANALYSIS

- Key output:
 - MCA Map
 - Principal inertias (eigenvalues)
 - Principal coordinates (loadings)
 - Dimension contributions to column inertia (variance overlap between point and dimension)
 - Column contributions to total inertia
 - Column contributions to individual dimensions
 - Dimension contributions to total inertia (explained variance of each dimension)

MULTIPLE CORRESPONDENCE ANALYSIS

• Known as the decomposition of an Indicator matrix or a Burt matrix

MULTIPLE CORRESPONDENCE ANALYSIS

The Data:

< /			
	P5Woody	P5Fresh	P5Citrus
1	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
2	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
3	Not Woody	Somewhat Fresh	Very Citrus
4	Not Woody	Not Fresh	Somewhat Citrus
5	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
6	Very Woody	Very Fresh	Not Citrus

Raw Table Categorical Variables

	Not	Somewhat	Very	Not	Somewhat	Very	Not	Somewhat	Very
	Woody	Woody	Woody	Fresh	Fresh	Fresh	Citrus	Citrus	Citrus
1	0	1	0	0	1	0	0	1	0
2	0	1	0	0	1	0	0	1	0
3	1	0	0	0	1	0	0	0	1
4	1	0	0	1	0	0	0	1	0
5	0	1	0	0	1	0	0	1	0
6	0	0	1	0	0	1	1	0	0

	Not Woody	Somewhat Woody	Very Woody	Not Fresh	Somewhat Fresh	Very Fresh	Not Citrus	Somewhat Citrus	Very Citrus
1	2	0	0	1	1	0	0	1	1
2	0	3	0	0	3	0	0	3	0
3	0	0	1	0	0	1	1	0	0
4	1	0	0	1	0	0	0	1	0
5	1	3	0	0	4	0	0	3	1
6	0	0	1	0	0	1	1	0	0
7	0	0	1	0	0	1	1	0	0
8	1	3	0	1	3	0	0	4	0
9	1	0	0	0	1	0	0	0	1

Indicator Table
Concatenated Categories

7.

MULTIPLE CORRESPONDENCE ANALYSIS

SVD of:

Sas

MULTIPLE CORRESPONDENCE ANALYSIS

🙀 All_Smell_Study-prez - JMP F	Pro							
File Edit Tables Rows C	ols	DOE Analy	ze Graph Tools	s Add-Ins View	Window Help			
- 🖼 🎦 💕 🖬 🐰 🗈 🛍		🛄 📰 🔛 🖿	- 💆 🏓 🗾					
All_Smell_Study-prez	Þ	🗸 ~81/0 Cols 💌						
Source			P5Sweet 2	P5Woody 2	P5Fresh 2	P5Citrus 2	P5Spicy 2	P5Herbal 2
		1	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Very Spicy	Somewhat Herbal 🔺
	=	2	Not Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal
Columns (88/0)	_	3	Somewhat Sweet	Not Woody	Somewhat Fresh	Very Citrus	Not Spicy	Somewhat Herbal
P5Sweet 2	^	4	Not Sweet	Not Woody	Not Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal 😑
DSErech 2		5	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal
P5Citrus 2		6	Not Sweet	Very Woody	Very Fresh	Not Citrus	Very Spicy	Very Herbal
P5Spicy 2 \star	_	7	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal
P5Herbal 2		8	Somewhat Sweet	Very Woody	Very Fresh	Somewhat Citrus	Not Spicy	Very Herbal
SupRow		9	Somewhat Sweet	Not Woody	Not Fresh	Not Citrus	Not Spicy	Not Herbal
P5Like	-	10		Not Woody	Very Fresh	Very Citrus	Somewhat Spicy	Not Herbal
Rows		11	Not Sweet	Somewhat Woody	Somewhat Fresh	Not Citrus	Somewhat Spicy	Somewhat Herbal
All rows 27	*	12	Not Sweet	Somewhat Woody	Somewhat Fresh	Not Citrus	Somewhat Spicy	Very Herbal
Selected 0	=	13	Somewhat Sweet	Not Woody	Somewhat Fresh	Very Citrus	Not Spicy	Somewhat Herbal
Hidden 0		14	Somewhat Sweet	Somewhat Woody	Very Fresh	Not Citrus	Somewhat Spicy	Somewhat Herbal 🔻
Labelled 0	Ŧ		4					Þ
evaluations done								

Data can be ordinal or categorical

MULTIPLE CORRESPONDENCE ANALYSIS

Benzec	ri Adjust	ed Inert	ia				
	Adjusted		Cumulative				
Inertia	Inertia	Percent	Percent	20	40	60	80
0.49657	0.15672	77.78	77.78				
0.31287	0.03078	15.28	93.06				
0.23913	0.00756	3.75	96.81				
0.22491	0.00488	2.42	99.24				
0.19936	0.00154	0.76	100.00				
⊿ Greena	cre Adju	sted Ine	rtia				
⊿ Greena	cre Adjus Adjusted	sted Ine	rtia Cumulative				
⊿ Greena Inertia	cre Adjus Adjusted Inertia	sted Ine Percent	r tia Cumulative Percent	20	40	60	80
✓ Greena Inertia 0.49657	Adjusted Inertia 0.15672	Percent 58.78	rtia Cumulative Percent 58.78	20	40	60	80
✓ Greena Inertia 0.49657 0.31287	Adjusted Inertia 0.15672 0.03078	Percent 58.78 11.54	rtia Cumulative Percent 58.78 70.32	20	40	60	80
Greena Inertia 0.49657 0.31287 0.23913	Adjusted Inertia 0.15672 0.03078 0.00756	Percent 58.78 11.54 2.84	rtia Cumulative Percent 58.78 70.32 73.16	20	40	60	80
Greena Inertia 0.49657 0.31287 0.23913 0.22491	Adjusted Inertia 0.15672 0.03078 0.00756 0.00488	Percent 58.78 11.54 2.84 1.83	rtia Cumulative Percent 58.78 70.32 73.16 74.99	20	40	60	80

- Determine ideal number of dimensions:
 - Pareto plot: Use as scree plot. Number of eigenvalues before the elbow
 - Dimensions that sum up to ~80% of adjusted percent of inertia
 - All dimensions with coherent substantive meaning
- Adjusted inertias give a more accurate idea of the percentage of explained variance

•

- Benzécri adjusted inertias are computed as percentages of the sum of eigenvalues that are greater or equal to 1/number of column variables
 - Inertias tend to be overestimated
- Greenacre adjusted inertias are less optimistic than Benzécri's

MULTIPLE CORRESPONDENCE ANALYSIS

- MCA Map is the key feature and contains huge amounts of information
- Points are plotted according to the column coordinates
- Project points onto each dimension to help interpret dimension's meaning
- Points close to each other are more strongly associated

POWER

MULTIPLE CORRESPONDENCE ANALYSIS

Column Coordinates

Y	Category	Dimension 1	Dimension 2	Dimension 3
P5Sweet 2	Not Sweet	-0.520	-0.109	0.184
P5Sweet 2	Somewhat Sweet	0.720	0.110	-0.477
P5Woody 2	Not Woody	1.216	1.196	0.422
P5Woody 2	Somewhat Woody	0.337	-0.955	-0.124
P5Woody 2	Very Woody	-1.183	0.551	-0.052
P5Fresh 2	Not Fresh	0.382	0.405	0.833
P5Fresh 2	Somewhat Fresh	-0.009	-0.119	-0.438
P5Fresh 2	Very Fresh	-0.217	0.030	0.536
P5Citrus 2	Not Citrus	-0.615	-0.071	0.393
P5Citrus 2	Somewhat Citrus	0.145	-0.330	-0.482
P5Citrus 2	Very Citrus	1.256	0.972	0.303
P5Spicy 2	Not Spicy	0.925	0.920	-0.178
P5Spicy 2	Somewhat Spicy	0.325	-1.065	0.376
P5Spicy 2	Very Spicy	-1.136	0.379	-0.228
P5Herbal 2	Not Herbal	0.731	-0.379	1.291
P5Herbal 2	Somewhat Herbal	0.362	-0.034	-0.740
P5Herbal 2	Very Herbal	-1.092	0.347	0.179

- Column (principal) Coordinates are like PCA loadings. They help us interpret meaning of components
- Column Coordinates are particularly helpful when MCA map is too crowded: we can sort them to identify which categories are at the extremes

MULTIPLE CORRESPONDENCE ANALYSIS

🛤 🔁 💕 🖬 🐰 🖻 🕰		📄 🖩 🖽 ⊨	- Ľ <u>×</u> ≽	• 🕑 📕				
 All_Smell_Study-prez Source 	Þ	 € 83/2 Cols 	sh 2	P5Citrus 2	P5Spicy 2	P5Herbal 2	Dimension 1 Formula	Dimension 2 Formula
Columns (90/2)	٦	1	t Fresh	Somewhat Citrus	Very Spicy	Somewhat Herbal	0.0992037727	-0.28244824
P4Comment		2	t Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal	0.1515280545	-0.777985938
P5Sweet		3	t Fresh	Very Citrus	Not Spicy	Somewhat Herbal	1.0575176597	0.907097286
P5Woody		4		Somewhat Citrus	Not Spicy	Somewhat Herbal	0.5939469238	0.610319849
P5Fresh	-	5	t Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal	0.5867142157	-0.12143399
Rows	٦	6	n	Not Citrus	Very Spicy	Very Herbal	-1.126286364	0.336145206
All rows 27		7	t Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal	0.444826077	-0.71288497
Selected 0		8	n	Somewhat Citrus	Not Spicy	Very Herbal	-0.165804449	0.485171000
xcluded 0	Ξ	9		Not Citrus	Not Spicy	Not Herbal	0.794809028	0.649600318
Hidden 0 Labelled 0	Ŧ		4				III	Þ
107								

🖉 💌 Graph Builder

- Save Coordinate Formula saves Principal Row Coordinates to the data table, which characterize the degree of endorsement of each dimension for every observation
- As with PCA Scores, these can be used in a variety of subsequent analyses (e.g., predictive models)
- We can plot row coordinates to identify observations with very high/low scores and those close to the centroid

MULTIPLE CORRESPONDENCE ANALYSIS

- As with PCA, **Supplementary variables** can be included to enrich interpretation of dimensions
- Supplementary points are displayed at the averages of the principal row coordinates of the corresponding respondents
 - E.g., Average for males and females results in coordinates for points in each dimension
- Creating "interaction" variables enables more nuanced interpretation of the plots

- Used with continuous data
- Goals of Analysis:
 - Identify underlying structure of data from **multiple sources**
 - Study inter-association of variables across sources of data
 - Compare information from multiple data tables
 - Reduce dimensionality of data accounting for multiple-source structure (analogous to PCA on Corr vs Cov)
 - Study inter-association of observations (**products** in CR)
 - Extract dimensions that distinguish observations
 - Identify multivariate outliers within and across sources of data
- Graphical displays are also emphasized

MULTIV FLAVORS (ARI OF 、	ATI JMI	MUL1	ΓIPL	.E FA	СТО	R AI	NALY	'SIS				
Data:		Block 1	Block 2		2			Block g					
Smell_Study_MFA - JMP Pro File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help Image:													
Smell Study MFA	17	6/0 💌											
b	-		Product		Sweet M	Woody M	Fresh M	Sweet F	Woody F	Fresh F	Sweet Exp	Woody Exp	Fresh Exp
Columns (182/0)	_@	1	Sweet Orange and Lavende	er	3.8	2.3	4.8	5.71428	1.35714	5.3125	1	0	0.5
Sweet ID27 etc. (6/0)	<i>(</i>	2	Peppermint, Lemon, and La	avender	3.4	3.6	4.4	4	3.64285	5.1875	0.666666	0.3333333	1
Male Attributes (6/0)	<i>e</i>	3	Tea Tree		2.9	4	4.8	2.69230	4	4	0	1	0
Sweet M 🖶	<i>(</i> 2	4	Eucalyptus and Rosemary		2.8	4.2	4.5	3.28571	4.78571	4.875	0.5	0	1
▲ Woody_M 🖶 🗸	<i>(</i> 2	5	Tea Tree, Eucalyptus, and L	emon	3	3.6	4.5	2.28571	4.57142	4.5625	0.333333	0.3333333	0.666666
	<i>(</i> 2	6	Peppermint and Sweet Ora	ange	3.8	2.8	4.2	4.85714	1.64285	4.875	0.5	0	0.5
Nows	<i>(</i> 2	7	Rosemary and Frankincense		3	4	3.8	3.1875	4.14285	4.0625	1	0.5	0.5
Selected 0	<i>(</i> 2	8	All		3.1	3.2	4.5	4.28571	2.6	4.3125	0.625	0.25	0.625
Excluded 0													
Hidden 0													
									III >				
evaluations done	evaluations done												

- Key output:
 - Consensus Map
 - Eigenvalues (aka squared singular values)
 - Eigenvectors
 - Loadings
 - Percent of variance explained by each dimension
 - Individual component scores
 - RV Correlations
 - Block Partial Contributions
 - Block Partial Scores

MULTIPLE FACTOR ANALYSIS

SVD of:

$$D_{r}^{-\frac{1}{2}} \left(X_{c} D_{ss}^{-\frac{1}{2}} \right) D_{c}^{-\frac{1}{2}} = USV^{T}$$

MFA Eigenvalues:

MFA Eigenvectors:

MFA Loadings:

MFA Component Scores:

MULTIPLE FACTOR ANALYSIS

SVD of:

jmp

$$D_{r}^{-\frac{1}{2}} \left(X_{c} D_{ss}^{-\frac{1}{2}} \right) D_{c}^{-\frac{1}{2}} = USV^{T}$$

MFA Eigenvalues: MFA Eigenvectors: MFA Loadings:

MFA Component Scores:

 NS^{2} $D_{c}^{-\frac{1}{2}}V$ $\sqrt{N}D_{c}^{-\frac{1}{2}}VS$ $\sqrt{N}D_{r}^{-\frac{1}{2}}US$

Principal Inertias: From MCA s²

Standard Coordinates:

Principal Coordinates for Columns:

Principal Coordinates for Rows:

 $D_c^{-\frac{1}{2}}V$

 $D_c^{-\frac{2}{2}}VS$

 $D_r^{-\frac{1}{2}}US$

⊿ Eigenvalues								
	Number	Eigenvalue	Percent	20	40 60	80	Cum Percent	
	1	2.2570	48.072				48.072	
	2	1.1023	23.478				71.550	
	3	0.5400	11.501			1	83.052	
	4	0.3075	6.548				89.600	
	5	0.2625	5.592				95.192	
	6	0.1510	3.216			1	98.407	
	7	0.0748	1.593				100.000	

- Determine ideal number of dimensions (most popular):
 - Scree plot: Number of eigenvalues
 before the elbow
 - Can use Pareto plot or plot eigenvalues in GraphBuilder
 - Number of eigenvalues larger than 1
 - Doesn't apply anymore in MFA
 - Dimensions that sum up to ~80% of variance
 - All dimensions with coherent substantive meaning

- Use Score Plot to identify how products "score" in each dimension
- E.g., Eucalyptus and Rosemary together with Tea Tree were rated as highly woody and spicy, whereas Sweet Orange and Lavender is correctly identified as high in sweet and citrus.
- Use Loading Plot to interpret meaning of consensus components
- Loadings are correlation coefficients between components/dimensions and variables

- Use Loading Plot to compare structure across sources
 - E.g., Males have higher dimensionality than females
- Vectors close to each other are more highly correlated
 - E.g., All sources mostly agree on perceptions of sweet and citrus
- Opposing vectors have opposite meaning
 - E.g., experts and males have opposite interpretation of freshness

- Use Consensus Map to identify agreement or disagreement between sources.
 - "Highlight Product" slider facilitates this task by highlighting low/high inertia products
- Tea tree was experienced most differently across all
- Peppermint, lemon, and lavender was experienced most similarly across all
- Combination of "All" scents is closest to the origin

- Partial Axes Plot displays correlations between separate PCA dimensions across sources with MFA (consensus) dimensions
 - 1st MFA dimension is very much like females' 1st dimension from their own separate PCA
 - 2nd MFA dimension is most like males' own 2nd PCA dimension

- RV Correlations quantify the level of shared variance across sources (squared correlation coefficient between matrices)
 - Experts have the least in common with males and females

- Block Partial Contributions quantify the percentage of contribution to each MFA dimension from each block (i.e., source)
 - E.g., 1st MFA dimension is mostly influenced by females' responses and least by experts' responses

Block Partial Scores	of Smell_Study	MFA - JMP Pro	nh Tools Ad	Id-Ins View	Window	Help						
						nap		Save	Block	٦		
Columns (9/0)		Produ Sweet Orange and L	ict avender avender	Block Male Attributes Female Attributes Expert Attributes		Dim1 -3.07150530	Dim2 4 -3.424678434	Partial Scores				
🔥 Block 📃 🗌	3	Sweet Orange and L	avender			1.52819843	5 1.3612736995					
Dim2 Rows All rows Selected O	5 6 7	Peppermint, Lemon Peppermint, Lemon Peppermint, Lemon Tea Tree	Smell_Study_MFA - JMP Pro File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help Image: Strategy and the str									
Excluded 0 Hidden 0 Labelled 0	8	Tea Tree Tea Tree	Smell_Study_N	MFA D	 ↓ 180 ■ 	5/0 💌	Product	Score Dim1	Score Dim2	Sc		
Component S estimated for	cores cai individu	n be als	Columns (192) C	8 ^		2 Pepp 3 Tea T 4 Eucal 5 Tea T 6 Pepp 7 Roser	ermint, Lemon, and Lavende ree yptus and Rosemary ree, Eucalyptus, and Lemon ermint and Sweet Orange mary and Frankincense	 1.8465900667 1.8465900667 1.1855330196 0.6277417044 -1.638519359 0.666568776 	0.770895243 -2.125635276 0.6493060314 0.0217341348 0.0864775937 1.0085044559	- - - - - 		
(here product blocks	ts) or for Save Inc Sco	dividual res	Selected Excluded Hidden	0 0 •	2	8 All	·	-0.287616764	0.5265624876			
imp												

MULTIPLE FACTOR ANALYSIS

Supplementary variables

enrich the interpretation of our findings

Product	Like_F	Like_M
Sweet Orange and Lavender	3.8235294	3.4
Peppermint, Lemon, and Lavender	3.5882353	2.5
Tea Tree	2.6470588	3.1
Eucalyptus and Rosemary	3.4705882	2.9
Tea Tree, Eucalyptus, and Lemon	2.9411765	2.9
Peppermint and Sweet Orange	3.4705882	3.1
Rosemary and Frankincense	3.2941176	2.8
All	3.291176	3

Males liked best the scents they perceived as citrus and somewhat sweet and fresh, and didn't like those scents they perceived as spicy.

Questions?

Improve understanding of techniques by drawing on their similarities

