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Background and purpose

One of the major inpatient product lines for the US Army’s medical system
is childbirth. However patient satisfaction scores tend to be significantly
lower than other Inpatient product lines at Army hospitals, as well other
hospitals in the civilian sector. Understanding what factors lead to
satisfaction or dissatisfaction is of critical importance to determine
managerial intervention. In the civilian sector, Nurse Communication and
Care Transition HCAHPS composites have been shown to have the
greatest impact on the Overall Hospital Rating among childbirth
respondents. However, factors relating to how a person rates her care
may in fact be different between the military and civilian sectors, which is
evaluated in this study. We applied 3 modeling techniques using JMP Pro
13 (Logistic Regression, Classification Trees, and Bootstrap Forest) to
identify the key indicators of patient satisfaction for childbirth admissions
at U.S. Army Hospitals, and then selected a model which could be used
by Hospital Leaders to focus their performance improvement efforts.

Example of TRICARE Inpatient Satisfaction Survey (TRISS)

Data Sources and Processing

Patient Satisfaction data are from the TRICARE Inpatient Satisfaction Survey (TRISS). TRISS
questions are modeled after the Hospital Consumer Assessment of Healthcare Providers and Systems
(HCAHPS) The dependent variable was question 21 from the survey:

Using any number from 0 to 10, where 0 is the worst hospital possible and 10 is the best hospital
possible, what number would you use to rate this hospital during your stay?

« Patients were considered “satisfied” if they indicated “9” or “10” on an 11-point scale. The scores
are represented as “percent satisfied.”
« The scores were recoded as “0” (dissatisfied) or “1” (satisfied).

Variables examined in the model were from the following composites: Communication with Nurses,
Communication with Doctors, Responsiveness of Hospital Staff, Communication about Medicine,
Cleanliness of Hospital, Quietness of Hospital, Discharge Information, and Care Transition

Methodology:

For all model builds, completed TRISS survey results from patients discharged from Army Hospitals
during the period April 2017 — March 2018 with principle reason for admission = “Maternity care” (based
on MS-DRG codes in the patient record). 5,086 completed. For purposes of model comparison, data
was split into training (70%) and validation (30%) data sets, divided equally between “Satisfied” and
“Dissatisfied” responses to Q21. Although this analysis was fundamentally exploratory and not
predictive, using a cross-validation technique ensured more parsimonious models and prevented
overfitting.
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Based on Question 21: “What number would you use to rate this hospital during your stay?” (0 =

worst, 10 = best)

« Satisfied: Score 9-10, Dissatisfied: Score 0-8

Cohorts based on Annual births for period July 2017-June 2018
* Low: <600 births, Medium: 1450-601 births, High: >1450 births
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Classification trees models predict the probability of the outcome

variable through a series of consecutive splits among the predictor

variables.

» Segments data into homogenous groups (based on y), while
maximizing the difference in the response of groups.

« Splits based on maximizing the difference in the average
response rates b/t paired branches

» Adding more branches so more of the variability in the response
is explained by the model

« Splitting stops when Validation R2 fails to improve

Advantages of classification trees

» Easily understood and explainable to a non-technical audience—
more useful in managerial processes.

* Non-linear and non-parametric —allows for a wide range of
predictor-response variable relationships.

Disadvantage of classification trees:

« Often miss relationships between predictors, as they split on a
single variable.

* Lower performance than more complex modeling (i.e.
discriminant analysis)

In this case, the Classification Tree Model (slightly) underperforms
compared to the other models:

* Rsquare =0.19

» Misclassification rate = 0.25

« AUC=0.77

However, the reduced number of significant variables (6) provides
the client with fewer actionable drivers to concentrate their
performance improvement efforts to improve overall patient
satisfaction.
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Q2 Nurse_listen”, & “Q5 dr_courtesy_respect”. “Q6_Dr_listen” only appeared in the Small hospital cohort. There is significance in “Q6_Dr_Listen” between cohorts (p<.0001)
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Inpatient Satisfaction (Q21) for Army Hospital by Product Line

Cuarter
Q21: “Using any number from 0 to 10, where 0 is the worst hospital possible and 10 is the best hospital possible, what number
would you use to rate this hospital during your stay?” (0-8: Dissatisfied, 9-10: Satisfied)
Note: The HCAHPS benchmark (50t percentile) is 73%

Analysis
Although improving, Army Hospital Inpatient satisfaction for Childbirth continues to be below those of Medical & Surgical inpatients.

Three modeling techniques in JMP were used to determine predictors of childbirth satisfaction in Army hospitals. In the logistic
regression model, items from the Care Transition composite were the strongest determinants of overall satisfaction (Overall Hospital
Rating). The Decision Tree (classification — categorical target variable) revealed “nurses listen” to be the top predictor of overall
satisfaction, with items from Care Transition included in the model which maximized R2. The Bootstrap Forest model indicated
questions from both Nurse Communication and Care Transition were significant drivers of overall satisfaction. Finally, birth volume
was examined to explore whether drivers of satisfaction were different based on size of hospital. Of note, there was a significant
difference in “Dr. Listens” between hospital cohorts, in that it was only a predictor of satisfaction in small hospitals.

Although the Nominal Logistic model performed higher than the other 2 models (R2, misclassification rate, AUC, and RMSE), all 3
modeling types shared similar variables. When we reviewed the results with hospital and clinical leaders, they appreciated the
classification tree model more, as it had fewer significant variables— which helped leaders identify where they should focus their
performance improvement efforts.

Impact of Results

The Army Medical Department’s Childbirth Satisfaction scores have historically
been lower (significantly) than those in the Civilian Sector. Our analysis found, for
the most part, similar drivers of overall satisfaction: all models revealed questions
from the Nurse Communication and Care Transition Composites to be significant
predictors of overall satisfaction. Therefore, focused should be placed on
following leading practices in these areas: nurse hourly rounding; post-discharge
phone calls.

Conclusions / Next Steps

This study only looked at certain predictors of satisfaction (survey data and
number of births). The next steps will be to add other factors to the model. It may
be that variables such as birth preferences, size of hospital, and birth order add in
our understanding of the experience. Further studies into Nursing Satisfaction by
unit type may also provide insight as how it may impact patient satisfaction.

Model Comparison (Validation data set)
Rsquare Misclass Rate AUC RMSE

Nominal Logistic 0.26 0.21 0.82 0.38
Classification Tree 0.19 0.25 0.77 0.41
Bootstrap Forest 0.23 0.22 0.81 0.40
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