These hands-on activities allow you to practice predictive modeling using JMP. Extract the data in **Predictive Modeling Hands-on Activity.zip** for use in the following activities. The solutions follow the instructions for the activities.

Continuous response, continuous predictors

- 1. Use the data in Practice 1.jmp to build predictive models. These data were collected over time.
 - a. Visualize the data using Graph Builder and Multivariate. Are there any data problems?
 - **b.** Build a response surface model using Fit Model and the Response Surface macro. What is the R² of the full model? Are there any problems with the model fit seen in the Residual by Predicted plot? Which predictor variables are most important for predicting Y? Save the prediction formula to the data table.
 - c. Build a neural network model using the default settings of the Neural platform. What is the R² of the model on the validation set? Are there any problems with the model fit seen in the Residual by Predicted plot? Fit another model with 50 nodes. Does this model have appreciably better predictive capability? Save the prediction formula to the data table.
 - **d.** Build a decision tree model using the Partition platform with a 25% validation set. What is the R² of the model on the validation set? How many splits are in the model? Are there any problems with the model fit seen in the Actual by Predicted plot? Which variables are most important for predicting Y? Save the prediction formula to the data table.
 - e. Build an Actual by Predicted graph for the three models using Graph Builder. Which model do you prefer?

Categorical response, continuous and categorical predictors

- 2. Use the data in Practice 2.jmp to build predictive models.
 - a. Visualize the data using Graph Builder. Are there any data problems?
 - **b.** Build an ordinal regression model using Fit Model and the Response Surface macro. What is the misclassification rate of the full model? Hint: open the Fit Details report. What is the misclassification rate for the Acceptable group? Hint: open the Confusion Matrix report.
 - c. Build a neural network model using the default settings of the Neural platform. What is the misclassification rate of the model on the validation set? In particular, what is the misclassification rate of the Acceptable group? Fit another model with 50 nodes. What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set? What is the misclassification rate of the Model on the validation set?
 - **d.** Build a decision tree model using the Partition platform with a 25% validation set. What is the misclassification rate of the model on the validation set? What is the misclassification rate of the Acceptable group?

Solutions

Continuous response, continuous predictors

- 1. Use the data in PM 1.jmp to build predictive models. These data were collected over time.
 - a. Visualize the data using Graph Builder and Multivariate. Are there any data problems?
 - 1) Open **PM 1.jmp**.

▼PM 1	∢ 💌											
Notes Simulated data		Y	X1	X2	X3	X 4	X5	X6	X7	X 8	X 9	X10
	1	54.574	12.04	4.07	6.96	21.79	32.22	31.74	10.04	28.81	29.1	9.86
Columns (11/0)	2	53.993	13.25	8.21	-2.77	34.42	39.13	26.7	18.03	24.76	26.73	9.89
۹	3	54.126	18.7	11.87	-3.65	22.36	38.7	14.08	32.03	22.35	24.72	20.45
V Y	4	53.838	19.53	13.02	-6.18	20.79	38.71	18.56	25.5	24.26	21.48	12.53
4 X1	5	53.758	14.01	10.14	-0.67	24.87	46.62	26.21	21.32	30.51	29.84	5.55
▲ X3	6	54.773	9.94	11.88	10.98	29.64	34.78	25.1	7.84	19.97	21.92	10.84
▲ X4	7	57.167	15.28	14.98	26.74	39.46	13.07	16.53	4.39	8.6	6.22	19.14
🔺 X5	8	59.063	27.99	14.96	32.69	35.39	0.14	5.95	11.22	5.14	5.18	29.65
🔺 X6	9	58.673	21.73	9.14	21.81	35.64	7.95	10.74	4.59	11.59	9.42	20.32
A X7	10	59.308	25.18	4.58	29.88	30.45	17.08	12.51	16.89	17.03	20.23	24.72
▲ X8 ▲ X9	11	60.572	17.3	2.93	40.27	36.32	16.64	16.49	19.04	17.94	20.75	18.26
▲ X10	12	61.386	17.81	1.34	38.78	26.83	21.81	21.89	25.82	24.31	30.78	21.65
	13	62.137	26.46	3.11	33.75	24.17	25.85	19.14	30.05	25.57	34.42	22.05
Rows	14	61.299	22.29	5.98	26.55	26.64	23.76	23.03	30.88	24.43	26.67	15.44
All rows 7,875	15	59.525	17.23	7.67	18.92	33.2	16.78	30.07	12.12	16.43	13.97	8.45
Selected 0	16	57.247	16.71	3.87	9.17	31.87	16.42	29.76	1.97	16.24	12.46	10.73
Hidden 0	17	56.526	26.19	3.11	6.99	15.28	13.62	21.68	20.03	22.25	29.38	24.37
Labeled 0	18	55.55	21.02	3.13	-0.46	26.75	22.55	23.76	32.02	28.03	35.25	19.12

Build a time plot

- 2) Select **Graph > Graph Builder**.
- 3) Drag **Y** to the Y zone.
- 4) Right-click **Y** and select **Row** > **Row**.
- 5) Drag **Row** to the X zone.

6) Click Done.

The data appear to be correlated over the rows. In this case, the rows correspond to time order. The mean and variability of the response appear to be constant over time. Add a column switcher to reproduce this graph for the predictor variables.

- 7) Click the red triangle next to **Graph Builder** and select **Redo > Column Switcher**.
- 8) Select **Y** from the Select Initial Column to Switch box.

9) Select all columns from the Select Replacement Columns box.

10) Click **OK**.

11) Click on each variable in the Column Switcher in turn.

Many variables appear autocorrelated. No other data problems are evident. Save the script to the data table.

- 12) Click the red triangle next to **Graph Builder** and select **Save Script > To Data Table**.
- 13) Enter **Time Plot** for the name.

Name:	Time Plot 🗸
Duplicat	te name handling: Append unique suffix Replace existing script
	OK Cancel Help

14) Click **OK**.

Build a scatter plot

- 1) Select Graph > Graph Builder.
- 2) Drag **Y** to the Y zone.
- 3) Drag X1 to the X zone.

4) Click **Done**.

The relationship between Y and X1 appears strong, positive, and linear. Add a column switcher to reproduce this graph for other predictors.

5) Click the red triangle next to **Graph Builder** and select **Redo > Column Switcher**.

6) Select all columns in the Select Replacement Columns box.

Select Initial Colum	n to Switch
2 Columns	
🔟 X1	
🚄 Y	
Select Replacement	Columns
10 Columns	;
Enter co 🔎 🔻	•
/ ¥1	
Z X4	
∠ X5	
⊿ X6	
⊿ X7	
🔟 X8 🛛 🗸	
▷ Options	
OK	Cancel

- 7) Click OK.
- 8) Click on each variable in the Column Switcher in turn.

Other relationships are also strong. Save the script to the data table.

- 9) Click the red triangle next to **Graph Builder** and select **Save Script > To Data Table**.
- 10) Enter **Y vs. Predictors** for the name.

Name: Vs. Predictors	
Duplicate name handling: Append u Replace e	nique suffix xisting script
OK Cancel	Help

11) Click **OK**.

Another way to view the relationships among variables is with the Multivariate platform.

Multivariate

- 1) Select Analyze > Multivariate Methods > Multivariate.
- 2) Select all columns, then click **Y**, **Columns**.

Explores correlations among multiple numeric variables.							
- Select Columns			Cast Selected	Columns into Roles		Action —	
11 Columns			Y, Columns	🔺 Y	^	ОК	
₩				🚄 X1		Cancel	
X1				A X2			
A2 X3				A X3	~	Permanua	
🔺 X4			Weight	optional numeric		Remove	
🔺 X5			Freq	optional numeric		Kecall	
A X6			Ву	optional		Help	
X9							
🔺 X10							
Variance Estimation	Default	~					
Matrix Format	Square	~					

3) Click **OK**.

⊿ Corre	elations										
	Y	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
Y	1.0000	0.6719	0.4120	0.7486	-0.2675	-0.4234	-0.5353	0.5048	-0.2367	0.2372	0.6006
X1	0.6719	1.0000	0.3036	0.4164	-0.5867	-0.3466	-0.5931	0.7058	-0.0762	0.4266	0.6786
X2	0.4120	0.3036	1.0000	0.3444	-0.1384	-0.4566	-0.6195	0.1828	-0.6868	-0.2185	0.5397
X3	0.7486	0.4164	0.3444	1.0000	-0.3218	-0.3054	-0.4937	0.3547	-0.2412	0.1735	0.5240
X4	-0.2675	-0.5867	-0.1384	-0.3218	1.0000	0.1029	0.4253	-0.6105	-0.1421	-0.5274	-0.5574
X5	-0.4234	-0.3466	-0.4566	-0.3054	0.1029	1.0000	0.4806	-0.1802	0.5904	0.1900	-0.4268
X6	-0.5353	-0.5931	-0.6195	-0.4937	0.4253	0.4806	1.0000	-0.5046	0.4988	-0.1932	-0.8238
X7	0.5048	0.7058	0.1828	0.3547	-0.6105	-0.1802	-0.5046	1.0000	0.1086	0.5619	0.6371
X8	-0.2367	-0.0762	-0.6868	-0.2412	-0.1421	0.5904	0.4988	0.1086	1.0000	0.6370	-0.3387
X9	0.2372	0.4266	-0.2185	0.1735	-0.5274	0.1900	-0.1932	0.5619	0.6370	1.0000	0.3705
X10	0.6006	0.6786	0.5397	0.5240	-0.5574	-0.4268	-0.8238	0.6371	-0.3387	0.3705	1.0000

There are many large positive (blue) and negative (red) correlations among the variables.

The same scatter plots that you created in Graph Builder can be seen all at once in the Scatterplot Matrix.

4) Click the red triangle next to **Multivariate** and select **Color Maps > Color Map on Correlations**.

This color map duplicates the information in the correlation matrix but might be easier to read.

No data problems other than the autocorrelation, are detected. Save the script to the data table.

- 5) Click the red triangle next to **Multivariate** and select **Save Script > To Data Table**.
- 6) Click OK.
- 7) Save the data table.
- **b.** Build a response surface model using Fit Model and the Response Surface macro. What is the R² of the full model? Are there any problems with the model fit seen in the Residual by Predicted plot? Which predictor variables are most important for predicting Y? Save the prediction formula to the data table.
 - 1) Select Analyze > Fit Model.
 - 2) Select **Y**, then click **Y**.

3)	Select X1	through X10.	then click	Macros > Res	ponse Surface.
- /					

Select Columns	Pick Role Variables	Personality:	Standard Least Squares
11 Columns	Y 4 Y	Emphasis:	
A Y	optional	Emphasis	Minimal Report
A X1		Help	Rup
A X2	Weight optional numeric	Пер	Kun
A X3	Free optional numeric	Recall	Keep dialog open
▲ X4 ▲ V5	Treq Optional numeric	Remove	
A X6	Validation optional numeric		
1 X7	By optional		
4 X8			
▲ X9	Construct Model Effects		
🔺 X10	Add X1 & RS		^
	X2 & RS		
	X3 & RS		
	Nest X4 & RS		
	Macros X5 & RS		
	Degree 2 X6 & RS		
	X7 & RS		
	Attributes V8 & RS		
	Transform 💌 X9 & RS		

- 4) Click Run.
- 5) Close the Effect Summary report.

⊿	Summary of Fit	
	RSquare	0.889623
	RSquare Adj	0.888704
	Root Mean Square Error	1.635233
	Mean of Response	55.07844
	Observations (or Sum Wgts)	7875

 R^2 is about 89%, meaning that 89% of the variability in Y is explained by this model. One standard deviation of the unexplained variability is about 1.6. Check model assumptions.

6) Click the red triangle next to **Response Y** and select **Row Diagnostics > Plot Residual by Predicted**.

No problems are seen in the residual plot. Plot the residuals in time order (row order).

 Click the red triangle next to Response Y and select Row Diagnostics > Plot Residual by Row.

Autocorrelation in the residuals is also seen. Examine the Actual by Predicted plot to see how much the autocorrelation affects the predictions.

8) Click the red triangle next to **Response Y** and select **Row Diagnostics > Plot Actual by Predicted**.

No bias is seen in the predictions.

Because there are so many observations, looking at *p*-values to determine variable importance indicates that all variables are important. See the Parameter Estimates report. To find the most important variables, examine the Effect Summary report.

9) Open the Effect Summary outline.

The most important variables for predicting Y are X3, X1, X4, X2, and X5. All main effects and many two-factor interactions are important.

Save the prediction formula.

- 10) Click the red triangle next to **Response Y** and select **Save Columns > Prediction Formula**.
- 11) Return to the data table and rename the last column as **Pred Y RS**.
- 12) Save the data table.
- c. Build a neural network model using the default settings of the Neural platform. What is the R² of the model on the validation set? Are there any problems with the model fit seen in the Residual by Predicted plot? Fit another model with 50 nodes. Does this model have appreciably better predictive capability? Save the prediction formula to the data table.
 - 1) Select Analyze > Predictive Modeling > Neural.
 - 2) Select **Y**, then click **Y**, **Response**.
 - 3) Select X1 through X10, then click X, Factor.
 - 4) If you want your results to match this solution, enter 98765 as the random seed.

Predicts one or more response variables using a flexible function of the input variables.						
- Select Columns	Cast Selected	Columns into Roles		Action —		
12 Columns Y	Y, Response	A Y optional		OK		
▲ X1 ▲ X2		,		Cancel		
▲ X3 ▲ X4	X, Factor	▲ X1 ▲ X2	^	Remove		
▲ X5 ▲ X6		▲ X3 ▲ X4	~	Help		
▲ X7 ▲ X8	Freq	optional numeric				
▲ X9 ▲ X10	Ву	optional				
Pred Formula Y]					
Set Random Seed 98765						

5) Click OK.

⊿ ▼ Neural	
⊿ Model Launch	
Validation Method	
Holdback ~	Reproducibility:
Holdback Proportion 0.3333	Random Seed 98765
Hidden Nodes 3	
Go	

6) Click **Go**.

⊿ 💌 Model NTanH(3)									
⊿ T i	raining		⊿ V a	alidation					
⊿	Y		⊿	Y					
	Measures	Value		Measures	Value				
	RSquare	0.8816073		RSquare	0.8809392				
	RASE	1.697623		RASE	1.6680197				
	Mean Abs Dev	1.3222562		Mean Abs Dev	1.282874				
	-LogLikelihood	10227.88		-LogLikelihood	5067.7611				
	SSE	15130.1		SSE	7303.5107				
	Sum Freq	5250		Sum Freq	2625				

R² on the validation set is about 88%. Examine the model diagnostics.

7) Click the red triangle next to Model NTanH(3) and select Plot Residual by Predicted.

8) Click the red triangle next to Model NTanH(3) and select Plot Actual by Predicted.

No model problems are evident. Fit a model with more nodes to see if it improves the fit.

- 9) Open the Model Launch outline.
- 10) Enter 50 in the Hidden Nodes box.
- 11) Click Go.

4 💌 🛚	Model NTanH(50)													
⊿T	raining		⊿ Validation											
⊿	Y		⊿ Y											
	Measures	Value		Measures	Value									
	RSquare	0.8998253		RSquare	0.8895211									
	RASE	1.5615568		RASE	1.6067805									
	Mean Abs Dev	1.2157681		Mean Abs Dev	1.2409576									
	-LogLikelihood	9789.2644		-LogLikelihood	4969.5739									
	SSE	12801.913		SSE	6777.0766									
	Sum Freq	5250		Sum Freq	2625									

R² on the validation set has increased by less than one percent. RASE and Mean Abs Dev are lower in the second decimal place. The model is not appreciably better.

Save the prediction formula from the model with three nodes.

Note: JMP Pro has the capability of adding nodes of other activation functions. If you have nonstationary data collected over time, that is, if the mean is drifting over time, it is recommended to add one linear node as well. For this data set, because the autocorrelation is stationary, adding one (or more) nodes with linear activation functions does not improve the predictive power of the model appreciably.

Save the prediction formula for the simpler model, then save the analysis.

- 12) Click the red triangle next to **Model NTanH(3)** and select **Save Profile Formulas**.
- 13) Return to the data table and rename the last column as **Pred Y NN**.

- 14) Return to the Neural report, then click the red triangle next to **Neural** and select **Save Script > To Data Table**.
- 15) Click **OK**.
- 16) Save the data table.
- **d.** Build a decision tree model using the Partition platform with a 25% validation set. What is the R² of the model on the validation set? How many splits are in the model? Are there any problems with the model fit seen in the Actual by Predicted plot? Which variables are most important for predicting Y? Save the prediction formula to the data table.
 - 1) Select Analyze > Predictive Modeling > Partition.
 - 2) Select **Y**, then click **Y**, **Response**.
 - 3) Select X1 through X10, then select X, Factor.
 - 4) For Validation Portion, enter 0.25.

Builds a decision tree to predict a respo	onse.			
Select Columns	Cast Selected	Columns into Roles		Action ——
13 Columns	Y, Response	🔺 Y		OK
Y		optional		Cancel
A X1				
▲ X2 ▲ Y2				
▲ ∧3 ▲ X4	X, Factor	A X1	^	Remove
🔺 X5		A X2		Recall
🔺 X6		▲ X4	~	Help
X7	Weight	ontional numeric		
	weight			
▲ X9 ▲ X10	Freq	optional numeric		
Pred Y RS	By	optional		
Pred Y NN				
- Ontions				
Method Decision Tree Y				
Validation Portion 0.25				
✓ Informative Missing				
✓ Ordinal Restricts Order				

5) Click OK.

Your results will be slightly different because your validation data are different.

- 20
- 6) Click **Go**.

The data are split until the next 10 splits do not improve R^2 on the validation set, then the model is pruned back. R^2 on the validation set is about 79%, a decrease from the linear model or the neural network model. There were 111 splits.

Assess the model.

7) Click the red triangle next to **Partition for Y**, then select **Plot Actual by Predicted**.

There are no problems evident in the model fit.

⊿ Colun	nn Contr	ibutions	
Term	Number of Splits	SS	Portion
X3	27	70525.3467	0.5885
X1	26	36712.7253	0.3064
X4	24	6877.58535	0.0574
X9	11	1933.18861	0.0161
X2	4	1234.13734	0.0103
X5	4	953.721499	0.0080
X7	7	821.028473	0.0069
X8	4	438.137833	0.0037
X10	3	259.199041	0.0022
X6	1	74.272536	0.0006

8) Click the red triangle next to **Partition for Y**, then select **Column Contributions**.

The report is ordered by the portion of variability in Y explained by the predictors. X3, X1, and X4 are the top three predictors.

Save the prediction formula.

- 9) Click the red triangle next to **Partition for Y**, then select **Save Columns > Save Prediction Formula**.
- 10) Click the red triangle next to **Partition for Y**, then select **Save Script > To Data Table**.
- 11) Click **OK**.
- 12) Return to the data table and rename the last column to **Pred Y DT**.
- 13) Save the data table.
- e. Build an Actual by Predicted graph for the three models using Graph Builder. Which model do you prefer?
 - 1) Select Graph > Graph Builder.
 - 2) Drag **Y** to the Y zone.
 - 3) Drag Pred Y RS, Pred Y NN, and Pred Y DT to the X zone together.
 - 4) Right-click in the graph and select **Customize**.
 - 5) Click the plus sign icon **t** to add a new graphics script.

6) Enter y function(x, x); in the script editor box.

1 - +	Properties	ОК
Grid Lines	Templates 🕶 Samples 💌	
Script	y function(x x):	Apply
Reference Lines	y runccion(x, x),	Close
Marker		
Marker		Help
Marker		
Smoother		
Smoother		
Smoother		
	· · · · · · · · · · · · · · · · · · ·	
	< > >	
		J

- 7) Click OK.
- 8) Remove the smooth curve.
- 9) Click **Done**.

10) If you are going to publish this graph, change the graph title to Actual by Predicted, change the X axis title to Predicted, and change the markers for each X variable.

The fits are fairly similar. The decision tree model gives chunky predictions because it is using discrete leaves to predict a continuous response.

Categorical response, continuous and categorical predictors

- 2. Use the data in PM 2.jmp to build predictive models.
 - a. Visualize the data using Graph Builder. Are there any data problems?
 - 1) Open PM 2.jmp.

PM 2	Þ	[∢																									
Notes	Simulated data		Y	X1	X2	X3	X4	X 5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
Columns	(25/0)	1	Very Go	18.89	28.78	5.61	21.17	28	4.84	8.65	20.14	-9.18	7.05	13.81	-7.55	Red	15.72	11.91	27.14	25.2	В	28.22	-7.72	26.49	-0.84	7.85	19.79
Columns	(23/0)	2	Perfect	31.73	24.92	11.45	21.38	20.56	-0.52	20.43	15.03	-2.26	10.94	2.52	-2.07	White	30.21	20.87	15.85	22.56	A	36.83	-19.94	25.69	-12.71	-4.28	29.56
e V ale		- 3	Good	13.18	31.32	8.19	19.8	22.99	4.48	18.42	16.71	1.36	10.61	14.55	0.89	White	21.99	31.39	18.87	25.13	в	15.1	8.76	23.81	20.6	-0.99	23.6
·····································		4	Good	24.57	19.63	-0.18	17.72	26.89	-7.64	15.46	12.74	-0.65	8.65	7.36	-10.02	White	21.45	12.42	25.61	19.56	с	43.76	-12.88	28.99	-5.92	0.58	33.93
A X2		5	Very Go	24.23	26.39	2.73	25.24	27.08	5.81	16.45	20.82	-9.03	9.52	3.81	-6.39	White	21.01	14.05	20.22	26.25	A	28.53	-1.93	26.73	3.24	4.01	21.38
🖌 X3		6	Good	9.78	30.65	3.84	17.08	27.43	-0.39	15.17	23.23	4.95	11.91	19.7	-3.25	White	17.76	19.99	17.72	24.45	В	20.73	9.47	23.46	10.87	0.78	25.83
🔺 X4		7	Very Go	26.74	33.69	9.11	21.29	25.39	9.81	25.62	20.52	0.07	11.51	17.4	2.82	White	17.42	13.47	17.74	30.72	A	12.92	-0.35	23	22.96	5.93	1.28
🔺 X5		8	Good	10.33	26.36	1.51	2.16	28,45	2.12	7.27	6.64	5.38	13.29	15.84	-10.17	White	18.53	22.66	20.95	22.58	¢	20.79	-0.85	22.08	13.13	0.2	30.09
A X6		9	Perfect	28.31	18.62	3.51	24.49	20.72	-7.69	13.13	-4.24	2.33	13.92	4.25	-4.42	White	27.72	21.25	20.82	18.94	A	39.96	-19.77	22.59	-5.88	-8.14	21.9
A X8		10	Very Go	25.95	21.77	5.06	21.84	22.41	8.24	19.33	10.8	1.63	11.94	2.41	0.11	White	24.93	23.67	17.84	26.78	д	21.65	-9	24.6	13.63	-0.81	15.68
A X9		11	Good	21.6	26.75	4.46	11.76	24.61	8.44	29.08	28.39	-5.49	4.74	5.98	-0.61	Red	15.8	18.85	18.96	26.56	в	17.82	3.01	28.47	16.28	10.22	29.37
🔺 X10		12	Good	29.63	25.14	5.43	16.21	24.73	-1.78	28.88	17.33	-4.85	9.88	0.82	-6.67	White	21.22	17.71	19.34	22.54	в	32.01	-9.11	25.65	6.93	1.19	30.27
🔺 X11		13	Good	6.79	32.53	4.56	5.46	30.75	2.81	3.46	17.92	0.84	13.48	21.88	-8.04	White	17.7	17.17	22.17	25.42	с	26.33	5.31	22.23	15.94	2.73	22.82
A X12		14	Very Go	16.13	34.89	4	18.66	22.73	4.43	29,44	12.94	6.44	14.36	16.28	-3.53	Blue	24.97	20,47	19.1	25.48	A	30.14	-7.15	19.9	6.48	-2.96	8.56
X13		15	Very Go	13.65	37.54	3.04	21.1	26.88	5.09	26.56	21.64	-4.95	9.54	17.86	-3.38	White	17.17	17.53	21.39	31.45	A	19.22	3.02	23.13	21.2	9.71	11.6
A X15		16	Perfect	32.08	27.1	16	33.29	19.89	8.1	37.4	28.77	0.28	8.86	-0.29	5.73	White	23.7	27.06	16.23	26.51	A	20.13	-5.74	25,46	2.64	-0.27	22.8
🖌 X16		17	Very Go	30.7	27.3	8.03	26.84	19.09	6.85	43.92	11.32	2.15	14.22	7.59	0.86	Blue	25.19	23.09	16.63	26.24	A	25.55	-17.37	22	7.57	-3.16	16.04
🔺 X17		18	Very Go	30.72	24.87	9.82	27.62	18.39	-6.47	27.28	20,48	0.54	8.07	-9.48	3.62	White	27.88	22.2	15.88	20.57	в	26.35	-12.58	26.94	2.56	-5.58	14.15
🔳 X18		19	Good	18.07	29.7	5.99	20.32	22.14	9.81	31.28	26.73	-2.4	9.49	7.86	2.02	White	22.07	23.86	16.4	27.22	A	25.64	4.81	24.54	18.43	2.25	16.76
A X19		20	Very Go	22.09	30.32	8.36	22.66	16.81	10.28	26.31	19.91	3.56	12.63	8.35	5.67	White	27.68	35.93	12.68	24.97	A	17.8	-9.04	20.1	4.05	-3.42	18.6
A X21		21	Good	25.33	36.93	18.32	16.43	15.47	9.77	18.73	40.02	-0.3	8.66	2.74	15.82	White	23.75	47.25	-7.37	29.51	A	-8.49	14.44	19.86	22.7	-1.42	18.89
A X22		22	Very Go	16.23	28.08	-0.74	8.45	29.18	-1.67	17.68	21.07	-7.71	10.35	15.8	-9.62	White	17.8	7.58	30.19	28.13	В	29.31	-5.97	25.02	5.72	8.72	13.01
🔺 X23		23	Good	9.61	27.25	-2.62	6.19	27.98	-0.53	14.23	2.63	-0.13	13.7	16.21	-11.02	White	19.67	15.07	20.29	23.12	в	25.59	-12.58	21.51	12.82	-0.04	15.06
🔺 X24		24	Good	6.95	38.54	5.76	9.58	23.36	12.79	4.59	8.82	8.43	18.23	25.12	1.56	White	23.24	32.65	4.36	28.68	в	9.75	14.13	18.2	30.24	-4.28	12.84
 Rows 		25	Very Go	14.02	27	3.52	24.77	27.01	2.21	30.84	5.09	-1.1	14.22	14.55	-4.22	White	23.03	10.83	18.97	26.12	A	34.32	-6.61	20.75	11.18	1.91	5.4
All rows	2,751	26	Very Go	36.91	33.98	15.37	27.22	18.84	7.33	35.82	37.54	-5.83	5.24	6.5	9.2	White	16.22	27.94	9.39	27.83	A	20.99	-3.94	28.91	8.86	6.29	19.58
Selected	0	27	Very Go	18.13	21.43	-3	10.48	30.01	-12.09	6.28	7.04	-8.33	9.21	5.35	-14.76	White	20.2	8.21	30.52	20.57	с	49.94	-16.59	27.11	-6.66	0.74	28,41
Excluded	0	28	Very Go	9.26	32.01	-5.75	15.35	30.27	7.26	27.66	18.03	1.81	12.61	24.84	-3.02	White	13.69	13.63	23.91	27.91	A	23.06	12.05	21,43	17.58	6.52	-1.54
Labeled	0	29	Good	12.94	32.12	0.83	17.24	30.18	6.48	7.21	20.7	-4.27	11.66	24.02	-6.3	White	14.08	15.24	25.12	28.22	В	18.5	6.65	23.9	24.51	6.93	8.54
concrete a	v			1001071		2100	11110	2.2110	2110	1.161	200	1041		- 1105	0.0			10101		and these of	-	1015	2102		27.01	2122	2121

- 2) Select Graph > Graph Builder.
- 3) Drag **Y** to the Y zone.
- 4) Drag **X1** to the X zone.
- 5) Select the Boxplot element on the Elements bar.

6) Click **Done**.

7) Click the red triangle next to **Graph Builder** and select **Redo > Column Switcher**.

8) In the Select Replacement Columns box, select all continuous columns.

9) Click **OK**.

Several strong relationships between Y and the predictors can be seen.

Build visualizations for the categorical predictors.

- 10) Select Graph > Graph Builder.
- 11) Drag Y to the Y zone.
- 12) Drag X13 to the X zone.
- 13) Drag **X18** to the X axis to the right of **X13**.
- 14) Select the Heatmap element from the Elements bar.
- 15) Click Done.

There appears to be an association between Y and both categorical predictors.

No data problems are evident in either graph.

- **b.** Build an ordinal regression model using Fit Model and the Response Surface macro. What is the misclassification rate of the full model? Hint: open the Fit Details report. What is the misclassification rate for the Acceptable group? Hint: open the Confusion Matrix report.
 - 1) Select Analyze > Fit Model.
 - 2) Select **Y**, then click **Y**.

Select Columns	Pick Role Variables	Persona	lity: Ordinal Logistic
25 Columns	Y 🚽 Y		
Enter column name 💫 👂	▼ optional	Help	Run
🔺 X5	^	Recal	
🚄 X6	Weight optional n	umeric	Keep dialog open
🔺 X7	Free Intimate	Remo	/e
🚄 X8	Freq optional n	umeric	
🚄 X9	By optional		
🔺 X10			
🚄 X11	Construct Model Effect	s ————	
🔺 X12	Add X1 & R	s	^
📥 X13	X2 & R	s	
🚄 X14	Cross X3 & R	5	
🔺 X15	Nest X4 & R	- S	
🔺 X16	X5 & R	- S	
🔺 X17	Macros ▼ X6 & R	s	
🚽 X18	Degree 2 X7 & R	s	
🚄 X19	Attributes 💌 X8 & R	s	
🚄 X20	Transform 💌 X9 & R	S	
🚄 X21	X10 &	RS	\sim
🔺 X22			
🚄 X23			

3) Select **X1** through **X24**, then click **Macros > Response Surface**.

- 4) Click **Run**.
- 5) Close the Effect Summary outline.

6) Open the Fit Details outline.

	Ordinal	Logistic F	it for	·Y				
D	Effect Su	mmary						
⊿ \	Whole N	lodel Tes	t					
	Model	-LogLikeli	ihood		DF	ChiSquare	Prob>ChiSq	
- 1	Difference	1883	.4797		396	3766.959	<.0001*	
- 1	Full	1019	.9889					
ł	Reduced	2903	3,4686					
ł	RSquare (U)		0.	.6487			
	AICc			29	73.75			
I	BIC			519	99.95			
(Observatio	ns (or Sum \	Ngts)		2751			
⊿∣	Fit Detai	ls						
	Measure		Traini	ing	Defini	tion		
I	Entropy RS	quare	0.64	487	1-Logl	ike(model)/L	oglike(0)	
(Generalized	d RSquare	0.84	485	(1-(L(0)/L(model))^	(2/n))/(1-L(0)/	`(2/n))
	Mean -Log	0.37	708	∑-Log	(p[j])/n			
	RASE		0.33	391	√∑(y[j]-p[j])²/n		
	Mean Abs (Dev	0.22	280	Σly[j]-	ρ[j]/n		
1	Misclassific	ation Rate	0.16	632	∑(ρ[j];	≠pMax)/n		
1	N		27	751	n			

The misclassification rate is about 16%.

7) Click the red triangle next to Ordinal Logistic Fit for Y and select Confusion Matrix.

Confusion N	Confusion Matrix												
		Training											
Actual		Predicted	d Count										
Y	Perfect	Very Good	Good	Acceptable									
Perfect	316	128	0	0									
Very Good	71	1085	107	0									
Good	0	137	886	1									
Acceptable	. 0	0	5	15									
Actual		Predicted Rate											
Y	Perfect	Very Good	Good	Acceptable									
Perfect	0.712	0.288	0.000	0.000									
Very Good	0.056	0.859	0.085	0.000									
Good	0.000	0.134	0.865	0.001									
Acceptable	0.000	0.000	0.250	0.750									

The misclassification rate for the Acceptable group is 1 - 0.75 = 0.25. Five Acceptable observations were classified as Good.

c. Build a neural network model using the default settings of the Neural platform. What is the misclassification rate of the model on the validation set? In particular, what is the misclassification rate of the Acceptable group? Fit another model with 50 nodes. What is the

misclassification rate of the model on the validation set? What is the misclassification rate of the Acceptable group?

- 1) Select Analyze > Predictive Modeling > Neural.
- 2) Select **Y**, then click **Y**, **Response**.
- 3) Select X1 through X24, then click X, Factor.
- 4) If you want your results to match this solution, enter 11793 as the random seed.

5) Click OK.

⊿ 💌 Neural	
⊿ Model Launch	
Validation Method	
Holdback 🗸	Reproducibility:
Holdback Proportion 0.3333	Random Seed 11793
Hidden Nodes 3	
Go	

6) Click Go.

1 💌 M(odel NTa	nH(3)									
⊿ Tra	aining					⊿ \	/alidation				
⊿ }	(4	٩Y				
N	Measures Value						Measures		Value		
0	Generalized RSquare 0.7826538						Generalized	RSquare	0.7795663		
E	Entropy RSq	uare	0.5517212				Entropy RSq	uare	0.547145		
F	RASE		0.3866163				RASE		0.3933946		
P	Vlean Abs De	ev	0.2954718				Mean Abs D	ev	0.2960454		
P	Misclassifica	tion Rate	0.2045827				Misclassifica	tion Rate	0.2265795		
-	LogLikeliho	od	866.6759				-LogLikeliho	od	439.32126		
S	Sum Freq		1833				Sum Freq	Sum Freq 918			
		Co	nfusion Matri	ix				Co	nfusion Matr	ix	
	Actual		Predicted	Count			Actual	Predicted Count			
	Y	Perfect	Very Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable
	Perfect	191	105	0	0		Perfect	88	60	0	0
	Very Good	66	682	94	0		Very Good	31	331	59	0
	Good	0	97	585	0		Good	0	51	291	0
	Acceptable	0	0	13	0		Acceptable	0	0	7	0
		Co	onfusion Rate	s				Co	onfusion Rate	s	
	Actual Predicted Rate						Actual		Predicte	d Rate	
1	Y	Perfect	Very Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable
	Perfect	0.645	0.355	0.000	0.000		Perfect	0.595	0.405	0.000	0.000
1	Very Good	0.078	0.810	0.112	0.000		Very Good	0.074	0.786	0.140	0.000
	Good	0.000	0.142	0.858	0.000		Good	0.000	0.149	0.851	0.000
	Acceptable	0.000	0.000	1.000	0.000		Acceptable	0.000	0.000	1.000	0.000

The misclassification rate on the validation set is about 23%. The misclassification rate of the Acceptable group is 100%. All seven observations in the Acceptable group were misclassified as Good. All thirteen observations in Acceptable group in the Training data were also misclassified as Good.

7) Open the Model Launch outline.

8) Change the number of Hidden Nodes to 50.

⊿	Model Laur	nch
	Hidden Nodes	50
	Go	

9) Click Go.

⊿ 💌	Model NTa	nH(50)										
⊿	Training					⊿ Validation						
	⊿ Y			4	Y							
	Measures		Value				Measures		Value			
	Generalized	RSquare	0.8760636				Generalized	RSquare	0.7325104			
	Entropy RSq	uare	0.6962804				Entropy RSq	uare	0.4886919			
	RASE		0.3150258				RASE		0.4114429			
	Mean Abs D	ev	0.2159405				Mean Abs D	ev	0.2833961			
	Misclassifica	tion Rate	0.1352973				Misclassifica	tion Rate	0.2352941			
	-LogLikeliho	od	587.19368				-LogLikeliho	od	496.02749			
	Sum Freq 1833						Sum Freq		918			
		Co	nfusion Matr	ix			Confusion Matrix					
	Actual		Predicted	Count			Actual		Predicted Count			
	Y	Perfect	Very Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable	
	Perfect	221	75	0	0		Perfect	96	52	0	0	
	Very Good	40	749	53	0		Very Good	41	315	65	0	
	Good	1	72	607	2		Good	0	55	286	1	
	Acceptable	0	0	5	8		Acceptable	0	0	2	5	
		Co	onfusion Rate	s				Co	onfusion Rate	s		
	Actual		Predicte	d Rate			Actual		Predicte	d Rate		
	Y	Perfect	Very Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable	
	Perfect	0.747	0.253	0.000	0.000		Perfect	0.649	0.351	0.000	0.000	
	Very Good	0.048	0.890	0.063	0.000		Very Good	0.097	0.748	0.154	0.000	
	Good	0.001	0.106	0.890	0.003		Good	0.000	0.161	0.836	0.003	
	Acceptable	0.000	0.000	0.385	0.615		Acceptable	0.000	0.000	0.286	0.714	

The misclassification rate on the validation set is again about 23%. The misclassification rate of the Acceptable group is about 29%.

- **d.** Build a decision tree model using the Partition platform with a 25% validation set. What is the misclassification rate of the model on the validation set? What is the misclassification rate of the Acceptable group?
 - 1) Select Analyze > Predictive Modeling > Partition.
 - 2) Select **Y**, then click **Y**, **Response**.
 - 3) Select X1 through X24, then click X, Factor.

4) For the Validation Portion, enter 0.25.

5) Click OK.

6) Click Go.

7) If needed, to remove the tree from the output, click the red triangle next to **Partition for Y** and select **Display Options > Show Tree**.

8) Click the red triangle next to **Partition for Y** and select **Show Fit Details**.

Fit Details											
Measure		Training	Valid	lation	Definition						
Entropy RSquare		0.4856	0	0.3907 1-Loglike(mode			/Loglike(0)				
Generalized RSquare		0.7292	0	.6398	(1-(L(0)/L(mod	del))^(2/n))/(1-l	.(0)^(2/n))			
Mean -Log p		0.5419	0	.6453	∑ -Log(p[j])/n						
RASE		0.4226	0	.4513	13 √∑(y[j]-p[j])²/n						
Mean Abs Dev		0.3430	0	.3672	$\sum y[i] - \rho[i] /n$						
Misclassification Rate		0.2479	0	.2749	∑(ρ[j]≠ρMax),	/n					
N		2049		702	n						
Confusion I	Matrix	[
Training									Validation		
Actual	Predicted Count					1	Actual	Predicted Count			
Y	Perfec	t Very	Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable
Perfect	17	0	159	3	0		Perfect	51	59	2	0
Very Good	5	7	733	137	0		Very Good	22	262	52	0
Good		1	140	629	7		Good	0	52	193	2
Acceptable		0	0	4	9		Acceptable	0	0	4	3
Actual	Predicted Rate]	Actual		Predicte		
Y	Perfec	t Very	Good	Good	Acceptable		Y	Perfect	Very Good	Good	Acceptable
Perfect	0.51	2	0.479	0.009	0.000		Perfect	0.455	0.527	0.018	0.000
Very Good	0.06	51	0.791	0.148	0.000		Very Good	0.065	0.780	0.155	0.000
Good	0.00)1	0.180	0.810	0.009		Good	0.000	0.211	0.781	0.008
Acceptable	0.00	0	0.000	0.308	0.692		Acceptable	0.000	0.000	0.571	0.429

Your results will vary due to the random nature of the holdout procedure. The misclassification rate on the validation set is about 27%. The misclassification rate of the Acceptable group on the validation set is about 57%. About half the observations in the Acceptable group were misclassified as Good.