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Introduction

Off-line quality control as introduced by Taguchi and Wu (1) provides quality
engineers with a comprehensive systems approach to the product design pro-
cess. It consists of the following three steps: system design, parameter design,
and folerance design. We will review briefly the key ideas below but refer to
Ref. 2 for a more comprehensive discussion. System design is the phase of the
product design process where the general layout of the prospective product is
established. Parameter design, which is the next logical phase, is concerned with
the optimization of the system found in the previous phase. Usually, the ob-
jective of parameter design is to minimize variation in the product’s output
caused by variation in components or in the environment by manipulation of
the system’s parameters while maintaining some specified target output. Ac-
cording to Taguchi, after having determined the optimal parameter settings in
the parameter design phase, the designer is then asked to provide tolerances
that balance the desire to reduce the variability in the output with the need to
allow for variability in the input. This is the third and final step called toler-
ance design.

To facilitate the parameter design optimization, Taguchi and Wu (1) suggest
the use of experimental design methods and, in particular, orthogonal arrays
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laid out as inner- and outer-array designs. Taguchi also provides a variety of
examples of the use of experimental design methods for optimizing products.
Those examples can be classified broadly into two groups; those for which a
functional systems relation is known between the inputs and the output or
performance measure of the product, and those for which no such relation is
available. In the former case, Box and Fung (3) have pointed out that the use
of experimental design is inefficient, and they show that better approaches based
on the well-known error transmission formula are available. The latter case,
called the dual-response problem, has been addressed with response surface
methodology by Vining and Myers (4), Myers, Khuri, and Vining (5), and Del
Castillo and Montgomery (6).

In this article, we build on Box and Fung’s work for the case when a
mathematical systems equation exists for the product. We extend their use of
the error transmission formula and, assisted by symbolic manipulation software,
we use analytic approaches to solve the parameter design problem. Specifically,
we use modern methods of nonlinear programming in combination with ana-
lytically derived derivatives and have found that such an approach provides a
reliable determination of the optimum conditions. As symbolic manipulation
software is rapidly maturing, we expect that such an approach soon will allow
us to handle larger and more complex problems. In addition, and perhaps more
importantly, we will also demonstrate that analytic methods provide more in-
sight into the problem, give a better understanding of the optimal conditions,
and can supply us with useful measures of sensitivity.

We have deliberately chosen a very simple electrical circuit originally used
by Taguchi (7) for our discussion of analytic parameter design. The simplic-
ity of this example allows us to support the conceptual development with in-
sight-generating three-dimensional graphics. As to the organization of the ar-
ticle, we first provide a brief literature overview followed by a section where
we introduce a slightly modified version of the simple electrical circuit used
by Taguchi (8). Next, we provide a section on a general formulation of the
analytic parameter design problem using the concepts of nonlinear programming
which clarify several subtleties of the problem. We then show how to find the
optimal solution to the electrical circuit for a given set of input variances us-
ing both analytic and graphical methods. This is then followed by a discussion
of the tolerance design problem where the input variances are varied. We
proceed to show that the optimal solution in the parameter design stage depends
on the tolerances. This, in turn, leads us to the observation that the parameter
design and the tolerance design problems cannot, as implied by Taguchi and
others, be considered separately. Thus, parameter design and tolerance design
must either be performed simultaneously or solved through several iterations.
The article is concluded with a discussion.
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Background

During the past decade, parameter design has received a great deal of at-
tention in the literature. A large number of articles about parameter design have-
been published, and an even larger number of papers have been presented at
recent conferences. A panel discussion edited by Nair (9) summarizes much
of the work in recent years.

Perhaps the earliest article on parameter design is by Morrison (10) and
appeared long before the term parameter design was coined. He discusses how
the variation in several manufacturing dimensions affects the variation in the
volume of glass beads and rings used in vacuum envelopes and glass-to-metal
seals. In this article, he studies several product designs and shows how to de-
termine which manufacturing dimensions are important to control. Morrison
(10) also suggests an analysis, based on the error transmission formula, which
can “guide the designer towards better proportions or a better arrangement in
the design, so as to reduce overall variance.” This important but much ne-
glected article provides an early contribution to robust parameter design.

Our literature search then shows that between the publication of Morrison’s
article and the path-breaking series of publications by Taguchi, which began
to appear in the early 1980s, little if any was published on the subject. In
response to Taguchi’s articles, Box and Fung (3) then demonstrated a more
efficient method of parameter design using numerical derivatives and numeri-
cal methods of nonlinear programming when a functional relationship for the
system is known. They also discuss, in the context of Taguchi and Wu’s (1)
Wheatstone bridge example, how sensitive the optimum design values are to
changes in the assumptions about the component variances.

Lately, a number of conference papers have appeared in the engineering
literature which have suggested using various optimization methods for param-
eter design. Wilde (11), for example, considers the same electrical circuit
example that we use. He puts the problem into a nonlinear programming form
but does not use the error transmission formula as the basis for variance re-
duction. Hsieh, Oh, and Oh (12) use the optimizer IDESIGN (13) to determine
the optimal design for minimizing the error associated with a specific manu-
facturing technique called net building. Net building is when a particular out-
put of the product is adjusted to target as the final step on the production line.
Parkinson et al. (14) provide a general discussion of a two-step method as an
alternative to standard nonlinear programming techniques. They use a two-bar
truss as an example of a design problem. The technique they use involves
optimizing a design without taking into account the variation in the constraints.
This gives what they call the nominal optimum. In the second step, the deriva-
tives of the constraints evaluated at the nominal optimum are used to estimate
the constraint variance. The problem is then reoptimized using these estimates.
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Sundaresan, Ishii, and Houser (15) use Taguchi’s orthogonal-array approach
to optimize a gear design. Michelena and Agogino (16), like Wilde (11), use
Taguchi’s electrical circuit example. They expand on Wilde’s work and come
to a slightly different solution. They also provide a comparison of their solu-
tion with Wilde’s and Taguchi’s solutions. Ramakrishnan and Rao (17) empha-
size the use of Taguchi’s loss function in conjunction with nonlinear optimi-
zation to minimize variation in machining and welding processes. Box and Fung
(22) expand on their earlier work on parameter design and stress the ironic fact
that the robust solution is not robust to the assumptions made about the com-
ponent variances. Several other articles are pertinent to this area, but we have
selected the earliest and the latest of these for this review. For further details
on the literature, see Ref. 9.

Taguchi’s RL Circuit Example

As indicated earlier, we will use a simple alternating current circuit (see
Fig. 1) as our leading example of a “design.” The “product,” which we will
refer to as an RL circuit, consists of a voltage source, a resistor R, and an in-
ductor L connected in series. In itself, as a design problem, this circuit is, of
course, trivial. However, as with the inclined plane in mechanical physics, its
simplicity allows us to demonstrate the fundamental principles of parameter
design, of nonlinear optimization as applied to the parameter design problem,
and to do so with graphics. The understanding gained from this simple example
will provide a conceptual guide for how to deal with more complex design
problems.

According to Taguchi the design objective for the RL circuit is to set the
nominal values of resistance and inductance such that the average root mean
squared (RMS) current is targeted at 10 A, and the variation around that tar-
get is minimized. (Apparently, the phase change is not important.) From al-
ternating-current circuit theory, it is then established readily that

o

v

Figure 1. The RL circuit.
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where R is the resistance, L is the inductance, V is the voltage, f is the fre-
quency, and 7 is the current. We will call R and L the design variables, as their
nominal values can be controlled by the designer. On the other hand, V and f
are factors that are not under the control of the designer. Thus, we refer to
those factors as environmental variables. In our example, there are two design
variables, two environmental variables, and one target value for the response.
Hence, it can readily be seen that there will be a number of solutions in R and
L that will satisfy the target of 10 A of current. Moreover, we note that in
volume production, the resistance and inductance values will vary randomly
from component to component, and the voltage and frequency will vary both
from installation to installation as well as over time. As a consequence of these
random variations, there will be variation in the current. The problem is how
to minimize the variation in the current I. To achieve that, the designer may
either reduce the manufacturing tolerances of design variables, in this case
variance of the resistor and the inductor, or reduce the sensitivity of the cur-
rent to variation in both the design and environmental variables. The latter
approach is parameter design.

Mathematical Formulation of the Parameter Design Problem

As already indicated, the purpose of this article is to provide a general
approach to the parameter design problem and to bring out some of this
problem’s subtleties. We will, therefore, now reformulate the simple RL cir-
cuit parameter design problem described in the previous section using the ter-
minology and symbolism commonly used in the nonlinear optimization litera-
ture. Although we will provide some of the important concepts of nonlinear
optimization in the following discussion, we refer to Ref. 18 for more details
on this topic.

Now turning to a general formulation of our robust circuit problem, let the
functional relationship (1) be denoted by g(e), and let x denote an n-dimen-
sional vector of nominal values of the design variables and z an m-dimensional
vector of assumed nominal values of the environmental variables. As indicated,
in applications the design and environmental variables will be perturbed by
random errors. Thus, let X = x + ¢, and Z = z + ¢, where we will assume
for simplicity that the errors ¢, and ¢, are all mutually independent and that
E{e,} = 0 and E{e,}=0. Now let the (random) output characteristic, in our
case the current, be denoted by Y. Thus, with this notation, we may write (1)
as Y = gX, Z).

Now suppose the designer wants to target the expected value of the response
E{Y} at some target, 7, with minimum variation. To achieve that, the designer
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may control the nominal value of the design parameter vector x = E{X}. We
may then write the parameter design problem as

min V{g(X, Z)}

subject to E{g(X,Z)} =T,
E{X} € Q" cR",
E{Z} =z, Q)
and V{Z} = o2,

where Q" is the feasible design set, R” is the n-space of real numbers, and z
and o7 are m-vectors of the assumed values of the means and variances of the
environmental variables, respectively.

There are many technical intricacies in this minimization problem that could
be the subject of a larger discussion. Some of these are related to the distri-
bution of the response function, the interdependence between and among the
X and Z variables, the relationship between the mean and standard deviation
of the individual random variables, and the definition of the feasible design set.
However, our purpose is to outline a general framework for parameter and
tolerance design in the context of nonlinear optimization and to draw broad
conclusions about the parameter design problem. To avoid getting bogged down
in details, we will, therefore, assume that each of the individual elements of
the vectors X and Z are mutually independent random variables. Thus, we will
assume that V{X} = 2, = diag{o}} and V{Z} = %, = diag{c? }, where o2
=V{X},i=1,...,nand o7, = V{Z},j = 1,..., m. In some applica-
tions, it will further be important to allow the variances of the design variables
to be functions of their means. When that is the case, we may write C’ch,. =
or(x),i=1,...,n

To make some inroads on the general but rather intractable problem as stated
in Eq. (2), let us now proceed to approximate the variance and the expected
value of the response. Specifically, we will use the standard first-order error
transmission formula,

2 2
e @g “ 8g
V{ig(X, Z)} ~ [——) c? + (___] o2
; axi ! 1221: 52, &

G3)

= f(x,2,0,,0,)
to approximate the variance. We will also use the approximation

E{g(X, Z)} =~ g(E{X}, E{Z}) = g(x, z).
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According to Ku (19), these approximations provide surprisingly good estimates
of the transmitted variance when the variables are independent and are subject
to some relatively mild conditions discussed in detail in his section 3.5. Fathi
(20) provides a more accurate but more complicated formulation of this prob-
lem based on the second-order Taylor approximation to the variance.

To further simplify the general formulation in Eq. (2), let A(x, z) =
g(x, z) - T. With these simplifications, we may now write the parameter de-
sign problem as a deterministic nonlinear optimization problem

min f(X, z,0,,0,)
X

subject to  h(x,z) =0 “4)
xe Q" c R",

where z = E{Z} and o2 = V{Z}.

In this form, the problem can be solved using standard optimization tech-
niques to obtain the optimal settings x°. In addition, sensitivity measures can
also be calculated at (x°, z) to determine how robust the optimum is to changes
in the assumptions of the problem formulation. In particular, if the Lagrange
multiplier method is used, the multiplier provides a sensitivity measure that
estimates the potential reduction in the response variance as a function of a
change of the target value, 7. We will discuss this below.

Solution to the RL Circuit

Let us now return to Taguchi’s RL circuit example. The problem is to set
the mean values of the resistance R and the inductance L such that the expected
value of the output 7 is 10 A with minimum variation. We will use notation
consistent with the general formulation above and use example values roughly
consistent with those by Taguchi (8). The current will be denoted by g(X, Z)
because it is the output of the circuit. It depends on the random design vari-
ables, resistance X, and inductance X, and the random environmental variables,
voltage Zy and frequency Z, The mean values for the environmental variables
are fixed and assumed to be z; = 60 Hz and z, = 100 V. The mean values
of the design variables are under the control of the designer and denoted xj
and x;. The standard deviations of the environmental variables are assumed to
be o, = 8.16 for the voltage and o, = 0.1 for the frequency. We point out
that we have assumed a smaller and more realistic standard deviation for the
frequency than Taguchi did, a fact that will prevent us from a comparison of
his solution with ours.

In Taguchi’s formulation of the problem the standard deviations of the de-
sign variables are proportional to their mean levels, so we write
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Gi2 = oXx) = (bx)* i =R L, 5)

where the ¢;’s are proportionality constants. For this case, the ¢,’s are assumed
to be equal such that ¢, = ¢, = 0.08. Thus, the standard deviation of the

resistance is ox = 0.08x; and the standard deviation of the inductance is
GL - O.OSXL.
The response function (1) can now be rewritten as

(X, Z) = Z,[(2nZ,Z, * + X312 ©)

Thus, h(x, z) = g(x, z) - T = zy[(2nz,x,)* + x;]™ — T. Using Egs. (3) and
(5), we have

2 2
0 0 0
f(X,Z,'i),“z):(‘éf;J RR+(6 ]d’L L+(5‘Zij V+(azi) Gf» (7

where

% _ —xpzy[(2mz,xp )? + x317%72,
Oxg
—éa—g— = —(2nz; Y x 2y [(2nzpx, )* + xg1772,
XL
g
— = [(2rz.x; )* + x3]712,
o, (27253, )" + Xg
and
0
i = —(2mx, 7,2, [(2nz,x, ) + 23T,

We note in passing that these derivatives can be found easily using a symbolic
manipulation software package such as Mathematica, Maple, or Macsyma. Now
inserting the numerical values given above, the parameter problem can be
expressed as a constrained minimization problem:

min{f(x) = (64.0x% +1.33 x 101074x#)[(120mx, )* + x3]3

+ 66.6[(1207x, )% + X311}
subject to h(x) = 100[(1207x, ) + x3]'12 -10.0 =0 (8)
and x € Q% c R2.

To provide a better understanding of the optimization, let us now discuss a
geometric solution to this problem. First, note that xp and x; must be non-
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Figure 2. The feasible region for the constraint A(x) = 0.

negative. Second, the feasible set consists of the points given by A(x) = 0. The
feasible set as a subset of the space spanned by x; and x, is shown in Figure 2.

Next, let us consider a three-dimensional plot of the variance surface, f(x),
as a function of x and x;. Figure 3 shows the surface f(x) superimposed with
the feasible curve, A(x) = 0. The intersection between these two surfaces is
the set of feasible solutions and the corresponding value of the variance of the
current. The lowest point of the variance on the feasible set is indicated by
Sf(x%); thus, the point x° = (x£, x£)' provides the optimal value for the con-
strained optimization problem.

Lagrange Methods and Secondary Conditions

The graphical approach used in the previous section provides useful concep-
tual insights into the problem of constrained optimization relative to parameter
design problems. However, a geometric approach is limited clearly to three
dimensions; other methods are necessary for more realistic problems. In this
section, we will, therefore, discuss a general method for solving constrained
optimization problems using Lagrange multipliers which will be useful for
parameter design problems of larger dimensionality. We acknowledge that in
the above problem it would be easy to solve the constraining equation explic-
itly in one of the two variables, substitute this expression into the objective




84 BISGAARD AND ANKENMAN
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Figure 3. The graphical solution, x° = (x¢, x), of the parameter design problem. The
solution is found by locating f(x°), the lowest point on the variance surface f(x), which is
also in the feasible region for the constraint A(x) = 0.

function, and solve the optimization problem directly. However, we prefer,
here, for demonstration purposes the more general approach using Lagrange
multipliers.

The first step in this approach is to convert the constrained optimization
problem to an unconstrained problem by using the Lagrangian function L(x, A),
defined as

Lx, 1) = f(x) - Ah(x), )

where A is an undetermined multiplier. The Lagrangian function has the prop-
erty that a minimum of the unconstrained function L(x, A) is also a solution
of the constrained problem (8). For a particularly lucid discussion of this, see
Ref. 21, p. 192). Thus, we may use unconstrained optimization methods to
minimize L(x, A) and thereby obtain a solution to the RL circuit problem.

Necessary conditions for a stationary point of L(x, A) at the point (x°, A°)
are

V,L(x%, M%) = V, f(x%) - AV, h(x%) = 0 (10)
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and

OL(x,)\) — _h(x°) =0
on x '

A=A0

(11)

For Eq. (10) to hold, the two gradient vectors V, f(x°) and V,A(x°) must be pro-
portional, and hence parallel, with proportionality factor A°. Below, we will
explore the significance of this. The second condition, Eq. (11), is merely a
restatement of the constraint A(x) = O at the optimal point, x°.

Note that the Lagrange multiplier A° has a practical interpretation. At the
stationary point,

AV (X)) = V, f(x),

which means that the Lagrange multiplier provides an index for how much the
objective function f(x) will change relative to a change on the right-hand side
of the constraint A(x) = 0. The Lagrange multiplier is therefore, in econom-
ics and operations research, often referred to as the shadow price. Thus, if the
objective function is expressed in economic terms, the Lagrange multiplier
shows how much we should be willing to pay for a unit change of the con-
straint. For further discussion of the general theory of Lagrange multipliers,
see Ref. 18.

Let us now return to our RL circuit. The solution to Eqgs. (10) and (11) are
X?= (x§, x2) = (7.072, 0.0188) and A° = 0.1972. At x°, the objective
function is f(x?) = 0.985 and the two gradient vectors are V h(x°) = (-0.7072,
-0.266.5) and V, f(x°) = (-0.1395, -52.56)' . Thus, we see that they are par-
allel with proportionality constant A° = 0.1972.

For our circuit example, with only two dimensions, we have found our
solutions through analytic methods both with respect to the differentiation for
the variance approximation (3) and for the necessary differentiation involved
in finding the solution to Eq. (4) using Eqgs. (9)-(11). In most practical prob-
lems, however, numerical methods of some kind will be needed. Now it is well
recognized that numerical differentiation is often unstable. In the light of the
rapid progress in symbolic manipulation software, we, therefore, recommend
that whenever possible, analytic derivatives be used and evaluated. It is espe-
cially recommended that the differentiation involved in the variance approxi-
mation (3) is done analytically. This will more likely assure convergence to a
proper solution. There are now many standard software packages available for
finding the solution of nonlinear optimization problems using Lagrange multi-
pliers and other techniques, once the problem is precisely stated. However, as
our focus in this article has been on providing a better conceptual understand-
ing of the parameter design problem and its geometry, we have chosen not to
dwell too much on the numerical calculations involved.
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So far, we have discussed first-order or necessary conditions for a station-
ary point to be optimal for the Lagrangian. A thorough analysis, however,
should also include a discussion of the second-order conditions to assure that
the stationary point is indeed a minimum. For a general nonlinear optimiza-
tion problem, a set of sufficient conditions for an optimal solution is provided
by the Kuhn-Tucker conditions (see Ref. 18, p. 314). However, the param-
eter design problem, as we have discussed it, only involves differentiable equal-
ity constraints. Thus, finding sufficient conditions for an interior stationary point
(not located on the boundary of the feasible set) to be a minimum reduces to
an analysis of the Hessian. Specifically, we need to verify that the Hessian of
the Lagrangian is positive definite at x°.

The stationary point x° = (xg, x°) = (7.072, 0.0188) is clearly an inte-
rior point, so we now compute the Hessian of the Lagrangian. For our two-
dimensional problem, the Hessian, H(x°, 1?), is

O*L(x, 1) O*L(x, M)
62xR X=X’ aXR axL X=X
H(x?, ) =| = "t
0°L(x,\) 0*L(x,)) (12)
X=x° 2 x=x°
Oxp OX; Xy 0°xX; x=x

and for the RL circuit, at the stationary point, it can be shown that
o 1o _ [0.0226 -1.110
H(x?,2%) = (—1.110 3220.87) (13)

which is positive definite because it has positive eigenvalues, 0.022 and
3220.87. Thus, we conclude that x° is a minimum. For more details on this
condition, see Ref. 18, p. 316.

With the optimum established, let us now perform a sensitivity analysis.
Recall that the Lagrange multiplier is the ratio of the length of the gradient
vectors V, f(x°) and V, h(x%). Hence, A° = 0.1972 is an estimate of the amount
the objective function f will change for a given change on the right-hand side
of the constraint A. It will, therefore, provide an estimate of the reduction in
the response variance for a unit change in the target value. Thus, if we sub-
tract the Lagrange multiplier from the objective function at the optimum point,
we will get an estimate of how much the variance of the current would be
reduced if the target current were lowered by 1 A or if T = 9. Doing this,
we find

f(xOO)T_9 = f(x°) = 2 = 0.985 - 0.1972 = 0.7878.
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To check how accurate this linear approximation is, we re-solved the problem
for T = 9 and found that f(x°°)|;_y = 0.799, which is quite close to our ap-
proximate estimate.

In many cases, the target is fixed and the information provided by the
Lagrange multiplier cannot be used. However, in some cases, a high absolute
value for the Lagrange multiplier might prompt the designer to explore the
possibility of biasing the target value in order to reduce the output variance.
In a separate investigation, which will not be reported here, we also investi-
gated the possibility of minimizing the mean squared deviation from the tar-
get rather than the variance, subject to being on the target. However, for the
examples considered, this change of objective function did not substantially
change the solution.

In keeping with the findings of Box and Fung (22), we note that the solu-
tion presented above is very sensitive to the assumption that the standard de-
viations of the design variables are proportional to their mean levels. For this
example, we will maintain that assumption, as electrical components are almost
always sold with percentage tolerances. However, in the next section, we will
explore how the optimum solution changes when the designer considers different
percentage tolerances for the components.

Tolerahce Désign

In the RL circuit example, the parameter design problem was solved assum-
ing fixed values for ¢, and ¢, the constants related to the percentage varia-
tion of the resistor and the inductor. However, in practice, the designer may
have control over this variation by specifying the tolerances of the components.
Of course, specifying tight tolerances may increase the cost, and relaxing them
may cause excessive variation in the current. In order to choose a proper
balance in the tolerance design, we may consider the consequences of varying
¢, and ¢ over chosen ranges. We then repeat the constrained parameter de-
sign optimization to find the minimum attainable variation in the current, y =
y(bg, ¢;) = min, L(x, A, ¢), for each combination of ¢, and ¢p. Figure 4
shows a contour plot of y.

Whereas the Lagrange multiplier provided a sensitivity analysis of the con-
sequences of changing the constraints, this analysis provides a sensitivity analy-
sis of changing the input variances. Figure 4 shows that there exists a set of
parameter and tolerance specifications which give the same value of variance
in the current. However, to achieve the same variance in the current with dif-
ferent tolerances, it is necessary to change the parameter values of resistance
and inductance. For example, when ¢ = 0.068 and ¢, = 0.1015, the minimum
attainable  is 0.985, as it was in the previous section. However, the optimal
parameter values have now changed to x° = (x¢, x) = (8.31, 0.0148)'".
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Figure 4. The contour plot of y = (g, ¢,) = min, L(x, A, ¢). There are many
combinations of ¢, and ¢, which produce the same minimum output variance, y(dg, ).
Thus, the tolerance design problem is to choose the most economical combination of ¢; and
¢g. However, once these are chosen, the optimal parameter values must be recalculated to
achieve the minimum output variance.

Because the optimal parameter values change when the tolerances change, it
follows that the designer should either consider the parameter and tolerance de-
sign together or follow an iterative process that will adjust the parameter val-
ues whenever tolerance values are changed. If this is not done, the design will
be suboptimal.

In addition to raising this important philosophical point, Figure 4 can be used
to show the trade-offs that must be made between the tolerances of the design
variables and the output variance. Note that in our example, the relationship
between y and ¢, is similar to the relationship between v and ¢, and hence
symmetric about ¢, = ¢,. The designer may therefore maintain the level of
variance in the current by relaxing the tolerance on one of the components and
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correspondingly tightening the tolerance of the other. In addition, the plot shows
the designer how much the tolerances must be tightened to achieve a lower vari-
ance in current.

To produce the plot in Figure 4 is computer-intensive. Each coordinate point
involves the solution of a constrained optimization problem. It is, however, of
important conceptual value. Any optimization ought to be accompanied by
various sensitivity analyses. One kind of sensitivity analysis involves calcula-
tions of the change in the objective function as a function of changing the input
variables x from the optimal value x°. Another equally important but less
common type of sensitivity analysis involves a calculation of how the optimal
solution x° changes as the assumptions change. We believe that the rapid de-
velopments in computing power will soon make this second kind of sensitiv-
ity analysis realistic for more complex parameter design problems.

Conclusion

We have provided a general formulation of the problem of parameter de-
sign and have shown how standard methods of nonlinear programming theory
can be applied to provide additional insight into the problem’s solution. We
have also shown that the optimal solution depends on the specified standard
deviations and, hence, on the assumed tolerances. It is, therefore, not possible
to solve the parameter design and tolerance design problems separately as often
assumed in the past; these two problems must be solved simultaneously.

The simple example using a RL circuit is clearly not very interesting in it-
self as a design problem. However, as a vehicle for discussion of the concepts
and the geometry of the parameter design problem, this simple illustration has
been most useful. In particular, we found it conceptually mind-expanding to
consider the function of conditional minima y(o,) = min, L(x, A, o,) as a
function of the input standard deviations, o, = (o, 05, ..., 0,)’, shown in
Figure 4.
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