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Studies in Quality Improvement:
Minimizing Transmitted Variation
by Parameter Design

George E.P. Box and Conrad A. Fung

The reproducibility of a quality characteristic of a manufactured product
inevitably depends on the amount of variation in the components that go to make
the product. This is because variations in the components are “fransmitted” to the
quality characteristic. Careful choice of the nominal values of the components’
characteristics can minimize this transmission. This process of choice is an
example of what professor Genichi Taguchi calls parameter design.

In this paper the design of a Wheatstone Bridge circuit used by Taguchi to
illustrate the orthogonal array method of parameter design is discussed and
reconsidered. It is pointed out that for this particular example the orthogonal
array method does not yield the overall optimal solution. Simpler methods are
discussed, in particular the use of nonlinear programming. A list of related

problems is presented.

In their book Introduction to Off-Line Quality
Control (1979), Taguchi and Wu discuss a number of
important and interesting problems concerned with
the improvement of quality and efficiency of products
and processes., Many of these ideas are novel and
valuable and have only recently begun to receive
attention from quality technologists and statisticians
(see for example Kackar, 1985). In this paper we
discuss one such problem they call parameter design.

THE PARAMETER DESIGN
PROBLEM

The authors illustrate the problem using a well known
electrical circuit called the Wheatstone Bridge, used
for the determination of an unknown resistance p. It
is supposed that this circuit is to be used in some
manufactured product and that design specifications
for its components are needed such that optimal
precision is achieved in the determination of py. The
circuit is shown diagramatically in Figure 1. The
components A, C, D), and F are fixed resistances; E is
a fixed battery voltage; and X is an ammeter reading.
If the variable resistance B is adjusted so that there is
no flow of current through the ammeter, an estimate y
of the unknown resistance pg can be calculated from
the formula

_BD
Y= (1)

More generally if a current X is flowing through the
ammeter, the relation becomes

BD X
y= ?—E—Z'E[A(C“L DY+ D(B+C)] (2)

[B(C+ D)+ F(B+C)]

by which y is related to all the factors A, B, C, D, E,
F, and X.
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Figure 1. Diagram of Wheatstone Bridge.
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Now consider a particular sample of compoenents
A, B, C, D, E, F, X, brought together to manufacture a
single complete circuit. Each component
characteristic will deviate slightly from its nominal
value and these deviations will transmit errors into y.
However, when the product is being designed, the
nominal values for the fixed resistances — A, C, D,
and F, and the fixed battery voltage E — are ar choice,
and the error transmission will be different depending
on which choice is made. The parameter design
question is: how should the nominal values of these
“design” variables be chosen? How should the
product be designed so that the error transmitted to y
is small?

The avthors point out that from such a study it is
often possible to achieve reduced error transmission
using cheaper components even when these
components are individually more variable than more
expensive ones.

Although error transmission has frequently been
discussed in other contexts (see for example Deming,
1964; Ku, 1969; Box, Hunter, and Hunter, 1978), this
very important application seems previously to have
received very little attention outside Japan. Indeed, in
the United States and Europe the techniques of
quality control have been largely concerned with
process surveillance and sampling inspection. Except
in the chemical industry, the important role that
statistical methods and particularly experimental
design should play in product design and process
design, seems to have been largely overlooked.

In what follows, we employ the terminology
design factors”™ for those components whose nominal
levels are at our choice in designing the product (A,
C, D, E, F in this example). Also, following Taguchi
the term error factors will refer to all the components
that transmit error to y (A, B, C, D, E, F, X in this

example). Thus, for instance, A is both a design factor -

and an error factor, but B and X are error factors only.

It is supposed that the range of possible values
allowable for the nominal value of each design factor
is known. Typically this range is very wide. For
instance, the values used in the present example,
which are shown in Table 1(a), employ a ratio of
{highest value)/(lowest value) of 25. It is convenient
to refer to the allowable region so defined as the
design region R. The coefficient of variation is also
supposed known for each design factor. This
measures the variation to be expected about the

* Taguchi uses the terminology control factors and
parameters 10 describe these variables, but we find the
phrase design factors to be more descriptive.
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nominal value from one item to the next, These
coefficients of variation are typically small compared
with the allowable ranges. Thus in this example (see
Table 1(b)), except for factor E, the coefficients of
variation® for the design factors are all less than
0.25%.,

Table 1{a)

Levels of Design Factors in the Inner Array,
FACTORS ISTLEVEL 2ND LEVEL 3RD LEVEL

(=) {+) (+)

A (ohms) 20 100 500

C (ohms) 2 10 50

D (ohms) 2 10 50

E (volts) 12 6 30

F (ohms) 2 10 50

Table 1(b)

Levels of Error Factors in the Outer Arrays.

- FACTORS | ISTLEVEL 2ND LEVEL 3RD LEVEL | IMPLIED
{-) (+) (+) cv

A (%) -0.3 0 0.3 0.24%
B (%) -0.3 0 0.3 0.24%
C(%) -0.3 0 03 0.24%
D (%) -0.3 0 0.3 0.24%
E(%) =50 0 5.0 4.08%
F (%) -0.3 0 0.3 0.24%
X (mA) 0.2 0 0.2 [s.d.=

0.16 mA)

As the objective function to be maximized,
Taguchi and Wu chose the measure 10log;o(SN7),
where SNy is a “signal-to-noise ratio” they define as

=2
SNy = {"i’f -%} . 3)

Maximizing SNy is equivalent to maximizing SN =
?2 / 52 ; henceforward the notation “SN* will denote
this latter quantity.

* The ranges of variation for each error factor (Table 1(b)
were calculated so that the standard deviations of the
implied 3-point discrete distributions equaled the standard
deviations of the assumed continuous distributions; thus,
for example, for factor A the error factor levels are 0 and
o372,
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A SOLUTION EMPLOYING
ORTHOGONAL ARRAYS

Taguchi and Wu’s solution was based on a double
application of orthogonal array designs as follows. A
layout that they called the inner array was chosen for
the design factors — for this example combinations of

the three levels of Table 1(a) for each of the five
design factors (4, C, D, E, F) were employed using
the orthogonal array Lsg shown in Table 2. A, C, D, E,
and F were assigned to columns 1, 3, 4, 5, and 6
respectively. The design was thus made to span the
space R of the whole design region of interest. At
each of these inner array points an arrangement called

Table 2.
Orthogonal Array Lys. The appended column shows the values of 10logo(SN7)
obtained by Taguchi at the 36 inner array points.

COLUMN NUMBER

Run 1 » 3 4 5 6 7 8 9 10 1 12 13 Taguchis

No. Criterion
1 - - - - - - - - - - - - - 322
2 0 0 0 0 0 0 0 0 0 0 0 0 - 26.7
3 + + + + + + + + + + + + - 159
4 - - - - 0 0 0 0 + + + + - 36.4
5 0 0 0 0 + + + + - - - - - 28.6
6 + + + + - - - - 0 0 4] 0 - 7.2
7 - - 0 + - 0 + + - ) 0 + - 16.5
8 0 0+ - 0 + - - 0 + o+ - - 13.0
9 + + - 0 + - 0 0 + - - 0 - 28.0
10 - - + 0 - + 0 + 0 - + 0 - 15.0
11 0 0 - + 0 - + - + 0 - + - 16.4
12 + + 0 - + 0 - 0 - + 0 - - 255
13 - 0 + - + 0 - + + 0 - 0 0 438
14 0 + - 0 - + 0 - - + 0 + 0 8.3
15 + - 0 + 0 - + 0 0 - + - 0 14.6
16 - 0 + 0 - - + 0 + + 0 - 0 29.0
17 0 + - + 0 0 - + - - + 0 0 69
18 + - 0 -~ + + 0 - 0 0 - + 0 14.7
19 - 0 - + + + - 0 0 - 0 + 0 21.5
20 0 + 0 - - - 0 + + 0 + - 0 174
21 + - + 0 0 0 + - - + - 0 0 14.0
22 - 0 0 + + - 0 - - + + 0 0 46.5
23 0 + + - - 0 + 0 0 - - + 0 5.5
24 + - - 0 0 + - + + 0 0 - 0 -8.2
25 - + 0 - 0 + + - + - 0 0 + 273
26 0 - + 1] + - - 0 - 0 + + + 434
27 + 0 - + - 0 0 + 0 + - - + =209
28 - + 0 0 0 - - + 0 + - + + 44.1
29 0 - + + + 0 0 - + - 0 - + 393
30 + 0 - - - + + 0 - 0 + 0 + -17.0
31 - + + + 0 + 0 0 - 0 - - + 230
32 0 - - - + - + + 0 + 0 0 + 442
33 + 0 0 0 - 0 - - + - + + + 0.9
34 - + - 0 + 0 + - 0 0 + - + 434
35 0 - 0 + - + - 0 + + - + 1.7
36 + 0 + - 0 — 0 + — - 0 + + 8.0
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an outer array was now employed in which the error
factors were allowed to vary over the small ranges
listed in Table 1(b). In this example the outer arrays
were again Lig designs run in the seven error factors
A, B, C, D, E, F, X, which were assigned respectively
to columns 1 through 7. The full layout, illustrated
conceptually in Figure 2, thus consisted of 36 x 36 =
1296 points” .

£
g
3

error factors

Figure 2. Conceptual illustration of how outer arrays
are arranged at each inner array point.

Using Equation (2) the y’s could now be
calculated at each of the 1296 points, and
consequently an SN ratio was computed for each of
the 36 inner array points. The 36 resulting values of
10log o(SNy), shown in the last column of Table 2,
were then subjected to an analysis of variance
procedure and marginal averages were calculated for
the (-), (0), and (+) levels of each design factor. The
marginal averages are shown in Table 3 and are
plotted in Figure 3. By inspection of these marginal
averages the authors reached the conclusion that the
objective function was maximized for the levels A__,,
Cisy Doy Egsy and Fiy,

Table 3.
Marginal averages of 10log((SNy) at the inner
array levels of each design factor.

FACTOR  ISTLEVEL 2NDLEVEL 3RDLEVEL

) 0 (+)
A 31.56 1R.78 6.73
C 14.56 21.10 21.42
D 20.91 21.24 14.93
E 5.66 18.52 32.89
F 27.58 19.68 9.81

* In the outer arrays, the central {0) level of B is setat B =
poC/D=2CID where, following Taguchi, p, = 2 is the target
resistance for which maximum precision is to be achieved.
The central level of X is 0 by definition.

Direct calculation, however, shows that this is
not the value that maximizes SNy and that a value
some 6% larger*” is obtained with levels A, Cp),
Dy, E(,) and F(,, while if non-integer values are
considered an even higher value is possible.

The situation can be readily appreciated by
graphical examination of the objective function
10log,(SN7) in the space of the design factors. This
turns out to be roughly linear in A, E, and F, resulting
in optimal values for these factors being at the
extremes Ay, E.,) and Fg,, for fixed values of C and
D. It remains therefore to find the optimal values of
C and D on the CD plane obtained when A, E, and F
are set at these optimal levels. Figure 4 shows
contours of 10log¢(SNy) on this plane with the
orthogonal array solution marked OA. Also marked is
the point at which the maximum is actuatly obtained.
It will be seen that the contours about the maximum
are obliquely oriented in 2 manner associated with a
large interaction between these variables. Such an
interaction is to be expected because of the dominant
role played by the ratio D/C in Equation (2). In the
presence of such an interaction the marginal graphs
of Figure 3 will of course be misleading and indeed
the maximum is seen to be located a considerable
distance from that found by the orthogonal array
method.

50

10

[ e ]

2 T
2 10

C—

Figure 4. Contours of 10log o(SNy} in the CD plane.
A, E, and F are set at their optimal levels.

** This comparison is in the SNy metric rather than
10log 1o(SN7) to show directly the relative signal-to-noise
levels.
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Although in this particular example the extent by
which the orthogonal array solution falis short of the
maximum is not particwlarly large, the fact that it can
readily do so calls for investigation.

A MORE GENERAL FORMULATION
OF THE PROBLEM

For convenience in what follows we will write H =
log;o(SN) and consider the equivalent problem of

1 80T

=z 1

3 20

o

S 107

o
20 100 500

A—

T 30 +

=z 1

5 204+ T

2

8 10T

o

T ; : :
2 10 50

D—

1T 301

=

@, 20“

2]

8 10t

o
2 10 50

F-

minimizing H. The guantities that appear in the
numerator and denominator of the signal-to-noise
ratio SN are calculable from (2). The numerator y is
obtained directly; the denominator may be obtained
from the usual error transmission formula employing
the first partial derivatives of y with respect to the
error factors. Thus H is, in principle, a known
function of the levels of the design factors, and the
problems is one of minimizing a known function
within a given known region.

30 +
20 + /_‘
10 +
2 10 50
C-
30 +
20 T+
10 +
1.2 6 30

E—

Figure 3. Plots of the marginal averages from Table 3.
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Specifically, if we use x|, x,, etc. to denote the
factors, the problem consists of defining:

(a) a d-dimensional design vector x,; whose
elements can be chosen at will within some
known design region R;

(b) a k-dimensional error vector x, some or all
of whose elements may be identical with
those of x, and whose known covariance
matrix is Z,. Typically it will be assumed
that the elements of x, vary independently so
that Z, is diagonal with i diagonal element
0',-2; and

(c) an objective function H that , given X, can
be computed and that in some acceptable
sense measures the relative variation in a
quantity of interest y whose functional
relationship y =f(x,) to x, is known.

The object is then to minimize the known objective
function H within the known region R. The only
question is: what are the relative merits of various
methods of achieving this?

THE WHEATSTONE BRIDGE
EXAMPLE IN THE MORE GENERAL
CONTEXT

Before proceeding further we iflustrate this general
formulation with the Wheatstone Bridge example
previously considered. Taguchi and Wu imply by
their choice of levels in Tables 1(a) and 1(b) that the
appropriate metric for measuring 4, B, C, D, E, and F
is the log. Thus logged values for these inputs will be
used, and we will write x|, x,, . . . , x 5 to denote the
factors A, B, C, D, E, and F after being logged,
scaled, and centered to cover the interval ~1 to +1.
The error standard deviations oy, 05, . . ., 07 of the x
variables will be proportional to the coefficients of
variation of the original error factors and will not
depend on x. In this transformed metric, Equation (2)
can be rewritten

y§=f[{fj=f(x1,x2,...,x.,) @

and as indicated above it is possible to compute
Taguchi’s SNrratio using outer arrays at any point x
and to seek its maximum. However, it is worthwhile
to simplify further as follows.

The reciprocal of the signal-to-noise ratio SN is
the square of the coefficient of variation of y and for
small relative errors such as are encountered in this
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and similar examples, the coefficient of variation is to
a very good approximation equal to the standard
deviation of Iny. Thus the problem is essentially that
of minimizing V,, the variance of ¥, =Iny,.

Taking logs on both sides of (4)” i

renf{s)-s)  ©

and given the small error variations in the x/s
contemplated in this example, the variance of ¥, is
closely approximated by the first-order error
transmission formula*

V, =d} (x) o7 +di+..+d? (;)o% (6)
where

df(if)"% i=1.2,...,7. )

The problem formally stated is thus to minimize
the known function V., or equivaléntly

H; =10log,q V, within the known design region R’
defined by )

X

~1<x5<+1  i=1,3,4,56.

The d’s could be determined by direct
differentiation, but in practice they are much more
conveniently found numerically as is normally done
for example in nonlinear least squares calgulations. In
what follows, the i# partial derivative d, [ic.j at some
point x=(x;, xy, . . . , x;) is computed as'thie divided
difference of ¥ = F(x) when the level of the i factor
is raised from x; to x; + §; and all the other factors are
kept fixed"* . Thus to determine the derivatives for k

* Any transmitted variation function V,_ can be written in
the form {6) whether the original respofise function f{ x) is
explicit or implicit (as is the case in the Wheatstone Bridge
problem); see Appendix 1 for further discussion of this
sgecial case.

** In some cases it might be worthwhile to putin a
nonlinearity check using an additional k points, the i of
whichisat (x;, x5, ..., x,— 8, . .., xp) as is suggested for
example in Box, Hunter and Hunter (1978). However, if
approximate linearity breaks down over the small
increments &; normally contemplated, the global situation
over the whole design region might be very complicated
indeed and serious difficulties might be expected whatever
the method of approach.
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error factors, only & + 1 runs (8 in this example) are
needed. Thus:

Fx, %3, X468, .0, x-,)—-F()_c)
d (x) .(8
15 Wt ai ( )

The arrangement for the case k = 3 is illustrated
in Figure 5 with the § made proportional to the o;by
for example using the increments implied by Table
1(b). Then &, = ad;, where ¢ is some constant, and if
Yo, Yl' Yz, P Yk are the values ¥ = F(.}E) at the
various design points, equation (6) becomes simply

V, = LZ{(y, AT A AL A YO)Z}-(9)

R 1

Thus up to an additive constant the objective function
H for this example may be computed from

= 1010310{(Y1 —Yo ) (12 -1p) Yy - Yo)z}(IO)

+ const.

Notice that this mode of calculation is not
peculiar to this example. Any other criterion that
involved the level and the variance of y could be
computed similarly.

Y

3

%
x] ‘m Yl

Figure 5. An arrangement for determining V_ when
k=3. i

For comparison we have used equation (10)

* Equation (2) has the peculiarity that at X =0 it
degenerates to Equation (1) that does not contain A, E, F,
and X. However, all the partial derivatives still exist and are
continuous in X.

with o= 1073 to compute H_ for all 36 points in the
L inner array (see Appendix 2). We find that our
results, based on eight-point layouts, closely
approximate the values obtained by Taguchi and Wu
using 36-point outer arrays. The correlation between
the two sets of values is greater than .9999.

In its general form the problem is seen to be an
example of the constrained optimization or nonlinear
programming problem of optimizing a known
function within a given space, which has received
considerable attention over many years (see for
example Kuhn and Tucker, 1951; Whittle, 1971; and
McCormick, 1983). Many efficient computer
subroutines to make such calculations are available.
In particular we have used both the IMSL program
ZXMWD that employs Fletcher's guasi-Newton
algorithm VA10A (Fletcher, 1972), and the NAGLIB
program E04CCF that employs the simplex method
of Nelder and Mead (1964). All that is required in
addition is a subroutine to compute V_ using (9), or
equivalently H; from (10), for any x. A standard
“packaged” program for the parameter design
problem may readily be written and might, for
example, include the features shown in Figure 6.

Evaluate H at (1) chosen values of x,
or (2) random values of x4

T
x ——
I A 4
Compute Compute Objective Optimization
Response "y" P Function "H" > Program —>

Figure 6. Possible features of a standard computer
program for parameter design.

For the Wheatstone Bridge cxample our
computations led to the correct optimal value
indicated in Figure 4 as the nonlinear programming
solution (NLP).

CONSIDERATION OF SOME
RELEVANT ISSUES

We here considered some issues in the constrained
optimization problem that arise from parameter
design applications. In general the degree of
difficulty associated with minimizing a function
H( x) within a region R must depend on (a) the
complexity and dimension of R and (b) the
complexity of H(x).

CQPI Report No. 8, February 1986
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THE DESIGN REGION R

So far as the design region R is concerned, it appears
that in most applications of parameter design R would
be defined by a series of simple ranges as in Table
I(a), and this would not present special difficulties.
Also the region R is seldom unchangeably fixed.
Experience with response surface studies shows that
when a direction of advance impinges on a constraint
defining R, the possibility is considered of changing
the system so that R may be extended in the indicated
directions {see Appendix 3).

NATURE OF H(x)

If the objective function H(x) might be of any degree
of complexity whatever, then any method of
optimization could be defeated. Much depends on the
extent to which smoothness properties of the function
can be relied upon. For example, in a finite time no
method could find the minimum of a function which
had everywhere a constant positive value except at
one point where it was zero. So we need to consider
in the present context what special information, if
any, is available about this matter.

For the parameter design problem the objective
function V, has some especially helpful properties.
In particular from the Equation (6), the function V__ is
positive except at a point x, where d;(x )= dy(xo)=
- . . = d{ x¢)=0. Thus if there exists such a point x;
internal to the region, it must be a minimum for V,_
(although not necessarily a unique minimum) and it
must be a stationary point of the response function
F(x). It is also easy to show that if over any region
O, F(x) can be represented by a second degree
polynomial in x, then V., will also be a second
degree polynomial over that region and in addition
must be convex (see Appendix 3).

Another source of information about V_ is its
behavior in actual examples. This is considered above
for the Wheatstone Bridge example. We have also
made similar studies for the temperature controller
example of Taguchi and Phadke (1984) and for an
example, due to Barker (1984). As we have said, for
the first example three of the factors behave roughly
linearly, and the other two are like a general
quadratic. For the latter two examples the functions
are even simpler, being monotonic in all the
variables.

In spite of the encouraging facts about the
objective function V, we must also accept the fact
that situations more difficult than those considered
above might occur. Therefore in attempting to find
the values x which minimize V, we face a familiar

CQPI Report No. 8, February 1986

dilemma - should we attempt to survey V_ over the
whole design region or should we rely on the local
properties of the function? If we do the former then
for &£ not very small it may be very expensive to
achieve a grid of points of sufficient density. If we do
the latter, then for complex functions, local properties
might mislead.

Global Exploration

Taguchi’s solution employs global exploration using
a three level orthogonal array grid. Since no specific
provision is made for interaction between the
variables and marginal graphs are used to find the
maximum, the method could be expected to work
well if, very approximately, the objective function
H_ behaved like a sum of independent quadratic
components or equivalently like a general second
degree expression that does not contain interaction
terms ~ that is to say if

k E !
H, = Z(“i +Bx; +ﬁiixi2) =Po+ X Bix + X Byxl .(11)
- i=1 i=1

However, it can be argued that the need for second
order terms of one kind (e.g. quadratic) in an
approximating function implies the likely need for
second order terms of the other kind (e.g. two-factor
interactions); see for example Box and Wilson (1951)
and Box and Hunter (1957). More recently one of the
present authors wrote “... The way in which variables
are chosen is to some extent arbitrary. Thus one
investigator might, for example, work with x; and x;,
the logs of two concentrations. Another, preferring to
think in terms of the ratio and product of these
concentrations, might work with X; = x; - x; and X, =
X1 + x3. The two factor interaction in one
parameterization is the difference of the quadratic
effects in the other. Thus, particularly when we are
dealing with continuous variables and are interested
in maxima, it does not make much sense to consider
second order terms of one kind without those of the
other kind . . .” (Box in discussion of Cox, 1984).
Reparameterization in terms of ratios has in fact been
used in applications of the parameter design
technique; see for example Taguchi and Phadke,
(1984). We feel therefore that if second degree power
series approximations are to be considered, then a
design that allows convenient estimation of two-
factor interactions as well as quadratic terms ought to
be employed”. One such three-level arrangement for &

* Barker (1984) in an unpublished manuscript has
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= 5 is a composite design consisting of a half fraction
of a 25 factorial plus 10 axial points constrained to lie
in the basic hypercube, plus a center point. This
design, like the Ly array, uses a particular subset of
the full 3% = 243 design points; but only 27 runs are
required and these are chosen so as to allow all
second order terms to be estimated™” .

In Appendix 4 we have employed such a design
to generate 27 values of H; for the Wheatstone
Bridge example and have used these points to fit a
“response surface” approximation to the actual H;
surface using ordinary least squares. Figure 7 shows
contours of the fitted function in the CD plane, with
the remaining factors at their optimal levels, for
comparison with Figure 4. We sce that the optimum
point is located quite well, employing a total of only
27 x 8 =216 evaluations of the function f{ x).

507/ —_—

I
2 10 50

C—-

Figure 7. Contours in the CD plane of the quadratic
approximation to H, based on a 27-run composite
design. A, E, and F are set at their optimal levels.

RANDOM SEARCH

In most examples some of the “known” quantities (in

experiment with the use of a 27-run, five-factor composite
design as an inner array for the Wheatstone Bridge
problem, computing SN at each of the 27 points using a 31-
point outer array. Although the composite design can of
course estimate two-factor interactions, unfortunately he
ignores these and fits equation (11} rather than the full
quadratic equation. His fitted model consequently is unable
to identify the true maximum.

** Another class of three-level layouts that permit the fitting
of full second-order equations are the Box-Behnken designs
(Box and Behnken, 1960).

particular the precise dimensions of the design region
and the precise values of 0',2, 0'22, s O'f are in
reality not exactly known. Thus it might be argued
that it is pedantic to insist on a precise optimum. A
choice of the design variables that is reasonably good
might be all that could be expected anyway. In such a
case, determination of an objective function H_ at a
sample of n points in R and selection of that x
yielding the best value of H, by simple enumeration
might be adequate. Sampling could be totally random
within R; random on a predecided grid or systematic
on a predecided grid such as an orthogonal array. As
an example of the last method, in the 36-run inner
orthogonal array of Taguchi and Wu, run number 22
gave the highest value of the criterion 10log5(SNp)=
46.5 at the conditions A, Cio), Dyy Ey) Fr) This
however falls considerably short of the best
conditions found by Taguchi’s method and even
further short of the actual best levels found by direct
optimization.

Local Properties

Many optimization strategies are based on local
properties of the function. In the purely statistical
literature, one method vsed in both an experimental
context {(Box and Wilson, 1951) and a computational
context (Box and Coutie, 1956) initially employs the
method of steepest ascent, switching to the fitting of a
second order approximating function when second
order terms become important. In the presence of
constraints the steepest ascent vector may be
projected onto the constraining hyperplanes. Simplex
optimization (Spendley, Hext, and Himsworth, 1962;
Nelder and Mead, 1964) is another local technique
which has been proposed both for experimental and
computational purposes. By considering the nature of
the function V, for the Wheatstone Bridge example it
is clear that éither of these techniques would be
effective in quickly finding its minimum. More
general local strategies are discussed in the very
extensive literature on constrained optimization and
nonlinear programming, in particular methods of
Fletcher and Powell (1963). See also a comparison of
algorithms by M.J. Box (1966) and general
discussions by Whittle (1971) and McCormick
(1983).

Such methods seem to us much less
cumbersome, more computer friendly, and more
easily adapted to a range of problems than those
employing orthogonal arrays. However, Taguchi and
Phadke (1984) criticize these methods as follows:
“, .. The advantage of using orthogonal arrays over
more commonly used nonlinear programming
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methods are:

1) no derivatives have to be computed,;

2) hessian does not have to be computed;

3) algorithm is insensitive to starting conditions;

4) large number of variables can be easily
handled; and

5) combinations of continuous and discrete

variables can be handled easily.”

We consider below these various criticisms in

the order given.

1) The analytic determination of derivatives
would of course be extremely tedious and
would not be considered. It is in practice
much simpler to determine them numerically,
as is for example normally done in noanlinear
least squares calculations. When this is done,
it is seen that the computation of H or H'from
the error transmission formula, and its
computation from the summing of squares in
{10) in a manner similar to that employed by
Taguchi, are essentially identical. However,
the use of orthogonal outer arrays for this
purpose seems unnecessarily complicated and
uneconomical.

2) The evaluation of the hessian determinant of
second derivatives would be undertaken to
assess the local convexity of the function V_.
However, as is shown in Appendix 3, because
of the special properties of V, provided only
that the response function F( x) has a local
representation in terms of some second degree
equation, then V, must be locally convex and
the hessian will always be non-negative.

3) In the pgeneral nonlinear programming
problem with complicated functions F( x),
some assurance can be gained that a genuine
minimum has been obtained by initiating the
algorithm at different starting points and
checking that the same solution is reached.
With the functions we have seen for the three
examples we have studied, no such difficulty
would arise. However, if such assurance was
desired the procedure could be run from a
number of starting points and because of the
very short time required to run the program,
the method would still be very fast.

4) It seems to us on the contrary a great deal
easier to deal with larger numbers of variables
by the method we suggest, which remains
essentially the same whatever the number of
variables. In particular it is not necessary to
seek out special orthogonal arrays appropriate
to different examples.

5) When continuous and discrete variables occur
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as quantitative and qualitative factors,
respectively, difficulties can arise because of
interaction between the two kinds of
factors(the functions involving the
quantitative factors are different at different
levels of the qualitative factors). When this is
S0, separate optimizations would have to be
conducted at the various levels of the
qualitative variables in this case. In view of
the great speed of the NLP algorithm, this
would normally not be unduly time
consuming. However, in these circumstances
averaging over orthogonal arrays could
clearly yield wrong conclasions.

VARIATIONS FOR FURTHER STUDY

In the above, the response function y = f{ x) and the
covariance matrix %, are supposed known. This is
the situation considered by Taguchi and Wu (1979) in
Section 5 of their book, and by Taguchi and Phadke
(1984). However, in preliminary studies we have
found that parameter design solutions can be
dramatically affected by small changes in the
assumed magnitudes of the error variances and by
changes in how X, depends on x (Taguchi nearly
always assumes proportional errors). We plan to
examine this issue of sensitivity to assumptions in a
future publication.

Other variants of the problem can also occur.
Suppose the function depends on certain constants &
so that y = f{x1 ). Then i

1) the form of f{x18) may be known, but the

constants @ may need to be estimated from
data. For example, using kinetic theory the
yield y of an intermediate product in a
consecutive chemical reaction obeying first
order kinetics might depend on x; = reaction
time and x, = absolute temperature in the
following manner (see Box and Lucas, 1959):

TCY )(exp(__kz(xz)xl)_exp(—kl(xz)xl))(l2)

k(23 ) =Ky,

where
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and where o, ¢, B, B, are constants to be
estimated from suitable data;

2) the nature of the function f{x18) might be
unknown, but might be approximated by
some graduating function g(xIB) such as a
polynomial. Since the possibility of
optimization depends on the nonlinearity of
the function; f would need to be nonlinear in
x and if g were a polynomial it would need to
be of at least second degree; or

3) in either of the above situations the covariance
matrix X, might be known or it might be
unknown, so that it too must be estimated
from the data.

It is planned to consider these problems in later

publications.

CONCLUSION

We feel that the parameter design problem enunciated
by Taguchi is of great practical importance; however,
we believe that it is better tackled in the manner
outlined above employing standard nonlinear
programming {constrained optimization) methods.
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APPENDIX 1:
THE TRANSMITTED VARIATION
FUNCTION FOR THE WHEATSTONE
BRIDGE EXAMPLE

Here we analyze the transmitted variation function
for the Wheatstone Bridge example, considering in
detail how errors enter in the determination of y. We
will deal with the factors A, B, C, D, E, F, X in the
original units used by Taguchi and Wu in Tables 1(a)
and 1(b).

Consider Equation (2) that, given a true
resistance pg, becomes an identity that relates
together the true but unknown values of all the
components of the network. Writing o, B, 7, 8, £ ¢, x
for the true values of the nominal factor levels A, B,
C, D, E, F, X, and substituting into (2)

_Bé_x
o= yzg[a(y+5)+6(ﬁ+y)]_ (ALI)

[8(r+8)+9(8+ )]
Equivalently

O0=h(e, B.7.8.8 6. %)

=%—ﬁ[a(y+ 5)+8(B+7)] (AL2)

-[B(7+8)+6(B+7)]- po.

Thus each factor is defined implicitly by the
remaining factors. In particular, any deviation in ¢, ¥,
&, &, ¢, or y will cause a compensatory deviation in 3.

Now y is an estimate of p, calculated from
Equation (1) (which is Equation Al.2 evaluated at the

nominal factor levels
;=(A, B, C, D EF; X=0)
BD D
=—=(fl,+ep)—. Al3
Y= (Bo B)C (A1.3)

The term ey denotes the overali error in B and
consists of a random component ¢z which may arise
from misreading or miscalibration of the
potentiometer dial plus a sum of small biases
transmitted to 8 via the equation (Al.2) from errors
in all the other factors. Given the small error
variations in the factors in this example we have, to a
good approximation,
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do

d,
€4 +3§

£C+%

96 Ep+

z z z

(Al.4)
9B, 9B
ER R

EF + -

3y | £

z z

where the partial derivatives are of the implicit
function B, evaluated at z. It can be shown that the
conditions on % required for implicit differentiation of
f are satisfied so that

_ai2)

Z 8p (%) Iy

8
oo

= fi(fl, etc., (AL5)

Tl

where

oh
8a (;) = % ,ete. (Al.6)

, 83(?) = g_z

z H

Thus

(ALB)

o
>
/‘—\

2 gjag+...+g§[g)a§]

Finally we can write the criterion



%
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v,= var(]n y;J - var[ln(B) + h{%}]
1

()% +.+ai(2)o3 |

Now in the present example the target resistance for
which maximum precision is to be achieved is pp =2
ohms. It follows from (A1.2) that, approximately, B =
2C/D and that gg(z) = D/C is the nominal value of X
is 0. Substituting these expressions into (A1.9) yields
our criterion in operational form,

1 |
v, =] 6i(2)o + 63(2)oh + a2 (e ot +

+gi(2)o} ]

which is seen to be the square of the coefficient of
vartation of y where now the separate contributions of
all the error factors to variation in y are clearly
shown.

Alternatively V, can be represented directly in
terms of the differential transmission of error to lny
as in (6) by writing

V,= var[lnyz)
= dﬁ(;)o—ﬁ +d§[;)d§+...+d§(g o5

where now

i=1..,7. (AlLl2)

(AL10)

(A1.11)
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APPENDIX 2:
COMPARISON OF v, BASED ON Table A2.1
NUMERICAL DERIVATIVES VERSUS . _ ;
TAGUCHI’S SNy BASED ON OUTER C‘}ffn‘:jj;;:g ﬁmﬂx’-‘ d;ﬁ}°‘°f=_’=0 Vs obiainad
A YS erences of Y = Iny,

against Taguchi's criterion 10logo(SN7)
obtained from outer arrays,

We used equation (10) with & = 10? to compute

H; =10log,, V, for comparison with the results RUN FROM FIRST FROM OUTER
obiained by Taguchi and Wu at their Lyg inner array NO. DIFFS ARRAYS
points (their values were reported to one decimal 1 3227 322
place). 2 26.68 26.7
3 1590 159
50 T ° 4 36.43 36.4
’ 5 28.59 28.6
35 1 o° 6 7.23 7.2
- l 7 16.48 16.5
>'“ Py 8 13.02 13.0
2 207 b 9 28.05 28.0
& Y 4 10 15.07 150
9. 54 Py 11 1647 16.4
i L 12 25.55 25.5
= 13 43.75 438
ST 14 -8.28 83
15 14.60 14.6
25 S e s
-25 -10 5 20 35 50 18 14.70 14.7
19 21.48 21.5
10l0g,o(SNy) 20 17.39 17.4
. o 21 13.98 14.0
Figure A2,1 Minitab plot of —10log;, V, versus » 46.39 46.5

10log;o(SN7).

23 5.53 5.5
24 -8.15 -8.2
The approximation is very good, as shown in 25 27.35 273
Figure A2.1. The correlation between the two sets of 26 43.50 43.4
numbers is greater than .9999. 27 ~20.85 -20.9
28 44.09 44.1
29 39.33 39.3
30 -17.00 -170
31 23.07 23.0
32 44.19 442
33 —0.84 -0.9
34 43.50 434
35 -7.64 =17
36 7.97 8.0
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APPENDIX 3:

LINKS BETWEEN THE
TRANSMITTED VARIATION
FUNCTION AND THE RESPONSE
FUNCTION

function V_ =var is linked to the response
function ¥ = F (x)>Some of the helpful properties of
V, that arise when F(x) has a quadratic
approximation are also described.

The following notation will hold throughout:

Here we discuss b }lhow the transmitted variation

* b’s will denote coefficients of the response
function F(x) (when a polynomial
representation is available);

* d’s will denote derivatives of the response
Junction;

s ¢’s will denote coefficients of the transmitted
variation function; and

« g’s will denote gradients of the transmitted
variation function.

The usual error propogation formula gives,

locally and approximately,
v, d,( )ol +a'2( )0'2+ +dk( ) o7d
(A3.])
=d2d_

where k is the number of factors x that transmit error
to the response y, d, is the vector (di(x), ..., di(x))’
of partial derivatives

a'i[x) = 3F[-}f) i=12,...,k, (A32)

and X is the k x k diagonal covariance matrix for the
errors in X, whose i element is 0',.2 > (. We assume
that the errors in the x’s are independent and that the
x's have been transformed so that the ¢2‘s do not
depend on x.

MINIMIZATION OF Vv, USING LOCAL
PROPERTIES i

Suppose the object is to minimize the transmitted
variation function V, by a method such as steepest
decent. To this end tﬁe gradients of V are required.
For the case k = 2, we have

av

31(’-‘)= o"xf ai, (d‘( )"1 +d2( ) 2)

X

_2d1( )du( )"1 +2d2( )d“’( ) %

av

__ d 2
gz(’-‘)' ) =5, (d‘( J“‘ +d2( )62

csa{ (et 20l )

where 4y E{Cl are the second partial derivatives of
F(x) evaluated at x. More generally if g, is the
vector of gradients (g;(x), . ..
have

X

X

 8i(x)Y of V,, we

g, =2D3d, (A3.4)

where D, is a matrix with i element d;;( x).

Thus local evaluation of g, requires only the
first two derivatives of the response function F(x). In
practice the derivatives need only be approximated
numerically and to do so requires no more than a
layout of points sufficient to fit a second-order
approximation of F(x).

IMPLICATIONS OF A QUADRATIC F(x)

We now consider the special case where the response
function F(x) is exactly quadratic. Write

F(,_t)=b0+1_c’b+1_c’8)_c (A3.5)

where b = (by, by, ..., b;) and

1 1
bu  She e Zhu
1 1
B=|3tn Pn 5 b2
1 . 1 B
o Sba by

Then the vector d, of first derivatives of F( x) is
d, =b+2B, (A3.6)

whence
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= (b+?.Bx) E[b +2B‘J
i i (A3.7)

=bTh+ J_r’(4BEB)+ 5'(48}38),;

I ’
=cptx ct+x C{,

where ¢, = b'Th, c = 4BZh, and C = AB%R.

Thus when the response function F(x) is
guadratic, the transmitted variation function V, is
quadratic as well, and the coefficients that are simple
functions of the b’s and Z. Moreover V, is always
convex since its hessian matrix of second partial
derivatives 2C = 8BZB is always positive semi-
definite. The determinant of the hessian is positive
unless det(B) =10, _

A zero value for the hessian determinant is not
informative about the existence of a unique minimum
of V., in the region R. For example, a zero
determinant results when V, is a stationary ridge so
that a multiplicity of “best” factor settings is
available; on the other hand, the determinant also
vanishes in cases when a unique minima in R do exist
(for example when V_ is a nonstationary ridge or
when one or more x’s has no second-order effect on
V,). Thus the routine calculation of the hessian
determinant as a diagnostic would in any case be of
limited use.

After final convergence of any procedure,
numericat determination of second derivatives (using
for example a Koshal design (Koshal, 1933;
Kanemasu, 1979)) and canonical analysis should be
routinely carried out to elucidate the nature of the
stationary regions (Box and Wilson, 1951; Box and
Draper, 1986). The discovery of a stationary ridge
system pointing to a line, plane, or hyperplane of
solutions, is a bonus showing the alternative solutions
available. Furthermore, such an analysis could
discover the cxistence of a rising ridge system
pointing to the desirability, if possible, of extending
the design region R in specific directions.
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APPENDIX 4:
A “RESPONSE SURFACE”
APPROXIMATION TO THE
OBJECTIVE FUNCTION SURFACE

As previously discussed the design factor settings that
maximize the objective function 10log(SN7) can be
located quite well by global exploration of the design
region R, by fitting a full second-degree equation to a
set of strategically placed points. We have done this
with the 27-run 3-level composite design shown in
Table A4.1. We have used the objective function
—H; that closely approximates 10log,o(SNy) (see
Appendix 2), but that requires only an 8-point layout.
Thus a total of 8§ x 27 = 216 evaluations of y were
required, in contrast with the 1296 runs required by
the approach of Taguchi and Wu.

Table Ad.1,
A 27-run 3-level composite design.

3-LEVEL COMPOSITE DESIGN

) 5
—~H =co+ Yox+ Tcaxx; (A4.1)

gy
i=1 i£j

was obtained by ordinary least squares. The estimated
coefficients are displayed in Table A4.2.

Run

Table A4.2
Coefficients of the fitted function (A4.1)
COLUMN COEFFICIENT

26.6428

C1 -11.4163
C2 3.3780
C3 —2.6235
4 12.6173
C5 -7.9151
Cl1 -0.901
Cc22 -3.802
C33 —4.534
C44 -0.328
C55 -2.090
c12 0.6336
C13 0.4034
Cl14 0.1231
C15 -1.3646
c23 4.0740
C24 0.1998
Cc25 1.7902
C34 0.2625
C35 -1.5049
C45 2.0317

A C D E F -H’
No.
1 -1 -1 -t -1 1 10.1348
2 1 -1 -1 -1 -1 5.2513
3 -1 1 -1 -1 -1 20.4796
4 1 1 -1 -1 1 -14.6555
5 -1 -1 I -1 -1 15.8113
6 1 -1 1 -1 1 334252
7 -1 1 I -1 1 9.1047
8 i 1 | 7.2276
9 -1 -1 -1 1 - 47.1396
10 i -1 -1 1 1 10.9286
11 -1 1 -1 1 1 39.0830
12 1 1 -1 1 -1 21.9384
13 -1 -1 13 1 1 21.4846
14 1 -1 1 1 -1 16.5998
15 -1 1 ! 1 -1 46.8175
16 i 1 1 1 1 15.8954
17 -1 0 0 0 0 38.3359
18 1 0 0 0 0 13.1376
19 0 -1 0 0 0 18.4165
20 0 1 0 0 0 27.2549
21 0 o -1 0 0 25.3242
22 0 0 1 0 ¢ 18.8845
23 0 0 o -1 o 12.7334
24 0 0 0 1 0 39.8871
25 0 0 0 0 34.4269
26 0 0 0 0 1 14.6698
27 0 0 0 0 0 26.6807
Writing x;, Xa, . . ., X5 to represent the five design

factors A, C, D, E, and F logged, scaled, and centered
to cover the range —1 to +1, the fitted equation

The major features of the objective function
surface can easily be seen: xq, x4, and xs (A, E, F) are
essentially linear; and x; and x5 (C and D) have a
quadratic tendency and a large interaction between
them.

Thus the “optimal” levels of the design factors
can be approximated by maximizing the fitted
equation in € and D while holding A, E, and F at
their best levels on the boundaries of R: A, E,),
F_,. The contours of the fitted surface in the CD
plane are shown in Figure 7.
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