Abstract

In today’s world, with environmental and health issues gaining significant importance, commuting by
ecofriendly modes of transportation is becoming popular. One such environment friendly means which is
gaining popularity in the USA is biking activity. With the increase in the number of bike enthusiasts, more
and more bike renting companies are trying to find their foothold in this market. One challenge these
companies face is to predict the number of casual customers, who rent a bike occasionally and the number
of registered customers, who rent more regularly and have a membership with the company. It is also
important for these rental companies to understand the renting patterns of different customers over time.

Objective

Our objective is to understand the bike rental patterns of the casual and registered users based on two
years of rental data and use JMP Pro 11’s Time series analysis feature to forecast the number of casual and
the number of registered users for 25 weeks.

Data Preparation

The bike rentals dataset gathered from UClI Machine Learning database has various input variables related
to weather conditions, holidays, temperature, working day, season, humidity and so on. The two target
variables chosen are ‘the number of casual users’ and ‘the number of registered users’ of bikes.

Some patterns

1. Casual rental users tend to rent a bike more often in the afternoons (Figl.1)

2. Registered users rent a bike more often during the beginning of office hours (7 am — 9 am) and after the
office hours (5 pm — 8pm) (Figl.2)
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3. Casual rentals are more in number on the weekends and non-working days than on working days. (Fig2.1)
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4. Registered rentals are more often during the weekdays and working days (Fig2.2)
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Fig 2.1
Linear Regression
Two linear regression models were built to predict the number of casual and registered renters using
holiday, working day, average temperature, humidity and wind speed as predictor variables.

Target: Casual Renters Target: Registered Renters

A Summary of Fit A Summary of Fit

0.674346

Riquare RSquare 0.731128
Riquare Ad 0.671647 RSquare Adj 0.7289
Root Mean Square Error 393.445 FRoot Mean Square Error 212.333
Mean of Response 248.1783 PMean of Response F656.172
Cibservations (or Sum Wagts] 737 Cbhservations (or Sum Wgts) 731
< Parameter Estimates < Parameter Estimates
Term Estimate 5td Error t Ratio Prob> |[t] Term Estimate 5Std Error t Ratio Prob> |t]
Intercept M2.38128 9950154 7.96 Intercept 1424.5594 205.4421 Fo23
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workingday -832.3999 32.39132 -25.70 workingday 913.4049% 6. 28074 13.66
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hum -/11.3427 106.8933 -6.65 hurm -1572.8242 2207105 -7.13
windspeed -963.65306 196.471 -4, 90 windspeed -3023.7 405.6681 -7.45

The following have been observed using the two models above:

1. Holidays are significant for casual renters whereas for registered users holidays do not matter.

2. Working day has a negative estimate for casual renters and positive estimate for registered renters
which means that on a working day, the number of casual rentals go down by 832 units whereas the
number of registered rentals go up by 932 units keeping all the other factors constant.

3. Higher humidity and wind speed levels generally tend to reduce the number of rentals for both casual
and registered users.

Time Series Analysis for forecasting bike users

The data over two years is aggregated weekly to form 104 rows each row representing a week. Each row
has a date or timestamp, number of casual bike renters on that day and the number of registered users who
rented a bike on that day. This data has been divided such that the last 12 weeks of data is used as holdout
to assess model performance. The rest 92 weeks of data is used in building models.
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Model Selection

The best models selected for casual and registered users using the subgrouping feature of JMP are the
ARIMA (1,1,1) Seasonal ARIMA (0,1,0).

These models chosen have the lowest AIC values. JIMP simplifies model selection by calculating AlC
ranks.

The forecast values are compared by saving the time series model prediction values and comparing them
with the values in the holdout sample of 12 weeks. The average MAPE on this hold out sample for casual
users is 23.55 and for registered rentals is 8.296.
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Recommendations

" Since registered users rent during the rush hours (7 am-9 am and 5 pm — 7 pm) and casual users rent
during working hours (10 am — 7 pm) it is suggested to maintain inventory levels appropriately to meet
the rental demands.

" To attract more casual users it is recommended to launch promotions during holidays and weekends.

= Bike rental companies can anticipate a decline in business during bad weather.

= The ARIMA models built can be used to forecast the bike rental demands for the casual and registered
users for the next 25 weeks.
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