

GENREG DID THAT?

- **Clay Barker**
- Research Statistician Developer
- JMP Division, SAS Institute

- The Generalized Regression platform was introduced in JMP Pro 11 and got much better in version 12 (more interactive and faster).
- The goal of the platform is to help build better models using variable selection techniques (including penalized regression).
- This platform can be your go-to platform for building regression models.
- From here on, we'll just call it "Genreg".

GENREG VARIABLE SELECTION TECHNIQUES

• We provide penalized regression techniques (lasso, elastic net, ridge).

⊿▼	Generalized Regree	ssion	for Y
⊿	Model Launch]
ſ	Estimation Method		-
	Elastic Net 🔹 🔻]	
	Maximum Likelihood Forward Selection Lasso	ols	
	Elastic Net Ridge		
	Validation Column 💌		
	Early Stopping		
	Go		

- Lasso does estimation and variable selection simultaneously.
- Elastic Net is similar to Lasso, but also naturally handles highly correlated predictors.
- Forward Selection is a classic: add the most significant predictor, then the next. Keep going until we add everything or run out of degrees of freedom.
- How do lasso and elastic net differ?
 If x₁ and x₂ are highly correlated, lasso will probably pick x₁ or x₂.
 Elastic net will probably pick x₁ and x₂.

GENREG GENERALIZED LINEAR MODELS

 And the response doesn't have to be normally distributed, we can do variable selection for generalized linear models (GLMs) all in the same place.

Y	anables Y antional	Personality:	Generalized Regression
	optional	Distribution:	Normal
Weight	optional numeric		Normal
Freq	optional numeric	Help	Cauchy Exponential
Validation	Validation	Recall	Gamma
		Remove	Quantile Regression
Construct N	Andel Effects		Beta Binomial Poisson Negative Binomial
Add	1099		
Add Cross	Gender BMI BP		ZI Binomial ZI Beta Binomial ZI Poisson
Add Cross Nest Macros	Gender BMI BP Total Cholesterol LDL		ZI Binomial ZI Beta Binomial ZI Poisson ZI Negative Binomial ZI Gamma

- Gamma for skewed responses.
- Poisson for count data.
- Negative Binomial for overdispersed count data.
- Binomial for logistic regression.
- Beta for rates.
- Cauchy for robust regression.
- ... and quantile regression?

GENREG EXAMPLE: PREDICTING DIABETES PROGRESSION

Ν	lodel Con	nparison						
	Measure	s of Fit for	Y					
	Validation	Predictor	Creator	.2 .4 .6 .8	RSquare	RASE	AAE	Freq
	Training	LS model	Fit Least Squares		0.6121	46.592	36.555	266
	Training	Lasso model	Fit Generalized Adaptive Lasso		0.5131	52.199	41.953	266
	Test	LS model	Fit Least Squares		0.2697	71.180	56.187	64
	Test	Lasso model	Fit Generalized Adaptive Lasso		0.5118	58.195	46.148	64

Model Summary	1			⊿ Est	imation D	Details			
Response N Distribution N Estimation Method A Validation Method M Mean Model Link II Scale Model Link II	/ Normal Adaptive Lass /alidation Col dentity dentity	o umn		Nun Mini Grid	nber of Grid I imum Penalt Scale	Points ! y Fraction Lir	500 0 near		
Measure	Training	Validation	Test						
Number of rows Sum of Frequencies -LogLikelihood BIC AICc Generalized RSquare	266 266 1428.9322 2997.4518 2913.2811 0.5151151	112 112 603.39041 1324.7433 1271.8971 0.5472521	64 64 349.43694 802.84596 783.08441 0.5524837						
Solution Path									
Parameter Estim	nates for								
Centered and So	aled Predi	ictors							
Centered and So Parameter Estim	aled Predinates for O	ictors Priginal Pr	edictors						
Centered and So Parameter Estim	aled Predinates for O	ictors Priginal Pr	edictors			Wald	Prob >		
Centered and So Parameter Estim	aled Predi nates for O	ctors Priginal Pr	edictors Est	imate	Std Error	Wald ChiSquare	Prob > ChiSquare	Lower 95%	Upper 95%
Centered and Sc Parameter Estim Term Intercept Age Gender[1] BM BP Total Cholesterol	aled Predinates for O	ictors Priginal Pr	edictors -32 14 5.36 1.10 -0.1	imate 0.0803 0 57521 27266 24422 22971	Std Error 63.468565 0.77238566 0.2639133 0.1350058	Wald ChiSquare 25.433169 0 3.5609122 29.211438 17.449748 0.829664	Prob > ChiSquare <.0001* 1.0000 0.0592 <.0001* 0.3624	Lower 95% -444.4764 0 -0.56327 3.4180057 0.5851817 -0.387578	Upper 95% -195.6842 0 29.713691 7.3074475 1.6197027 0.1416352
Centered and Sc Parameter Estim Intercept Age Gender[1] BMI BP Total Cholesterol LDL HDL TCH	caled Predinates for C	ictors Priginal Pr	edictors -32 14 5.36 1.10 -0.1 -0.6	imate 0.0803 0 57521 27266 24422 22971 0 514639 0	Std Error 63.468565 0 7.7238566 0.9922228 0.2639133 0.1350058 0.4843082 0	Wald ChiSquare 25.433169 0 3.5609122 29.211438 17.449748 0.829664 0 1.6106335 0	Prob > ChiSquare <.0001* 1.0000 0.0592 <.0001* 0.3624 1.0000 0.2044 1.0000	Lower 95% -444.4764 0 -0.56327 3.4180057 0.5851817 -0.387578 0 -1.563866 0	Upper 95% -195.6842 0 29.713691 7.3074475 1.6197027 0.1416352 0 0.3345875 0
Centered and Sc Parameter Estim Term Intercept Age Gender[1] BMI BP Total Cholesterol LDL HDL TCH LTG Glucose	caled Predinates for O	ictors Priginal Pr	edictors -32 14 5.36 1.10 -0.1 -0.6 58.4	imate 0.0803 0 57521 227266 224422 22971 0 514639 0 96377 0	Std Error 63.468565 0 7.7238566 0.9922228 0.2639133 0.1350058 0 0.4843082 0 12.653757 0	Wald ChiSquare 25.433169 0 3.5609122 29.211438 17.449748 0.829664 0 1.6106335 0 21.370709 0	Prob > ChiSquare <.0001* 1.0000 0.0592 <.0001* 0.3624 1.0000 0.2044 1.0000 <.0001* 1.0000	Lower 95% -444.4764 0 -0.56327 3.4180057 0.5851817 -0.387578 0 -1.563866 0 33.695468 0	Upper 95% -195.6842 0 29.713691 7.3074475 1.6197027 0.1416352 0 0.3345875 0 83.297285 0

- Traditional least squares model overfits badly.
 Lasso does a better job predicting new observations.
- The lasso sets some of the coefficients to zero (variable selection).

- Quickly and easily building models that perform well on new observations is Genreg's bread and butter...
- But with a little creativity, we can use the platform to do some things that you might not realize it can do:
 - 1. Knot selection for splines
 - 2. The Bradley-Terry model
 - 3. Changepoint detection
- We will take a look at how to do these things in Genreg.

SPLINE KNOT SELECTION

THE POWER TO KNO

Copyright © 2013, SAS Institute Inc. All rights reserved.

KNOT SELECTION SPLINES

- Splines are piecewise polynomial smoothing functions.
- The polynomials connect at points called knots. More knots means more flexibility!
- Splines are very useful but be careful! We only want as much flexibility as necessary.
- Too many knots will surely lead to overfitting.

Good

180

160

140

100

80

60-

50

55

theight 120

Bad

KNOT SELECTION WHAT IS A SPLINE?

- There are lots of ways to splines, but JMP uses cubic splines in the Fit Model platform.
- A cubic spline for x with k knots looks something like

$$f(x) = \beta_0 + \beta_1 x + \sum_{j=1}^{k-2} \gamma_j g_j(x)$$

where the $g_i(x)$ are relatively simple cubic functions.

• We can turn the $g_j(x)$ into design columns and use familiar tools for least squares estimation.

Design matrix: $[1 \ x \ g_1(x) \ g_2(x) \ \dots \ g_{k-2}(x)]$

• If we could set some of the $\hat{\gamma}_j$ to zero when appropriate, then we could control the flexibility of our spline...

KNOT SELECTION AND THE LASSO

 The lasso does this for us!
 Using the lasso for estimation/selection, we can be more confident that we will not overfit our data.

Lasso with AICc Validation

Model Summar	у	Parameter Estimates	for Origina	I Predictors
Response	weight	Term	Estimate	
Distribution	Normal	Intercept	-42.47561	
Estimation Method	Lasso	height&Knotted	2.323847	
Validation Method	AICc	height&Knotted@58	0	
Mean Model Link	Identity	height&Knotted@58.90909	0	
Scale Model Link	Identity	height&Knotted@59.81818	0	
Measure	Training	height&Knotted@60.72727	0.023727	
Number of rows	40	height&Knotted@61.63636	0	
Sum of Frequencies	40	height&Knotted@62.54545	0	
-LogLikelihood	165.95791	height&Knotted@63.45455	0	
BIC	346.67133	height&Knotted@64.36364	0	
AICc	341.05867	height&Knotted@65.27273	0	
Generalized RSquare	0.5108163	height&Knotted@66.18182	0	
		Scale	15.333027	

- You can't really know in advance how many knots to use.
- Using the lasso for estimation with cubic splines gives us a safety net.
- We can specify a larger number of knots and the lasso will figure out which ones are really necessary.
- This helps us avoid overfitting our data and saves us time!

Corn data DEMO

THE BRADLEY-TERRY MODEL

Copyright © 2013, SAS Institute Inc. All rights reserved.

BRADLEY-TERRY WHAT IS IT?

- The Bradley-Terry model is a popular way of modeling the outcome of a comparison or competition.
- Suppose that we have some teams that play each other. When team i plays team j, the Bradley-Terry model gives us

Pr(team *i* beats team *j*) =
$$\frac{e^{\beta_i}}{e^{\beta_i}+e^{\beta_j}}$$

• We can interpret the $\hat{\beta}_k$ as strength measures.

If $\hat{\beta}_i > \hat{\beta}_j$, then team *i* is a stronger competitor than team *j*.

- More than just a tool for ranking sports teams...
 - Relevance of results from a search engine
 - Comparing product desirability (market research)
 - Ranking the quality of academic journals

BRADLEY-TERRYAND LOGISTIC REGRESSION

- At first glance, the Bradley-Terry model does not look like something we can fit in JMP (except for maybe in the Nonlinear platform)...
- But let's rewrite it,

Pr(team *i* beats team *j*) =
$$\frac{e^{\beta_i}}{e^{\beta_i} + e^{\beta_j}}$$

= $\frac{1}{1 + e^{\beta_j - \beta_i}}$
= $\frac{1}{1 + e^{-(\beta_i - \beta_j)}}$

- This looks just like a no-intercept logistic regression model!
- Recall the logistic regression probability function

$$\Pr(y = 1 | x) = \frac{1}{1 + e^{-x\beta}}$$

BRADLEY-TERRYAND LOGISTIC REGRESSION

- So we can turn the Bradley-Terry model into a no-intercept logistic regression problem.
- The key is in carefully constructing our data set (next slide).
- JMP can do logistic regression in several places, including Genreg.
- The advantage to using Genreg for fitting is that it enables us to do variable selection.
- By doing variable selection, we can quickly distinguish:
 - The strong competitors $(\hat{\beta}_j > 0)$
 - The weak competitors $(\hat{\beta}_j < 0)$
 - The mediocre competitors clumped in the middle ($\hat{\beta}_j = 0$)

BRADLEY-TERRY A SIMPLE EXAMPLE

• Suppose a little-league (4 teams) basketball season plays out as follows

POWER TO KNOW

BRADLEY-TERRY LITTLE LEAGUE RESULTS

Parameter Estimates for Original Predictors

			Wald	Prob >			
Term	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%	Singularity Details
Team A	0	0	0	1.0000	0	0	
Team B	0	0	0	1.0000	0	0	
Team C	0	0	0	1.0000	0	0	
Team D	-1.609438	0.4898979	10.792877	0.0010*	-2.56962	-0.649256	=-Team A-Team B-Team C

- The results are a bit depressing!
- Teams A, B, and C are similar...
 But Team D stinks.

BRADLEY-TERRY SUMMARY

- The Bradley-Terry model is a cool way to model competitions and we can do it in Genreg.
- If we're not interested in the individual competitors but instead want to use their features/attributes to predict outcomes, we can do that too.
 ...but creating the data set gets trickier. We'll look at an example.

Basketball data DEMO

CHANGEPOINT DETECTION

THE POWER TO KNO

Copyright © 2013, SAS Institute Inc. All rights reserved.

CHANGEPOINT DETECTION WHAT IS IT?

- Changepoint detection is a very important problem in data analysis.
- When our data have a natural ordering, a changepoint occurs when the mean of our response shifts up or down.

- Steam Turbine Historical.jmp from sample data.
- Monitoring daily fuel consumption.
- It looks like the mean shifts up around row 15 and back down around row 20.
- But we don't want to eyeball it, we want to let the data decide if/when shifts happen.

CHANGEPOINT DETECTION IN MULTIVARIATE CONTROL CHART PLATFORM

- The Multivariate Control Chart platform provides a changepoint detection tool, but it only makes it easy to find a single shift.
- And it doesn't work too well for this example.

NSAS

THE POWER TO KNOW

CHANGEPOINT DETECTION FUSED LASSO

• The fused lasso is a promising technique for finding changepoints.

$$\widehat{\mu} = \arg\min_{\mu} \sum_{i=1}^{n} (y_i - \mu_i)^2 + \lambda \sum_{j=2}^{n} |\mu_j - \mu_{j-1}|$$

- So each point gets its own mean, but we try to set many of the means equal to their neighbors. They get "fused" together.
- For our example, we might end up with something like

$$\hat{\mu}_{1} = \hat{\mu}_{2} = \dots = \hat{\mu}_{15}$$
$$\hat{\mu}_{16} = \hat{\mu}_{17} = \dots = \hat{\mu}_{20}$$
$$\hat{\mu}_{21} = \hat{\mu}_{22} = \dots = \hat{\mu}_{28}$$

- That would imply mean shifts at rows 16 and 21.
- Bummer we can't do this in JMP...

CHANGEPOINT DETECTION FUSED LASSO

- ...Or maybe we can do it!
- · Instead of the original form, we could rewrite the model

$$E(Y_{1}) = \mu$$

$$E(Y_{2}) = E(Y_{1}) + \beta_{2} = \mu + \beta_{2}$$

$$E(Y_{3}) = E(Y_{2}) + \beta_{3} = \mu + \beta_{2} + \beta_{3}$$

$$\vdots$$

$$E(Y_{j}) = E(Y_{j-1}) + \beta_{j} = \mu + \sum_{k=2}^{j} \beta_{j}$$

- If $\hat{\beta}_j \neq 0$, then the mean shifts at point *j*.
- Easy to express as a design matrix: $n \times n$ lower triangular matrix of ones.

$$n = 6: \quad X = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

CHANGEPOINT DETECTION

FUSED LASSO

 Using this new parameterization and the Lasso for estimation is equivalent to the fused lasso!

 So yes, we can do the fused lasso in Genreg using a carefully crafted design matrix.

Paramet	ter Estima	tes for Or	riginal Pre	alctors		
			Wald	Prob >		
Term	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%
Intercept	237378.03	1297.189	33486.87	<.0001*	234835.59	239920.48
change2	0	0	0	1.0000	0	0
change3	0	0	0	1.0000	0	0
change4	0	0	0	1.0000	0	0
change5	0	0	0	1.0000	0	0
change6	0	0	0	1.0000	0	0
change7	0	0	0	1.0000	0	0
change8	0	0	0	1.0000	0	0
change9	0	0	0	1.0000	0	0
change10	0	0	0	1.0000	0	0
change11	0	0	0	1.0000	0	0
change12	0	0	0	1.0000	0	0
change13	0	0	0	1.0000	0	0
change14	0	0	0	1.0000	0	0
change15	0	0	0	1.0000	0	0
change16	6317,4919	8308.7634	0.5781182	0.4471	-9967.385	22602.369
change17	0	0	0	1.0000	0	0
change18	0	0	0	1.0000	0	0
change19	0	0	0	1.0000	0	0
change20	0	0	0	1.0000	0	0
change21	-3873.96	7868.5925	0.2423908	0.6225	-19296.12	11548.198 🕯
change22	0	0	0	1.0000	0	0
change23	-7506.438	3438.8293	4.764821	0.0290*	-14246.42	-766.4566
change24	0	0	0	1.0000	0	0
change25	0	0	0	1.0000	0	0
change26	0	0	0	1.0000	0	0
change27	0	0	0	1.0000	0	0
a . 1	4750 0567	2210.0001	4 2020002	0.0404*	200.00742	0205 7250

Sas POWER TO KNOW

CHANGEPOINT DETECTION STEAM TURBINE EXAMPLE

• The fused lasso results are much more reasonable than what we saw earlier.

CHANGEPOINT DETECTION FUSED LASSO

- The fused lasso is a very powerful tool for finding changepoints in our data.
- If we set up our data properly, we can fit this model using the lasso in Genreg!
 ...and it is easy to set up the data.

This JSL snippet gets you most of the way there.

Lebron James data and TV show data Demos

GENREG SUMMARY

- Genreg is the go-to place for building generalized linear models.
- The interactive nature of the platform makes it easy to quickly build models that will generalize well to new observations.
- But there is more to it!
- We have looked at examples using the platform for
 - 1. Knot selection for splines
 - 2. Modeling competitions using the Bradley-Terry model
 - 3. Searching for changepoints in our response
 - 4. Screening for outliers (and adjusting for them)
- The powerful variable selection techniques available in Genreg allow us to take on more problems than we could otherwise.

GENREG SOME IMPORTANT RESOURCES

- Tibshirani, Robert. "Regression shrinkage and selection via the lasso." *Journal of the Royal Statistical Society. Series B (Methodological)* (1996): 267-288.
- Zou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 67.2 (2005): 301-320.
- Hesterberg, Tim, et al. "Least angle and l1 penalized regression: A review." Statistics Surveys (2008): 61-93.
- Hoerl, Arthur E., and Robert W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems." *Technometrics* 12.1 (1970): 55-67.
- Zou, Hui. "The adaptive lasso and its oracle properties." *Journal of the American statistical association* 101.476 (2006): 1418-1429.
- Tibshirani, Robert, et al. "Sparsity and smoothness via the fused lasso." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 67.1 (2005): 91-108.
- Bradley, Ralph Allan, and Milton E. Terry. "Rank analysis of incomplete block designs: The method of paired comparisons." *Biometrika* 39.3-4 (1952): 324-345.

