Optimizing mixtures when the response is a nonlinear curve
Abstract

Sometimes the result of an experiment is not just a set of measurements; it is a curve. How can the
optimal mixture be derived if a set of curves needs to be compared? In this situation many
experimenters tend to choose a representative X-value and use the associated Y-value as the
outcome of the experiment. Thus they ignore a wide set of valuable information. A better solution
would be to understand which mixture generates the optimal curve. This would involve generating a
parameterized curve fit for each experiment. It would then be possible to optimize the mixtures with
respect to those parameter estimates. The analytical process uses Graph Builder, the Nonlinear
Platform and Fit Model to exploit all available information and to find the optimal result. The whole
solution is motivated and demonstrated with data from a chemical mixture optimization problem.

Situation and Example

Starting point for this considerations were experiments run at BASF to optimize the foaming and
cleaning performance for surfactant mixtures in a Liquid Hand Dishwashing formulations. Liquid hand
dish washing formulations must continue to clean and foam in the presence of oily soils. BASF used a
bubble pressure tensiometer to measure the dynamic surface tension of surfactant mixtures.
Dynamic surface tension is a technique which allows us to measure how quickly surfactants move to
the air liquid interface. Foam stability is related to the ability of the surfactants to diffuse to the
interface of a thinning foam films. Mixture experiments have been designed and run. The example
data represents just a subset of all the runs that made up the experiment. There have been three
active ingredients, let’s name them A, B and C and they were combined with varying amounts as can
be seen from the distribution.
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The data set holds a replicated center point plus a replicate with B alone, all other combinations have
one result only. But this result is not just one measurement per variable but it is a whole series of

measurements.
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Surface Tension was measured with changing surface age in milliseconds with very frequent readings
in the early stage of the experiment and increasing intervals at the later phase. How could this be
evaluated? How can a model be built that allows the optimization of the mixture? Very often a
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for this subset of runs, it was not applicable for a broader set of data; it might turn out that there is
no interval that contains exactly one measurement per run.

Surface Tension [mMN/m] vs. Surface RunID Another alternative was picking a
425 Age [ms] — sequence number of the
' m remen .£.33. This gi
—— #1 Repeat e.asu ements, e.g. 33 is gives a
— 415 unique response per run but at
400 . different times. Who knows if this
——#15 Repeat .
— makes a difference or not?
= —#19
> 375 , -
= . —#2 Whatever filter, summary statistic or
€ ° o #20 other representative value one
% 350 —#22 might apply; it always loses the
o L —#5 information about the shape of the
[
£ 375 curves.
> [ ]
(V]
30.0
]
275

7900 7950 8000 8050 8100 8150
Surface Age [ms]

Where(Sequence # == 33)

The almost ideal shape of the curves gives evidence that fitting a curve might be a good idea. One
could learn about the characteristics of theses curves and then find the mixture that comes closest to
the ideal curve.

Fit nonlinear curves

The JMP platform “Nonlinear” offers a very flexible and a very easy way to fit curves to data. The
flexible way requires a formula column that describes a parameterized nonlinear function. That
function may contain several variables and all kind of mathematical functions. Nonlinear then finds
solutions for the parameters that make the curve fit the data best. Here we choose to take the easier
approach; we used the built-in functions, tested some and found the bi-exponential 5P curve to fit
the data best.

The nonlinear platform shows the formula, it gives an interpretation help for the parameters, it
displays graphs for the fit in each sub-group and gives the usual statistics of model fit. From the latter
one sees that the 99% r? supports our judgement of a perfect fit. As all platforms that fit models one



can save the estimated formulae back to the data table.
Biexponential 5P
Prediction Model

a+ b*Exp| - ¢ * Surface Age [ms] | + d * Exp[ - f * Surface Age [ms]

a = Asymptote
b = Scale 1

c = Decay Rate 1
d = Scale 2

f = Decay Rate 2

Summary of Fit
AlCc 2604.6733

BIC 28135021
SSE 1117.0213
MSE 1.5074511

RMSE 1.227783
R-Square 0.9916895
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But nonlinear offers a specialty: it lets formulae be saved in a parameterized version.
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AlCc 2604.6733
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When one looks at the formula, one sees the formula with parameters for each group.
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The top left window in the formula editor usually shows the list of table columns but one can switch
to parameters. Here the nonlinear platform inserted the parameters together with the result of the
estimation. This is not the only specialty of the nonlinear platform. Another feature is the output of
parameter estimates into a data table.
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Now all data is available to build a model that links the mixture components to the parameters of the
curve.

Set up data and fit a model

The mixture components from the original data table need to be combined with the parameter
estimates from the fitted curves. We only need one row per run from the base data table, in this case
the amounts of mixture components. This subset table can be joined with the parameter estimates,
so that now one has the familiar situation that one run delivers one measurement per variable. Only
that in this case the variables are the parameters of the fitted curves.

Now a model can be fit that is the base for optimization. But how do we find the right parameters for
the optimal curve? A script is included which displays an example curve and has some sliders that
help to find the right values for each parameter so that the resulting curve describes the ideal shape.
The ideal would situation would be if surface tension dropped quickly. So starting from the black
curve with parameter settings indicated by the blue diamonds one can get the curve further down by
moving the “a” slider a bit to the left and the “b” slider a good distance to the right. Red diamonds
indicate the parameter settings for the red curve, the one we want to target.
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After playing with the other settings as well the following goals for optimization are set:



Prediction Profiler
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a: Asymptote = Minimize
b: Scale 1 - Maximize

c: Decay Rate 1 2 Maximize
d: Scale 2 > Mnimize

f: Decay Rate 2 = Maximize

The result from the optimization is
shown in the current profiler
settings:

Component A: 52%
Component B: 38%

Component C: 10%

The predicted parameters for the optimized curve can be taken from the profiler as well. With these
settings one can append a formula column to the original data table so that the result curve can be
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compared with the estimated
ones from the experiments.

The dotted line represents the
optimum that could be reached
using the derived mixture
relations.

Application testing at BASF has shown that the number of plates you can wash before the foam

disappears can be optimized through the use of Mixture DOE. The figure below shows the mixture
profiler and model contour plots for this work. Optimization of the dynamic surface tension curves
via the method above resulted in a composition which clearly lies in the optimal foam stability area



determined by application testing. This method allows us to optimize surface tension across time
and develop optimal formulations.

The model for # of plates that can be washed before loss of foam.

Component A: 52%
Component B: 38%

Component C: 10%

Optimized mixture from the non-linear
curve parameter optimization as shown
in the mixture profiler is very close to
the maximum prediction for # plates
washed before loss of foam.

Red Contour = # Plates
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