Introduction to Censored Data Analysis

Michael Crotty, PhD Senior Statistical Writer, JMP SAS Institute

Company Confidential — For Internal Use Only Copyright © SAS Institute Inc. All rights reserved.

Outline

Some Questions to Answer

- What is censoring?
- When do censored data appear?
- How do you specify censoring in JMP?
- What happens if you ignore the fact that your data are censored? [DEMO]
- What is an example of left-censored data in a regression setting? [DEMO]

Many Types of Censoring

- Time Censoring (aka Type I)
 - Study ends at a specified time before all failures have occurred.
- Failure Censoring (aka Type II)
 - Study ends after specified number of failures have occurred.
- Interval Censoring
- Random Right Censoring
 - Can arise with multiple forms of failure, but only interested in one type.
- Systematic Multiple Censoring
 - Some failure times exceed some running times; arises from staggered entry.
- Left Censoring

Types of Censoring in JMP

- Right Censoring
- Left Censoring
- Interval Censoring
- Other
 - Censor Indicator in Failure Cause Column
 - Nevada format in Reliability Forecast platform
 - Destructive Degradation: censoring is for non-time-based response
 - Type II (failure censoring) in Reliability Growth and Recurrence

Right Censoring

- Probably the most common form of censoring
- Event of interest does not have enough time to occur
- Common examples:
 - Reliability tests (light bulbs, etc.)
 - Survival models (patient survives past end of study)
- Two ways to specify right-censored observations in JMP:

			Life Distribution Compare Groups			
	Time	Censor				
1	450	Failed	- Select Columns	Cast Selected Columns into Roles		
2	460	Censored				
3	1150	Failed	A Time	Y, Time to Event	required numeric optional numeric	
4	1150	Failed	Censor			
5	1560	Censored	Exponential			
6	1600	Failed	/ Weibull	Censor	Censor	
7	1660	Censored	Extreme value	Epilure Course	ontional	
8	1850	Censored	Concor Coder Concorred	Failure Cause		
Q	1850	Censored	Censor code: Censored	Freq	optional numeric	

	Start Time	End Time	Count	Censoring Type
1	•	50	50	Left
2	•	100	6	Left
3	25	•	30	Right
4	75	•	10	Right
5	80	150	4	Interval
6	100	250	7	Interval

Left Censoring

- Event of interest occurs before observation starts
- Common examples:
 - Failure at time of first inspection
 - Limit of detection
- Use two columns to specify left-censored observations in JMP:

	Start Time	End Time	Count	Censoring Type
1	•	50	50	Left
2	•	100	6	Left
3	25	•	30	Right
4	75	•	10	Right
5	80	150	4	Interval
6	100	250	7	Interval

Interval Censoring

- Event of interest happens in between observation times
- Common examples:
 - Period inspection times (instead of continuous observation)
- Use two columns to specify interval-censored observations in JMP:

	Start Time	End Time	Count	Censoring Type
1	•	50	50	Left
2	•	100	6	Left
3	25	•	30	Right
4	75	•	10	Right
5	80	150	4	Interval
6	100	250	7	Interval

Mixed Censoring in JMP

- Use two columns
- Specify both columns (in time order) in the response role
- For uncensored failures, use the same value in both columns
- Event Plot helps you visualize the censored observations

Company Confidential – For Internal Use Only Copyright © SAS Institute Inc. All rights reserved.

Background CDFs and PDFs

- Need some background to understand how censoring affects maximum likelihood (ML) estimation.
- The *cumulative distribution function* (CDF) is the probability of a random variable (generally time in censoring situations) being less than or equal to a particular value.

 $F(t) = \Pr(T \le t)$

 For continuous distributions, the *probability density function* (PDF) is the derivative of the CDF. Similar to a smoothed histogram of the responses. Relationship to CDF:

$$F(t) = \int_{-\infty}^{t} f(x) \, dx$$

• Properties: PDFs are always nonnegative and the area under the PDF sums to 1.

Background Area Under the PDF

- Another way to think of the CDF is as the area under the PDF:
 - Shaded region = $F(10) = Pr(X \le 10)$
 - This is a lognormal PDF, so it is positive only for X > 0.
 - So, $F(0) = Pr(X \le 0) = 0$.
 - Then, F(10) = F(10) F(0).

Likelihoods

Review of Non-Censored Case

• The *likelihood* is the product of the PDFs given the observed data, or the joint probability of the data.

$$L(\beta) = \prod_{i=1}^{N} f_i(x_i) = \prod_{i=1}^{N} L_i(\beta; x_i)$$

- We want to find the parameter values that maximize the likelihood.
 - These parameter values are the maximum likelihood estimates (MLEs).
 - They are the most likely since they maximize the joint probability of the data.
 - MLEs generally denoted $\hat{\beta} = (\hat{\mu}, \hat{\sigma})$, where μ and σ are location and scale.

Likelihoods Censored Data

• Interval-censored case:

$$L_{i}(\beta; t_{i}) = \int_{t_{l}}^{t_{u}} f(x) \, dx = F(t_{u}) - F(t_{l})$$

- Left- and right-censored cases are special cases of interval-censored case.
- Left-censored case: $t_l = 0 \Rightarrow F(t_l) = F(0) = \Pr(T \le 0) = 0$ $L_i(\beta; t_i) = \int_{-\infty}^{t_u} f(x) \, dx = F(t_u) - F(0) = F(t_u)$
- Right-censored case: $t_{u_{\infty}} = \infty \Rightarrow F(t_u) = F(\infty) = \Pr(T \le \infty) = 1$ $L_i(\beta; t_i) = \int_{t_l} f(x) \, dx = F(\infty) - F(t_l) = 1 - F(t_l)$

Censored Data Area Under the PDF

0.10 • Left-censored: • *F*(5) 0.08 • Interval-censored: • F(15) - F(10)0.06 • Right-censored: γ • 1 - F(25)0.04 0.02 • Likelihood: $F(5) \times (F(15) - F(10)) \times (1 - F(25))$ 0.00 20 25 30 35 0 5 10 15 40

х

Software Demo

- Demo 1: Pitfalls of ignoring censored observations
- Demo 2: Limit of detection (left-censored observations)
- Demo 3: Fun example of interval censoring

Conclusion What We Covered

- Better to use censoring information in your analysis.
- How to specify censoring in JMP.
 - Two-column response approach for right, left, and interval censoring.
 - One-column response + Censor column approach for right censoring.
- Censoring is often for time responses, but can be for other responses.
 - Limit of detection example.

References

- Meeker, W. Q., and Escobar, L. A. (1998) *Statistical Methods for Reliability Data*. New York: John Wiley & Sons.
- SAS Institute Inc. (2017). JMP[®] 14 Reliability and Survival Methods. Cary, NC: SAS Institute Inc.

Thank you! Questions?

sas.com

Company Confidential – For Internal Use Only Copyright © SAS Institute Inc. All rights reserved