

Analysis and Simulation of Definitive Screening **Designs**

Bradley Jones Discovery 2017

Outline

- 1. Introduction & Motivation
- 2. New Analytical Method
- 3. Simulation Studies
- 4. Recommendations

Notation and terminology

m factors, *n* runs

Linear main effect model (ME) – of primary interest in screening.

$$y_i = \beta_0 + \sum_{j=1}^m \beta_j x_{ij} + \varepsilon_i \qquad i = 1, \dots, n$$

Full second order model – typical for RSM

$$y_{i} = \beta_{0} + \sum_{j=1}^{m} \beta_{j} x_{ij} + \sum_{j=1}^{m-1} \sum_{k=j+1}^{m} \beta_{jk} x_{ij} x_{ik} + \sum_{j=1}^{m} \beta_{jj} x_{ij}^{2} + \varepsilon_{i} \quad i = 1, \dots, n$$

$$Two-factor \quad Quadratic effects$$

$$interactions \quad (Q)$$

$$(2FIs)$$

The full second order (RSM) model

The response surface model (RSM) is the model consisting of:

- 1. The intercept term.
- 2. All main linear effects (for *m* factors, there are m of these)
- 3. All main quadratic (curvature) effects (*m* of these)
- 4. All two-factor interactions [there are m(m-1)/2 of these]

Number of terms in the full RSM:

$$1 + 2m + m(m-1)/2 = (m+1)(m+2)/2$$

Example: Six Factor RSM (m = 6)

- Constant term
- 2. m = 6 main linear effects: X_1 , X_2 , X_3 , X_4 , X_5 , X_6
- 3. m = 6 main quadratic effects: X_1^2 , X_2^2 , X_3^2 , X_4^2 , X_5^2 , X_6^2
- 4. m = m(m-1)/2 = 15 two-factor interactions:

Definitive Screening Design – minimum runs

Foldover	Run		Fac	tor Le	evels	
Pair	(i)	$x_{i,1}$	$x_{i,2}$	$x_{i,3}$		$x_{i,m}$
1	1	0	± 1	± 1		± 1
	2	0	∓ 1	∓ 1	• • •	∓ 1
2	3	±1	0	± 1		± 1
	4	∓1	0	∓ 1	• • •	∓ 1
3	5	± 1	± 1	0		± 1
	6	∓1	∓ 1	0	• • •	∓ 1
:	:	:	:	÷	٠.	÷
\overline{m}	2m - 1	±1	± 1	± 1		0
	2m	∓1	∓ 1	∓ 1	• • •	0
Centerpoint	2m + 1	0	0	0		0

Minimum design is saturated for the ME + Q effects.

Conference Matrix Definition

A conference matrix is an mxm matrix, C, with 0 for each diagonal element and +1 or -1 for each off diagonal element such that

$$\mathbf{C}^{\mathrm{T}}\mathbf{C} = (m-1)\mathbf{I}_{m'm}$$

The columns of a conference matrix are orthogonal to each other.

A 6x6 conference matrix
$$\longrightarrow$$

$$\begin{pmatrix}
0 & +1 & +1 & +1 & +1 & +1 \\
+1 & 0 & +1 & -1 & -1 & +1 \\
+1 & +1 & 0 & +1 & -1 & -1 \\
+1 & -1 & +1 & 0 & +1 & -1 \\
+1 & -1 & -1 & +1 & 0 & +1 \\
+1 & +1 & -1 & -1 & +1 & 0
\end{pmatrix}$$

Conference Matrix Construction

Let C be a conference matrix with *m* rows and *m* columns, then

$$\mathbf{D}_m = \begin{bmatrix} \mathbf{C}_m \\ -\mathbf{C}_m \\ \mathbf{0}' \end{bmatrix}$$

where D_m is a DSD with m factors and 2m+1 runs.

To construct a DSD with more than the minimal number of runs, use a conference matrix with c > m columns and do not assign the last c - m columns to factors.

Design Properties

- 1. Small number of runs -2m + 1 at a minimum
- 2. Orthogonal main effects (MEs)
- 3. MEs orthogonal to 2FIs
- 4. 2FIs not confounded with other 2FIs
- 5. All the MEs and pure quadratic effects are estimable
- 6. DSDs with more than 5 factors project onto any 3 factors to allow fitting the full quadratic model

Citations

A class of three-level designs for definitive screening in the presence of second-order effects

B Jones, CJ Nachtsheim Journal of Quality Technology 43 (1), 1 112

2011

A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects

BRADLEY JONES

SAS Institute, Cary, NC 27513

CHRISTOPHER J. NACHTSHEIM

Carlson School of Management, University of Minnesota, Minneapolis, MN 55455

Outline

- 1. Introduction & Motivation
- 2. New Analytical Method
- 3. Simulation Studies
- 4. Recommendations

New Method

Since main effects and 2nd order effects are orthogonal to each other you can split the response (Y) into two new responses

- One response for identifying main effects call it YME
- One response for identifying 2nd order effects call it Y2nd
- And the two columns are orthogonal to each other

Computing the New Responses

- 1. Fit the main effects model (No Intercept) and save the predicted values (YME). These are the responses for the main effects model.
- 1. Save the residuals from the fit above these residuals are the responses for the 2nd order effects (Y2nd).

Digression: Benefits of "Fake" Factors

Adding Fake Factors (factors you don't use) provides a way to estimate variance without repeating center runs!

Why?

Fake factors are orthogonal to the real factors

Fake factors are orthogonal to all the 2nd order effects

Assuming the 3rd and higher order effects are negligible, we can use the fake factor degrees of freedom to create an unbiased estimate of the error variance!

Note: Use both the real and fake factors when fitting the main effects model in step 1 of the previous slide.

Example: Six real factors and two fake factors

Α	В	c	D	E	F	Fake 1	Fake 2	Y	Y2nd	YME
0	1	1	1	1	1	1	1	94.51	101.04	-6.53
0	-1	-1	-1	-1	-1	-1	-1	107.57	101.04	6.53
1	0	1	1	-1	1	-1	-1	94.36	101.175	-6.815
-1	0	-1	-1	1	-1	1	1	107.99	101.175	6.815
1	-1	0	1	1	-1	1	-1	91.80	90.525	1.275
-1	1	0	-1	-1	1	-1	1	89.25	90.525	-1.275
1	-1	-1	0	1	1	-1	1	93.70	94.485	-0.785
-1	1	1	0	-1	-1	1	-1	95.27	94.485	0.785
1	1	-1	-1	0	1	1	-1	89.55	88.71	0.84
-1	-1	1	1	0	-1	-1	1	87.87	88.71	-0.84
1	-1	1	-1	-1	0	1	1	94.58	95.235	-0.655
-1	1	-1	1	1	0	-1	-1	95.89	95.235	0.655
1	1	-1	1	-1	-1	0	1	93.23	89.58	3.65
-1	-1	1	-1	1	1	0	-1	85.93	89.58	-3.65
1	1	1	-1	1	-1	-1	0	98.11	95.815	2.295
-1	-1	-1	1	-1	1	1	0	93.52	95.815	-2.295
0	0	0	0	0	0	0	0	99.75	99./5	0

Adds 4 runs – 2 error df

YME -6.53 6.53 -6.815 6.815 1.275 -1.275 -0.7850.785 0.84 -0.84-0.655 0.655 3.65 -3.65 2.295 -2.295

Examining the Main Effects Response (YME)

Note responses for each foldover pair sum to zero.

The response for the center run is zero.

There are 17 rows but only 8 independent values

(degrees of freedom – df)

There are 6 real factors but 8 df, so there are

8 - 6 = 2 df for estimating σ^2

Y2nd

101.04

101.04

101.175

101.175

90.525

90.525

94.485

94.485

88.71

88.71

95.235

95.235

00.5

89.58

89.58

95.815

95.815

99.75

Examining the 2nd Order Response (Y2nd)

Responses for each foldover pair are the same.

There are 17 rows but only 9 independent values

(degrees of freedom – df)

After estimating the Intercept, there are 8 df left for estimating 2nd order effects.

Analysis – Identify Active Main Effects

- 1. Recall that the residuals from fitting the Main Effects data (YME) to the real factors have 2 degrees of freedom.
- 2. To estimate σ^2 , sum the squared residuals from this fit and divide the result by 2.
- 3. Using this estimate, do t-tests of each coefficient
- 4. If the resulting p-value for an effect is small, conclude that effect is active.

2nd Digression: Model Heredity Assumption

The heredity assumption stipulates that 2nd order effects only occur when the associated main effects are active.

Example 1: If main effects A and B are in the model you can consider the two-factor interaction AB

Example 2: B must be in the model before considering the quadratic effect B²

While there is no physical law requiring that models exhibit heredity, there is empirical evidence that such models are much more probable in real systems.

Advantage of the Heredity Assumption

The set of possible models using the heredity assumption may be much smaller than allowing any 2nd order effect to appear in the model

Example: Suppose your main effects analysis yields 3 active main effects (C, D, F say). Then the allowable 2^{nd} order terms are CD, CF, DF, C^2 , D^2 , F^2

We have 8 degrees of freedom and only 6 effects, so it is possible to identify all 6 if they are active.

If we allow consideration all 2nd order effects, there are 15 two-factor interactions and 6 quadratic terms – or 21 terms in all.

There are 2^{21} or more 2 million possible models – a much harder model selection problem.

Analysis – Identifying 2nd Order Effects

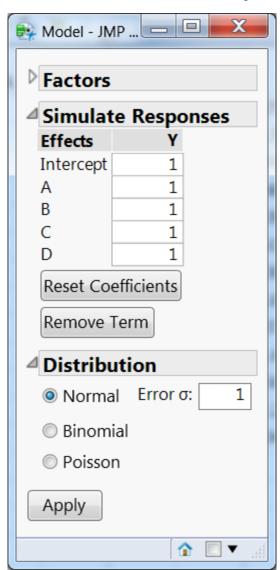
Form all the 2nd order terms involving the active main effects

Do all subsets regression up to the point where the MSE of the best 2^{nd} order model for a given number of terms is not significantly larger than your estimate of σ^2

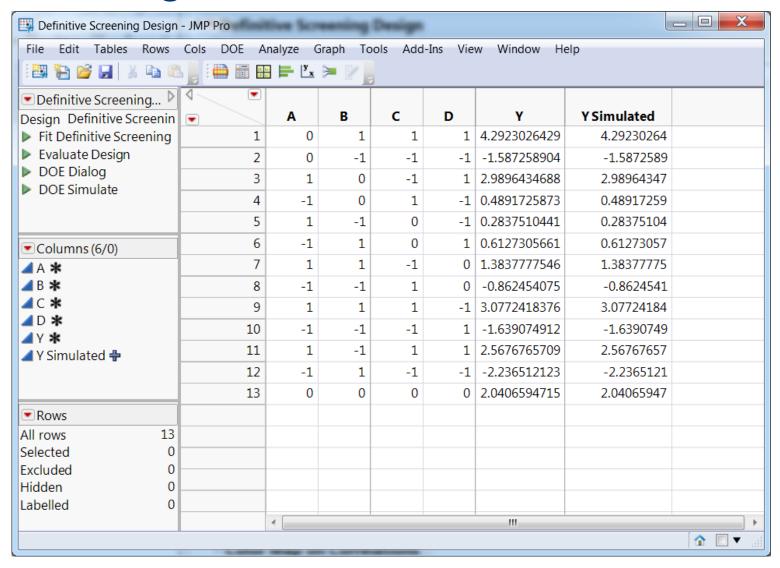
Outline

- 1. Introduction & Motivation
- 2. Three Ideas for Analysis
- 3. Simulation Studies
- 4. Recommendations

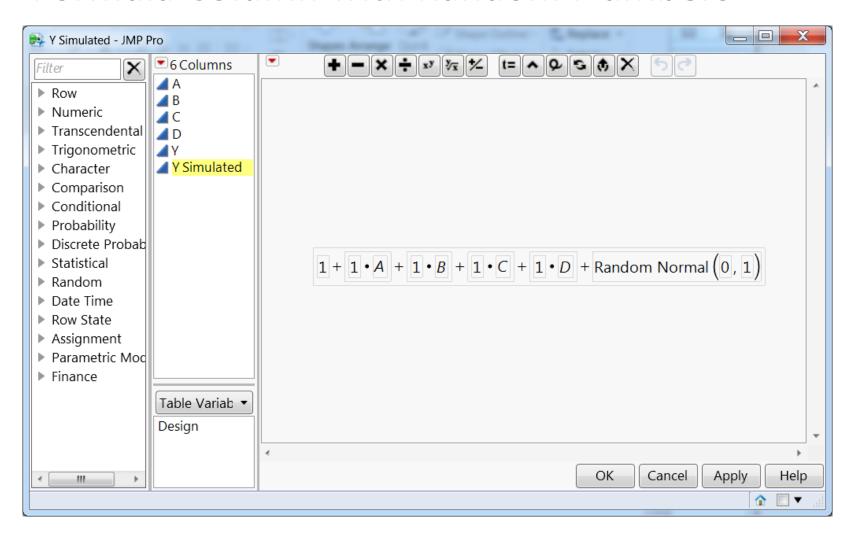
Simulate Responses User Interface



Resulting Table



Formula Column with Random Numbers



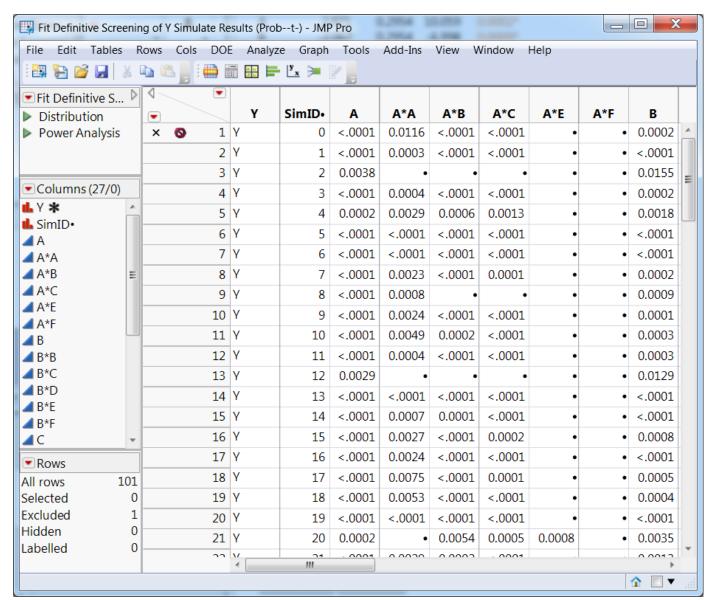
JMP Demonstration of New Method

TABLE 2. Three-Level Definitive Screening Design for Six Factors with a Simulated Response Vector

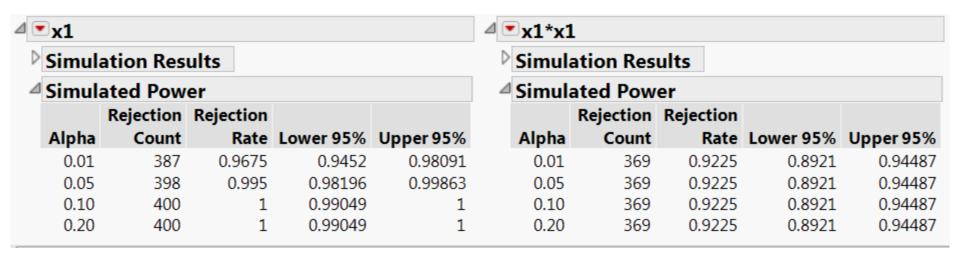
Run (i)	$x_{i,1}$	$x_{i,2}$	$x_{i,3}$	$x_{i,4}$	$x_{i,5}$	$x_{i,6}$	y_i
1	0	1	-1	-1	-1	-1	21.04
2	0	-1	1	1	1	1	10.48
3	1	0	-1	1	1	-1	17.89
4	-1	0	1	-1	-1	1	10.07
5	-1	-1	0	1	-1	-1	7.74
6	1	1	0	-1	1	1	21.01
7	-1	1	1	0	1	-1	16.53
8	1	-1	-1	0	-1	1	20.38
9	1	-1	1	-1	0	-1	8.62
10	-1	1	-1	1	0	1	7.80
11	1	1	1	1	-1	0	23.56
12	-1	-1	-1	-1	1	0	15.24
13	0	0	0	0	0	0	19.91

Stage	1 - Main	Effect	Esti	mates	
Term	Estimate	Std Erro	or t	Ratio	Prob> t
x1	3.408	0.187	73 1	8.196	0.0030*
x2	2.748	0.187	0.1873 14.672		0.0046*
x3	-1.309	0.187	73 -	6.989	0.0199*
x4	-0.851	0.187	73 -	4.544	0.0452*
Statist	ic Value				
RMSE	0.5923				
DF	2				
Stage	2 - Even	Order	Effe	ct Esti	mates
Term	Estima	te Std E	rror	t Ratio	Prob>
Interce	pt 20.05	58 0	.291	68.926	<.000
x2*x3	5.59	95	0.2	27.979	0.000
x1*x1	-7.27	71 0.	3325	-21.87	0.000
x4*x4	1.223	35 0.	3325	3.6798	0.034
Statist	ic Value				
RMSE	0.3999				
DF	3				
Comb	ined Mo	del Par	rame	eter Es	timates
Term	Estima	te Std E	rror	t Ratio	Prob>
Interce	pt 20.05	58 0.	3537	56.71	<.000
x1	3.40	0.0	1537	22.17	<.000
x2	2.74	48 0.	1537	17.877	<.000
х3	-1.30	0.0	1537	-8.516	0.000
x4	-0.85	51 0.	1537	-5.536	0.002
x2*x3	5.59).243	23.02	<.000
x1*x1	-7.27		4041	-17.99	
x4*x4	1.223		4041	3.0276	0.029
	ic Value				
Statist					
Statist RMSE	0.4861				

Monte Carlo Simulation in JMP 13



Empirical Power Analysis



Analyzing DSDs Conclusion

Recommendations

Prefer using fake factors to repeated center runs.

Assume model heredity unless there is substantial scientific evidence to the contrary.

Model main effects separately from 2nd order effects by breaking the response into two responses.

And one last thing...

You can use the two response decomposition idea for any foldover design.

References

Jones, Bradley and Nachtsheim, C. (2011) "A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects" *Journal of Quality Technology*, **43**. 1-15.

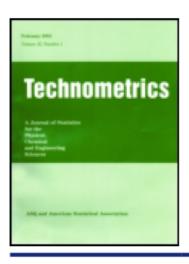
Jones, Bradley, and Nachtsheim, C. J. (2013) "Definitive Screening Designs with Added Two-Level Categorical Factors", *Journal of Quality Technology*, **45:2**, 120-129.

Jones, Bradley, and Nachtsheim, C. J. (2015): Blocking Schemes for Definitive Screening Designs, *Technometrics*, DOI: 10.1080/00401706.2015.1013777

Jones, Bradley and Nachtsheim, C.J. (2017) Effective Model Selection for Definitive Screening Designs, *Technometrics* (online now in print 2017:3)

Miller, A., and Sitter, R. R. (2005). "Using Folded-Over Nonorthogonal Designs," *Technometrics*, **47:4**, 502-513.

Xiao, L, Lin, D. K.J., and Fengshan, B. (2012), Constructing Definitive Screening Designs Using Conference Matrices, *Journal of Quality Technology*, 44, 1-7.



Technometrics

ISSN: 0040-1706 (Print) 1537-2723 (Online) Journal homepage: http://amstat.tandfonline.com/loi/utch20

Effective Design-Based Model Selection for Definitive Screening Designs

Bradley Jones & Christopher J. Nachtsheim

To cite this article: Bradley Jones & Christopher J. Nachtsheim (2016): Effective Design-Based Model Selection for Definitive Screening Designs, Technometrics, DOI: 10.1080/00401706.2016.1234979

To link to this article: http://dx.doi.org/10.1080/00401706.2016.1234979