Analysis and Simulation of Definitive Screening **Designs** **Bradley Jones** Discovery 2017 #### **Outline** - 1. Introduction & Motivation - 2. New Analytical Method - 3. Simulation Studies - 4. Recommendations ### Notation and terminology *m* factors, *n* runs Linear main effect model (ME) – of primary interest in screening. $$y_i = \beta_0 + \sum_{j=1}^m \beta_j x_{ij} + \varepsilon_i \qquad i = 1, \dots, n$$ Full second order model – typical for RSM $$y_{i} = \beta_{0} + \sum_{j=1}^{m} \beta_{j} x_{ij} + \sum_{j=1}^{m-1} \sum_{k=j+1}^{m} \beta_{jk} x_{ij} x_{ik} + \sum_{j=1}^{m} \beta_{jj} x_{ij}^{2} + \varepsilon_{i} \quad i = 1, \dots, n$$ $$Two-factor \quad Quadratic effects$$ $$interactions \quad (Q)$$ $$(2FIs)$$ ### The full second order (RSM) model The response surface model (RSM) is the model consisting of: - 1. The intercept term. - 2. All main linear effects (for *m* factors, there are m of these) - 3. All main quadratic (curvature) effects (*m* of these) - 4. All two-factor interactions [there are m(m-1)/2 of these] Number of terms in the full RSM: $$1 + 2m + m(m-1)/2 = (m+1)(m+2)/2$$ ### Example: Six Factor RSM (m = 6) - Constant term - 2. m = 6 main linear effects: X_1 , X_2 , X_3 , X_4 , X_5 , X_6 - 3. m = 6 main quadratic effects: X_1^2 , X_2^2 , X_3^2 , X_4^2 , X_5^2 , X_6^2 - 4. m = m(m-1)/2 = 15 two-factor interactions: ### Definitive Screening Design – minimum runs | Foldover | Run | | Fac | tor Le | evels | | |----------------|--------|-----------|-----------|-----------|-------|-----------| | Pair | (i) | $x_{i,1}$ | $x_{i,2}$ | $x_{i,3}$ | | $x_{i,m}$ | | 1 | 1 | 0 | ± 1 | ± 1 | | ± 1 | | | 2 | 0 | ∓ 1 | ∓ 1 | • • • | ∓ 1 | | 2 | 3 | ±1 | 0 | ± 1 | | ± 1 | | | 4 | ∓1 | 0 | ∓ 1 | • • • | ∓ 1 | | 3 | 5 | ± 1 | ± 1 | 0 | | ± 1 | | | 6 | ∓1 | ∓ 1 | 0 | • • • | ∓ 1 | | : | : | : | : | ÷ | ٠. | ÷ | | \overline{m} | 2m - 1 | ±1 | ± 1 | ± 1 | | 0 | | | 2m | ∓1 | ∓ 1 | ∓ 1 | • • • | 0 | | Centerpoint | 2m + 1 | 0 | 0 | 0 | | 0 | Minimum design is saturated for the ME + Q effects. #### **Conference Matrix Definition** A conference matrix is an mxm matrix, C, with 0 for each diagonal element and +1 or -1 for each off diagonal element such that $$\mathbf{C}^{\mathrm{T}}\mathbf{C} = (m-1)\mathbf{I}_{m'm}$$ The columns of a conference matrix are orthogonal to each other. A 6x6 conference matrix $$\longrightarrow$$ $$\begin{pmatrix} 0 & +1 & +1 & +1 & +1 & +1 \\ +1 & 0 & +1 & -1 & -1 & +1 \\ +1 & +1 & 0 & +1 & -1 & -1 \\ +1 & -1 & +1 & 0 & +1 & -1 \\ +1 & -1 & -1 & +1 & 0 & +1 \\ +1 & +1 & -1 & -1 & +1 & 0 \end{pmatrix}$$ #### **Conference Matrix Construction** Let C be a conference matrix with *m* rows and *m* columns, then $$\mathbf{D}_m = \begin{bmatrix} \mathbf{C}_m \\ -\mathbf{C}_m \\ \mathbf{0}' \end{bmatrix}$$ where D_m is a DSD with m factors and 2m+1 runs. To construct a DSD with more than the minimal number of runs, use a conference matrix with c > m columns and do not assign the last c - m columns to factors. ### **Design Properties** - 1. Small number of runs -2m + 1 at a minimum - 2. Orthogonal main effects (MEs) - 3. MEs orthogonal to 2FIs - 4. 2FIs not confounded with other 2FIs - 5. All the MEs and pure quadratic effects are estimable - 6. DSDs with more than 5 factors project onto any 3 factors to allow fitting the full quadratic model #### **Citations** A class of three-level designs for definitive screening in the presence of second-order effects B Jones, CJ Nachtsheim Journal of Quality Technology 43 (1), 1 112 2011 # A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects BRADLEY JONES SAS Institute, Cary, NC 27513 CHRISTOPHER J. NACHTSHEIM Carlson School of Management, University of Minnesota, Minneapolis, MN 55455 #### Outline - 1. Introduction & Motivation - 2. New Analytical Method - 3. Simulation Studies - 4. Recommendations #### **New Method** Since main effects and 2nd order effects are orthogonal to each other you can split the response (Y) into two new responses - One response for identifying main effects call it YME - One response for identifying 2nd order effects call it Y2nd - And the two columns are orthogonal to each other #### Computing the New Responses - 1. Fit the main effects model (No Intercept) and save the predicted values (YME). These are the responses for the main effects model. - 1. Save the residuals from the fit above these residuals are the responses for the 2nd order effects (Y2nd). ### Digression: Benefits of "Fake" Factors Adding Fake Factors (factors you don't use) provides a way to estimate variance without repeating center runs! #### Why? Fake factors are orthogonal to the real factors Fake factors are orthogonal to all the 2nd order effects Assuming the 3rd and higher order effects are negligible, we can use the fake factor degrees of freedom to create an unbiased estimate of the error variance! Note: Use both the real and fake factors when fitting the main effects model in step 1 of the previous slide. ### Example: Six real factors and two fake factors | Α | В | c | D | E | F | Fake
1 | Fake
2 | Y | Y2nd | YME | |----|----|----|----|----|----|-----------|-----------|--------|---------|--------| | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 94.51 | 101.04 | -6.53 | | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 107.57 | 101.04 | 6.53 | | 1 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | 94.36 | 101.175 | -6.815 | | -1 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 107.99 | 101.175 | 6.815 | | 1 | -1 | 0 | 1 | 1 | -1 | 1 | -1 | 91.80 | 90.525 | 1.275 | | -1 | 1 | 0 | -1 | -1 | 1 | -1 | 1 | 89.25 | 90.525 | -1.275 | | 1 | -1 | -1 | 0 | 1 | 1 | -1 | 1 | 93.70 | 94.485 | -0.785 | | -1 | 1 | 1 | 0 | -1 | -1 | 1 | -1 | 95.27 | 94.485 | 0.785 | | 1 | 1 | -1 | -1 | 0 | 1 | 1 | -1 | 89.55 | 88.71 | 0.84 | | -1 | -1 | 1 | 1 | 0 | -1 | -1 | 1 | 87.87 | 88.71 | -0.84 | | 1 | -1 | 1 | -1 | -1 | 0 | 1 | 1 | 94.58 | 95.235 | -0.655 | | -1 | 1 | -1 | 1 | 1 | 0 | -1 | -1 | 95.89 | 95.235 | 0.655 | | 1 | 1 | -1 | 1 | -1 | -1 | 0 | 1 | 93.23 | 89.58 | 3.65 | | -1 | -1 | 1 | -1 | 1 | 1 | 0 | -1 | 85.93 | 89.58 | -3.65 | | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 0 | 98.11 | 95.815 | 2.295 | | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 0 | 93.52 | 95.815 | -2.295 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.75 | 99./5 | 0 | Adds 4 runs – 2 error df ### YME -6.53 6.53 -6.815 6.815 1.275 -1.275 -0.7850.785 0.84 -0.84-0.655 0.655 3.65 -3.65 2.295 -2.295 # Examining the Main Effects Response (YME) Note responses for each foldover pair sum to zero. The response for the center run is zero. There are 17 rows but only 8 independent values (degrees of freedom – df) There are 6 real factors but 8 df, so there are 8 - 6 = 2 df for estimating σ^2 #### Y2nd 101.04 101.04 101.175 101.175 90.525 90.525 94.485 94.485 88.71 88.71 95.235 95.235 00.5 89.58 89.58 95.815 95.815 99.75 ### Examining the 2nd Order Response (Y2nd) Responses for each foldover pair are the same. There are 17 rows but only 9 independent values (degrees of freedom – df) After estimating the Intercept, there are 8 df left for estimating 2nd order effects. ### Analysis – Identify Active Main Effects - 1. Recall that the residuals from fitting the Main Effects data (YME) to the real factors have 2 degrees of freedom. - 2. To estimate σ^2 , sum the squared residuals from this fit and divide the result by 2. - 3. Using this estimate, do t-tests of each coefficient - 4. If the resulting p-value for an effect is small, conclude that effect is active. ### 2nd Digression: Model Heredity Assumption The heredity assumption stipulates that 2nd order effects only occur when the associated main effects are active. Example 1: If main effects A and B are in the model you can consider the two-factor interaction AB Example 2: B must be in the model before considering the quadratic effect B² While there is no physical law requiring that models exhibit heredity, there is empirical evidence that such models are much more probable in real systems. ### Advantage of the Heredity Assumption The set of possible models using the heredity assumption may be much smaller than allowing any 2nd order effect to appear in the model Example: Suppose your main effects analysis yields 3 active main effects (C, D, F say). Then the allowable 2^{nd} order terms are CD, CF, DF, C^2 , D^2 , F^2 We have 8 degrees of freedom and only 6 effects, so it is possible to identify all 6 if they are active. If we allow consideration all 2nd order effects, there are 15 two-factor interactions and 6 quadratic terms – or 21 terms in all. There are 2^{21} or more 2 million possible models – a much harder model selection problem. ### Analysis – Identifying 2nd Order Effects Form all the 2nd order terms involving the active main effects Do all subsets regression up to the point where the MSE of the best 2^{nd} order model for a given number of terms is not significantly larger than your estimate of σ^2 #### **Outline** - 1. Introduction & Motivation - 2. Three Ideas for Analysis - 3. Simulation Studies - 4. Recommendations ### Simulate Responses User Interface #### **Resulting Table** #### Formula Column with Random Numbers #### JMP Demonstration of New Method TABLE 2. Three-Level Definitive Screening Design for Six Factors with a Simulated Response Vector | Run (i) | $x_{i,1}$ | $x_{i,2}$ | $x_{i,3}$ | $x_{i,4}$ | $x_{i,5}$ | $x_{i,6}$ | y_i | |---------|-----------|-----------|-----------|-----------|-----------|-----------|-------| | 1 | 0 | 1 | -1 | -1 | -1 | -1 | 21.04 | | 2 | 0 | -1 | 1 | 1 | 1 | 1 | 10.48 | | 3 | 1 | 0 | -1 | 1 | 1 | -1 | 17.89 | | 4 | -1 | 0 | 1 | -1 | -1 | 1 | 10.07 | | 5 | -1 | -1 | 0 | 1 | -1 | -1 | 7.74 | | 6 | 1 | 1 | 0 | -1 | 1 | 1 | 21.01 | | 7 | -1 | 1 | 1 | 0 | 1 | -1 | 16.53 | | 8 | 1 | -1 | -1 | 0 | -1 | 1 | 20.38 | | 9 | 1 | -1 | 1 | -1 | 0 | -1 | 8.62 | | 10 | -1 | 1 | -1 | 1 | 0 | 1 | 7.80 | | 11 | 1 | 1 | 1 | 1 | -1 | 0 | 23.56 | | 12 | -1 | -1 | -1 | -1 | 1 | 0 | 15.24 | | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 19.91 | | Stage | 1 - Main | Effect | Esti | mates | | |-----------------|----------|---------------|---------------|---------|---------| | Term | Estimate | Std Erro | or t | Ratio | Prob> t | | x1 | 3.408 | 0.187 | 73 1 | 8.196 | 0.0030* | | x2 | 2.748 | 0.187 | 0.1873 14.672 | | 0.0046* | | x3 | -1.309 | 0.187 | 73 - | 6.989 | 0.0199* | | x4 | -0.851 | 0.187 | 73 - | 4.544 | 0.0452* | | Statist | ic Value | | | | | | RMSE | 0.5923 | | | | | | DF | 2 | | | | | | Stage | 2 - Even | Order | Effe | ct Esti | mates | | Term | Estima | te Std E | rror | t Ratio | Prob> | | Interce | pt 20.05 | 58 0 | .291 | 68.926 | <.000 | | x2*x3 | 5.59 | 95 | 0.2 | 27.979 | 0.000 | | x1*x1 | -7.27 | 71 0. | 3325 | -21.87 | 0.000 | | x4*x4 | 1.223 | 35 0. | 3325 | 3.6798 | 0.034 | | Statist | ic Value | | | | | | RMSE | 0.3999 | | | | | | DF | 3 | | | | | | Comb | ined Mo | del Par | rame | eter Es | timates | | Term | Estima | te Std E | rror | t Ratio | Prob> | | Interce | pt 20.05 | 58 0. | 3537 | 56.71 | <.000 | | x1 | 3.40 | 0.0 | 1537 | 22.17 | <.000 | | x2 | 2.74 | 48 0. | 1537 | 17.877 | <.000 | | х3 | -1.30 | 0.0 | 1537 | -8.516 | 0.000 | | x4 | -0.85 | 51 0. | 1537 | -5.536 | 0.002 | | x2*x3 | 5.59 | |).243 | 23.02 | <.000 | | x1*x1 | -7.27 | | 4041 | -17.99 | | | x4*x4 | 1.223 | | 4041 | 3.0276 | 0.029 | | | ic Value | | | | | | Statist | | | | | | | Statist
RMSE | 0.4861 | | | | | #### Monte Carlo Simulation in JMP 13 ### **Empirical Power Analysis** # **Analyzing DSDs Conclusion** #### Recommendations Prefer using fake factors to repeated center runs. Assume model heredity unless there is substantial scientific evidence to the contrary. Model main effects separately from 2nd order effects by breaking the response into two responses. ### And one last thing... You can use the two response decomposition idea for any foldover design. #### References Jones, Bradley and Nachtsheim, C. (2011) "A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects" *Journal of Quality Technology*, **43**. 1-15. Jones, Bradley, and Nachtsheim, C. J. (2013) "Definitive Screening Designs with Added Two-Level Categorical Factors", *Journal of Quality Technology*, **45:2**, 120-129. Jones, Bradley, and Nachtsheim, C. J. (2015): Blocking Schemes for Definitive Screening Designs, *Technometrics*, DOI: 10.1080/00401706.2015.1013777 Jones, Bradley and Nachtsheim, C.J. (2017) Effective Model Selection for Definitive Screening Designs, *Technometrics* (online now in print 2017:3) Miller, A., and Sitter, R. R. (2005). "Using Folded-Over Nonorthogonal Designs," *Technometrics*, **47:4**, 502-513. Xiao, L, Lin, D. K.J., and Fengshan, B. (2012), Constructing Definitive Screening Designs Using Conference Matrices, *Journal of Quality Technology*, 44, 1-7. #### **Technometrics** ISSN: 0040-1706 (Print) 1537-2723 (Online) Journal homepage: http://amstat.tandfonline.com/loi/utch20 #### Effective Design-Based Model Selection for Definitive Screening Designs Bradley Jones & Christopher J. Nachtsheim To cite this article: Bradley Jones & Christopher J. Nachtsheim (2016): Effective Design-Based Model Selection for Definitive Screening Designs, Technometrics, DOI: 10.1080/00401706.2016.1234979 To link to this article: http://dx.doi.org/10.1080/00401706.2016.1234979