Using JSL to Develop Efficient,
Robust Applications

JMP Discovery - 2017

Joseph Morgan

JMP Division
SAS Institute Incorporated
Cary, North Carolina 27513
Joseph.Morgan@sas.com

mailto:Joseph.Morgan@sas.com

JSL Application Development

A Generic view of Software Engineering

In his seminal text “Software Engineering: A Practitioners Approach,” (2009)
Roger Pressman makes the following point:

“The software development process contains three generic
phases regardless of the software engineering paradigm chosen.
The three phases, definition, development, and maintenance,
are encountered in all software development, regardless of
application area, project size, or complexity.”

JSL Application Development

A Generic view of Software Engineering

Definition

Maintenance
(Change)

Pressman, R., Software Engineering: A Practitioners Approach, (2009)

Definition)
Development ‘
N

(How) .
Maintenance
‘ (Change)

JSL Application Development

Questior

Are there JSL constructs (or categories of constructs) that programmers
should make use of as they tackle the development of non-trivial applications
that are efficient, robust, and maintainable?

That is, are there JSL constructs that aid in the How phase, yet facilitate the
inevitable Change phase, of application development.

Yes!

JSL Application Development

Top 5 JSL constructs.

1.

Allow manipulation of JSL expressions - The wonders of JSL
expression handling functions.

Provide rich, powerful, display tree navigation - The power of
JSL XPath querying.

Guard against name collision - The security of JSL namespaces.

Provide rich, powerful, matrix algebra capability - The power of
JSL matrices (the other priwmitive data type) and functions.

Provide ordered/unordered general container capabilities - The
remarkable utility of associative arrays and lists.

JSL Expressions

The Wonders of JSL Expression Handling Functions

T NIV Ue

JSL Application Development BT

A Ak

O N O O & WN =
—

=y =
N =« O ©
-b | =i

Motivating Example:

O O © W W NN - NN & -

New Table(“Discovery - St Louis”,
New Column("A",
Numeric,
Set Property("Weights",
{4 =0.2, 3 =0.004, 2 =1.6, 9 =0.5, 15 = 4.1}
)

Set values([1, 4, 2, 2, 11, 2, 7, 3, 3, 9, 15, 15])
)

E
// get property “zz::é;::::F{lln[::::>

column("A")<<getproperty("Weights");

{4 =0.2, 3 =0.004, 2 =1.6, 9 =0.5, 15 = 4.1}

T NIV Ue

JSL Application Development BT

A Ak

O N OO s WN =

=y | =
- O ©

Motivating Example:

12

New Table(“Discovery - St Louis”,
New Column("A",
Numeric,
Set Property("Weights",
{4 =0.2, 3 =0.004, 2 =1.6, 9 =0.5, 15 = 4.1}
)

Set values([1, 4, 2, 2, 11, 2, 7, 3, 3, 9, 15, 15])
)
)
// get property
column("A")<<getproperty("Weights");

Challenge: Write a script to get and transform the property list into a
matrix.

pes

—

OO 00 © W W NN - NN & -

P - N

JSL Application Development

Motivating Example:

{ 4=0.2, [4 0.2,
3 = 0.004, 3 0.004,
2 = 1.6, > 2 1.6,
9 = 0.5, 9 9.5,
15 = 4.1 } 15 4.1]

Challenge: Write a script to get and transform the property list into a
matrix.

JSL Demo

The List transformation challenge

JSL Application Development

The Wonders of Expression Handling Functions

This section attempts to unravel the mystery surrounding JSL expression
handling functions and show how such functions can be used to solve
nontrivial JSL programming challenges.

Questiovu What exactly is a JSL expression?

“A JSL expression is any combination of variables, constants, and
functions linked by operators that can be evaluated'.”

The key phrase here is “... that can be evaluated.”

1SAS Institute, Inc., JMP Scripting Guide, Cary, NC: SAS Institute, Inc.

JSL Application Development

The Wonders of Expression Handling Functions
This section attempts to unravel the mystery surrounding JSL expression

handling functions and show how such functions can be used to solve
nontrivial JSL programming challenges.

Questiovu What exactly is a JSL expression?

“A JSL expression is any combination of variables, constants, and
functions linked by operators that is well formed.”

The key phrase here is “... that is well formed.”

JSL Application Development

Preliminaries

Each of the following is a JSL expression.

100.1 // numeric literal - primitive
"string literal” // string literal - primitive
X // variable (or name)

X & (y | z) // logical expression

z*¥2 + z"2 -10 + pi() // arithmetic expression

More complex examples like the following are also JSL expressions.

x = [1;
for(i=1, i<=5, 1i++,

X ||= random uniform(); show(x)
)

JSL Application Development

Preliminaries

Let us re-examine this expression:

x = [1;
for(i=1, i<=5, i++,

X ||= random uniform(); show(x)
E

The following script is operationally equivalent:

glue(assign(x, []),
for(assign(i, 1), less or equal(i, 5), post increment(i),
glue(concat to(x,random uniform()), show(x))
)
)

JSL Demo

Preliminaries examined

JSL Application Development

What is an Expression Handling function?

A useful way to think of expression handling functions is as the set of JSL
functions that enables you to regard expressions as data.

1. Quoting, Retrieval, and Evaluation: Functions such as Expr(),
NameExpr(), and Eval() allow you to quote expressions, possibly assign
them to variables for later retrieval, and for future evaluation.

2. Assembly and Disassembly: There are functions that allow expressions
to be assembled and disassembled. Substitute(), Insert(), and

Remove() are three of several functions that may be used to assemble and
disassemble expressions.

3. Probing: Arg() and Head() are functions used to probe expressions.

JSL Application Development

How do Expression Handling functions work?

These JSL functions fall into two operational categories: those that evaluate
their arguments when invoked and those that do not.

Evaluate Arguments Do Not Evaluate Arguments
Parse() Expr()

Eval¢g)] NameExpr()
Evallist() | EvalExpr()
Substitute()/SubstituteInto() |Arg()
Remove()/RemoveFrom() | NAPEC)
Insert()/InsertInto() | Head)
""" HeadName()

Table 1: JSL Expression Handling Functions - Operational Behavior?

Morgan, J., “Expression Handling Functions: Unravelling the Expr(), NameExpr(), Eval(), ... Conundrum,” JMPer Cable, #26.

JSL Demo

Expression Handling Functions
A “Deep Dive” (i.e.a detailed examination)

JSL Application Development

Pitfall #1a: Expr() vs. NameExpr()

A common JSL mistake is to assume that executing Expr(x) is equivalent to
executing NameExpr(x). Indeed, in the following example, these two statements

return the same thing.

Expr(4 + 35);
NameExpr(4 + 35);

Expr(x) returns its argument
unevaluated but NameExpr(x) returns
the value of its argument unevaluated.
The argument to NameExpr(x) should be
a variable, but when it is an expression
it simply returns its argument.

Expr(4 + 35);

4 + 35

NameExpr(4 + 35);

4 + 35

JSL Application Development

Pitfall #1b: Expr() vs. NameExpr()

Consider:

Since Expr() returns its
argument unevaluated, x is returned,
whereas NameExpr(x) returns the value

of its argument unevaluated so 2 + 50 is
returned.

X = Expr(2 + 50);
Expr(x);
NameExpr(x);

Expr(x);

X

NameExpr(x); Point: Executing Expr(x) is not

> + 50 equivalent to executing NameExpr(x).

JSL Application Development

Pitfall #2: Eval()

When using the Eval() function, a common mistake is to assume that executing
Eval(x) is equivalent to executing x. Consider the following example.

x = expr(parse("j(1,2,random uniform())"));

X Staierne;ﬁg\\\\\\\\\\\

x = expr(parse("j(1,2,random uniform())")); 1 and 3 store the expression
parse("j(1,2,random uniform())") in

eval(x);
X. Execute statements 1 and 2 and
then 3 and 4.

x = expr(parse("j(1,2,random uniform())"));
X

J(1, 2, Random Uniform())

Point:
Executing eval(x) is not
equivalent to executing x.

x = expr(parse("j(1,2,random uniform())"));
eval(x);

[0.4468085069675 0.693814620142803]

JSL Application Development

Pitfall #3: Substitute() vs. SubstituteInto()

The following script uses Substitute() to replace _x_, with weight, but fails.

//script 1
stmt = Expr(distribution(column(_x_)));
colnm = "weight";

Result = Substitute(stmt,
show(stmt, Result);

Expr(_x_), colnm); Substitute()

evaluates its arguments, it
attempts to evaluate stmt, but

fails because _x_ does not

Properly quote the first argument of Substitute().

//script 1 - revised

stmt = Expr(distribution(column(_x_)));
colnm = "weight";

Result = Substitute(NameExpr(stmt),Expr(x),colnm);
show(stmt, Result);

JSL Application Development

Pitfall #3: Substitute() vs. SubstitutelInto()

Alternatively, SubstituteInto() may be used.

//script 2
stmt = Expr(distribution(column(_x_)));
colnm = "weight";

SubstituteInto(stmt, Expr(x), colnm);
show(stmt);

SubstituteInto()

updates the named expression
(i.e. stmt) in place.

Point: Unlike Substitute(), SubstituteInto()
does not evaluate its first argument.

JSL Application Development

lllustrative Example:

dt = Open("$SAMPLE DATA/Socioeconomic.jmp");
Principal Components(

Y(1 :: NCol(dt)),

Estimation Method("Row-wise"),

"on Correlations"”,

Factor Analysis("PC", "SMC", 2, "Varimax")

)5

Challenge: Write a script that allows “Factoring Method” to be a user
specified value. That is, the first argument of Factor Analysis(..) may

be “PC” or “ML”.

JSL Demo

The Principal Components(..) challenge

JSL Application Development

Concluding Comments

The primary purpose of this exercise was to illustrate the use of several
expression-handling functions. A secondary purpose was to point out common
errors, pitfalls, and misunderstandings that JSL programmers sometimes
make when attempting to use these functions.

Hopefully those objectives have partly been achieved.

Display Tree Subscripting

The Power of |[SL XPath querying

¥ QOutline 1

Number 1

1
2

JSL Application Development check 1

¥ Outline 2

Number 2

1111
2222

Motivating Example: check 2

Commit

New Window("Checkbox state",
Outlinebox("Outline 1", Tablebox(
Numbercolbox("Number 1",[1,2])), Checkbox({"check 1"})
)

Outlinebox("Outline 2", Tablebox(
Numbercolbox("Number 2",[1111,2222])), Checkbox({"check 2"})
)

// determine checkbox state
Buttonbox("Commit",<<setfunction(

function({t},{1}, 1 = callback(t); show(l)))
)

)5

Challenge: Implement callback(t). Make sure that your function is
general. The number of outline boxes is only known at runtime.

JSL Demo

The Checkbox(..) state challenge

JSL Application Development

The Power of JSL XPath' querying

This section attempts to illustrate the power of XPath querying and to
show how XPath may be used as an alternative to JMP’s existing display
tree subscripting construct.

Questiorn What exactly is XPath?

Answer: XPath (XML Path Language) is a “World Wide Web

Consortium” (W3C) standard query language for addressing parts of an
XML document. You may think of XPath as SQL for XML.

The key phrase here is “... as SQL for XML.”

1Clark, J., & DeRose, S., XML path language (XPath) v1.0, W3C Recom. (1999), See http://www.w3.org/TR/xpath.html.

http://www.w3.org/TR/xpath.html

JSL Application Development
How does XPath work for display trees?

R | 7 | PP

¥ Qutline 1

Number 1

1
2

check 1
» Qutline 2

Commit

JSL Application Development

How does XPath work for display trees? ,
Display Tree

S v ~ Show Tree Structure
R |) | @ v EvalContextBox(1)
- v ListBox(1)
¥ Outline 1 v OutlineBox(1): Outline 1
Number 1 OutlineBox(1)
1 Outline 1
2 v TableBox(1)

check 1 v NumberColBox(1)

» QOutline 2 "“"‘""':

Commit 2
v CheckBoxBox(1)

check 1
v OutlineBox(2): Outline 2
OutlineBox(2)
Outline 2
v TableBox(2)
v NumberColBox(2)

Number 2

1111
2222

v CheckBoxBox(2)
check 2

v ButtonBox(1)

Commit

JSL Application Development

How does XPath work for display trees?

k l.) I_;-JL_) tio

¥ Qutline 1

Number 1

1
2

check 1
» Qutline 2

Commit

Point: Given
a reference to a
JMP report, XPath
gueries can return
text or display box
references.

Display Tree -XML

<EvalContextBox width=\!"104\!" heil =\!"149\!">
<ListBox width=\!"104\!" height=\!"149\!">
<QutlineBox width=\!1"104\'" height=\!"91\!" isOpen=\!"true\!">0utlir
\ 126\ " width=\!"67\!" height=\!"46\"'">
<NumberColBox width=\!"66\!" height=\!1"44\!1">
<NumberColBoxHeader>Number 1</NumberColBoxHeader>
<NumberColBoxItem>1</NumberColBoxItem>
<NumberColBoxItem>2</NumberColBoxItem>
</NumberColBox>
</TableBox>
<CheckBoxBox leftOffset=\!"12\!" topOffset=\!"72\!" width=\!"67\!"
<CheckBoxBoxItem>check 1</CheckBoxBoxItem>
</CheckBoxBox>
</0utlineBox>
<QutlineBox leftOffset=\!"0O\!" topOffset=\!"91I\!" width=\!"103\'!" he
1sOpen=\"!"false\!">0utline 2<TableBox leftOffset=\!"12\!" tc
<NumberColBox width=\!"66\!" height=\!"44\!1">
<NumberColBoxHeader>Number 2</NumberColBoxHeader>
<NumberColBoxItem>1111</NumberColBoxItem>
<NumberColBoxItem>2222</NumberColBoxItem>
</NumberColBox>
</TableBox>
<CheckBoxBox leftOffset=\!"12\!" topOffset=\!"72\!" width=\!"67\!"
<CheckBoxBoxItem>check 2</CheckBoxBoxItem>
</CheckBoxBox>
</0utlineBox>
<ButtonBox leftOffset=\!"0\!" topOffset=\!"117\!" width=\!"78\!" hei

JSL Demo

Xpath Queries
A “not so Deep Dive” (i.e.a brief overview)

JSL Application Development

Concluding Comments

The primary purpose of this exercise was to illustrate the power of XPath.
Hopefully, that objective has been achieved.

Note that XPath v1.0 is the currently supported version. Also, JMP provides
an XPath Query(..) function that is intended for querying XML strings of any

origin. XPath Query(..) takes a single argument which is the XML string to
be queried.

The Rest: #3 - #5

Namespaces, Matrices, & Associative Arrays/Lists

JSL Demo

Associative Arrays & Matrices

JSL Application Development

References

1.

2.

o &

Clark, J., & DeRose, S., XML path language (XPath) v1.0, W3C
Recommendation (1999), See http://www.w3.org/TR/xpath.html.
Morgan, J., “Expression Handling Functions: Unravelling the Expr(),
NameExpr(), Eval(), ... Conundrum (2010),” JMPer Cable, Issue 26,
15-19.

Pressman, R., “Software Engineering: A Practitioners Approach
(2009),” McGraw-Hiill.

SAS Institute, Inc., JMP Scripting Guide, Cary, NC: SAS Institute, Inc.
Sebesta, R., “Concepts of Programming Languages (1999),” Addison
Wesley.

http://www.w3.org/TR/xpath.html

Thank You

