Order Experiments

Kevin Gallagher, Ph.D. PPG Industries

October 16, 2019

PPG: 46,600 employees protecting and beautifying our world

A global maker of paints, coatings, and specialty materials

A leader in all our markets: construction, consumer products, industrial and transportation markets and aftermarkets

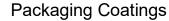
Headquartered in Pittsburgh, Pennsylvania, with operations in more than 70 countries

Founded in 1883

Fortune 500: Ranked 182

PPG Business Segments

Architectural Coatings


Automotive Coatings

Industrial Coatings

Aerospace Coatings

Protective & Marine Coatings

PPG Coatings Innovation Center

- 250+ researchers
- synthesis chemists, formulators, analytical chemists, engineers
 - 600+ patents in past 10 years

Today's Objectives:

- ➤ What is an Order Experiment?
- ➤ How do we design an Order Experiment?
- ➤ How should the experimental results be analyzed?
- ➤ What are the <u>Factors</u> and <u>Factor Levels?</u>

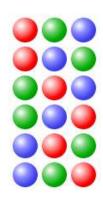
What is an Order Experiment?

An Order experiment is one in which there are multiple process steps and the <u>order</u> in which the steps are performed is studied.

Examples:

- Knee brace The order in which the straps are tightened
- Survey The order in which questions are asked
- Coatings The order in which multiple coating layers are applied
- An important special case: Order-of-Addition The order in which mixture ingredients are added
 - Paints Resins/Polymers Adhesives
 - Cosmetics Pesticides Foods

Lady Tasting Tea m=2 components, 4 replications


What would be the "Full Factorial" equivalent of an Order Experiment?

Full Factorial equivalent = all possible permutations

Lady tasting tea: m = 2 components:

Permutation 1: Milk → Tea Permutation 2: Tea → Milk

Consider m = 3 components:

Each of the 6 <u>rows</u> is a unique permutation of the three colored balls.

What are the factors and levels in an Order Experiment?

Lady tasting tea: m = 2 components:

Permutation 1: Milk → Tea

Permutation 2: Tea → Milk

Milk = A

Tea = B

Run	Order	f M <t< th=""><th>←</th><th>Pairwis <u>factor</u>: I</th></t<>	←	Pairwis <u>factor</u> : I
1	MT	1	—	Factor I
2	TM	-1		M ente 1 = true

Pairwise ordering <u>factor</u>: M before T

Factor Level: Does M enter before T? 1 = true, -1 = false

Just one factor

Consider m = 3 components:

Run

1)
2)
3)
4)
5)
6		0	

Run	Order	f R <g< th=""><th>f R<b< th=""><th>f G<b< th=""></b<></th></b<></th></g<>	f R <b< th=""><th>f G<b< th=""></b<></th></b<>	f G <b< th=""></b<>
1	RGB	1	1	?
2	RBG	1	1	?
3	GRB	-1	1	?
4	GBR	-1	-1	?
5	BRG	1	-1	?
6	BGR	-1	-1	-1

3 factors

Order Experiments with All Possible Permutations (Full Factorial)

number of components,	number of pairwise factors, $\left(\frac{m}{2}\right)$	number of permutations, $m!$
1	-	1
2	1	2
3	3	6
4	6	24
5	10	120
6	15	720
7	21	5,040
8	28	40,320

As the number of components increases:

- pairwise ordering factors increase
- > permeations increase

A new JMP Addin is available:

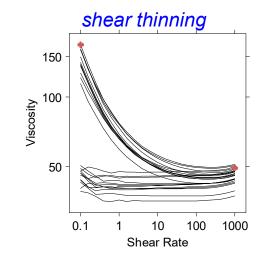
- ➤ All possible permutations
- Pairwise ordering factors

Addin by Bradley Jones and Joseph Morgan

Fractional Experiments?

- ➤ JMP Custom Design
- Pairwise ordering factors
- Covariate Factors

Case Study: Automotive Clearcoat


The design and analysis of order-of-addition experiments: An introduction and case study

Joseph G. Voelkel & Kevin P. Gallagher

Published online: 06 Aug 2019

Component	code	(4, 24)	(5, 15)	(6, 24)
primary binder resin	Α	✓	✓	✓
secondary binder resin	В	\checkmark	\checkmark	\checkmark
flow and leveling additive	С	✓	✓	✓
rheology modifier #1	D	\checkmark	\checkmark	✓
crosslinking resin	Е		\checkmark	\checkmark
rheology modifier #2	F			✓

Four Component Experiment

24 total permutations, 6 pairwise factors

Experimental notation: Order (4, 24)

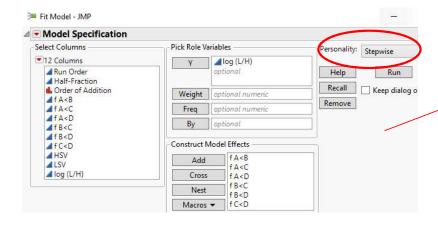
- \rightarrow Components (m) = 4,
- → Runs (N) = 24

In general: Order (m, N)

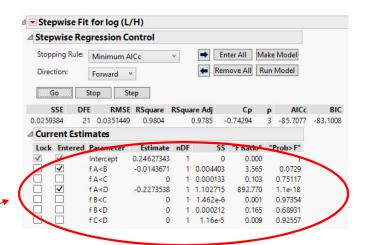
The <u>order</u> column provides the instructions to how to run the experiment:

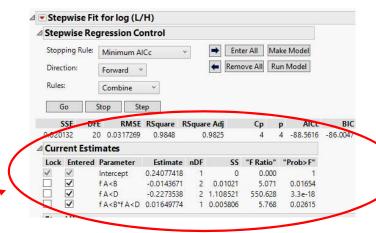
The **factor** columns used to analyze

- ➤ Forward 2-stage stepwise regression
 - Main effects first
 - 2-factor interactions with heredity

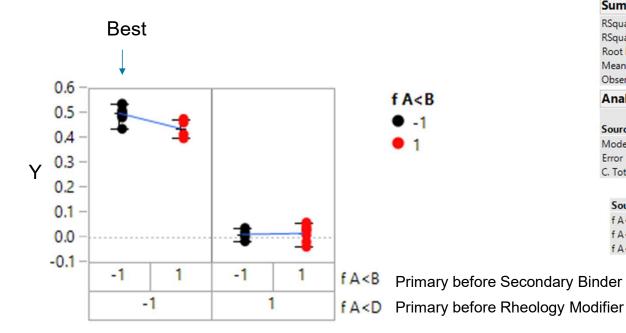

Run Order	Order	f A <b< th=""><th>f A<c< th=""><th>f A<d< th=""><th>f B<c< th=""><th>f B<d< th=""><th>f C<d< th=""><th>γ</th></d<></th></d<></th></c<></th></d<></th></c<></th></b<>	f A <c< th=""><th>f A<d< th=""><th>f B<c< th=""><th>f B<d< th=""><th>f C<d< th=""><th>γ</th></d<></th></d<></th></c<></th></d<></th></c<>	f A <d< th=""><th>f B<c< th=""><th>f B<d< th=""><th>f C<d< th=""><th>γ</th></d<></th></d<></th></c<></th></d<>	f B <c< th=""><th>f B<d< th=""><th>f C<d< th=""><th>γ</th></d<></th></d<></th></c<>	f B <d< th=""><th>f C<d< th=""><th>γ</th></d<></th></d<>	f C <d< th=""><th>γ</th></d<>	γ
1	BCAD	-1	-1	1	1	1	1	0.037
2	ACBD	1	1	1	-1	1	1	0.044
3	CDAB	1	-1	-1	-1	-1	1	0.414
4	BCDA	-1	-1	-1	1	1	1	0.510
5	CBAD	-1	-1	1	-1	1	1	0.004
6	ABDC	1	1	1	1	1	-1	0.009
7	DCBA	-1	-1	-1	-1	-1	-1	0.491
8	DBAC	-1	1	-1	1	-1	-1	0.436
9	BDAC	-1	1	-1	1	1	-1	0.482
10	ADBC	1	1	1	1	-1	-1	0.027
11	ACDB	- 1	1	1	-1	-1	1	0.033
12	DCAB	1	-1	-1	-1	-1	-1	0.476
13	BACD	-1	1	1	1	1	1	0.020
14	CADB	1	-1	1	-1	-1	1	-0.019
15	DACB	1	1	-1	-1	-1	-1	0.398
16	CBDA	-1	-1	-1	-1	- 1	1	0.537
17	ABCD	1	1	1	- 1	1	1	0.009
18	ADCB	1	1	1	-1	-1	-1	0.059
19	BDCA	-1	-1	-1	1	1	-1	0.534
20	DABC	1	1	-1	1	-1	-1	0.461
21	DBCA	-1	-1	-1	1	-1	-1	0.500
22	CDBA	-1	-1	-1	-1	-1	1	0.502
23	CABD	1	-1	1	-1	1	1	-0.038
24	BADC	-1	1	1	1	1	-1	-0.016

Order (4, 24).jmp




Case Study Example: Order (4, 24)

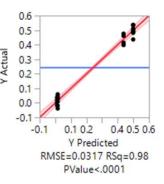
1) Stage 1: Use forward stepwise regression with only the "main effect" pairwise ordering factors


2) Stage 2: Use forward stepwise regression to add significant <u>interactions</u> between pairwise ordering factors involving only the important main effect factors (employing the strong heredity assumption)

Case Study Example: Order (4, 24)

Summary of Fit 0.984791 **RSquare** RSquare Adj 0.98251 Root Mean Square Error 0.031727 Mean of Response 0.246273

Error

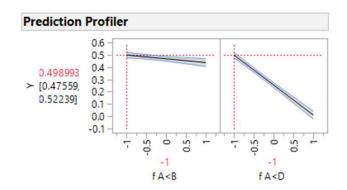

C. Total

Observation	ons (or S	um Wgts)	24		
Analysis	of Va	riance			
Source	DF	Sum of Squares	Mean Square	F Rati	
Model	3	1.3035773	0.434526	431.677	

0.0201320

1.3237093

23

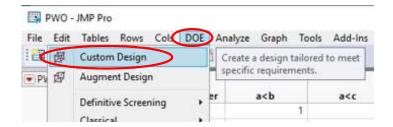

Source	LogWorth	PValue
fA <d< td=""><td>18.215</td><td>0.00000</td></d<>	18.215	0.00000
fA <d*fa<b< td=""><td>1.582</td><td>0.02615</td></d*fa<b<>	1.582	0.02615
fA <b< td=""><td>1.306</td><td>0.04944 ^</td></b<>	1.306	0.04944 ^

0.001007 Prob > F

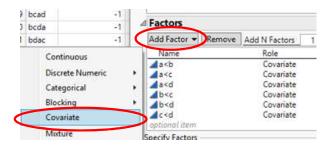
<.0001*

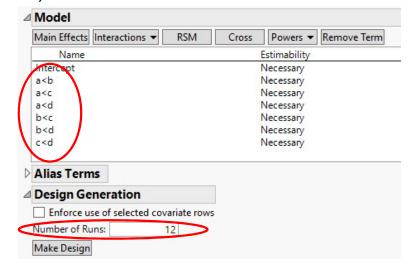
To maximize the efficacy of the rheology modifier:

- f A<D = false and f A<B = false
- Thus, primary binder should be added after both the rheology modifier and secondary binder

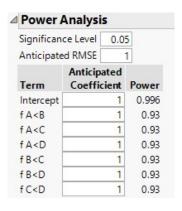


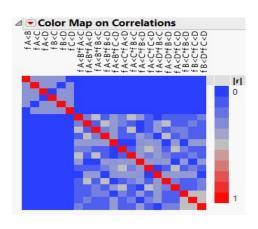
Generating Optimal Fractions with JMP - Order Experiment

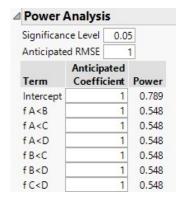

1) Use JMP Order of Addition addin

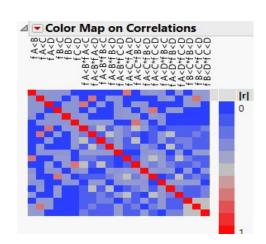

2) Custom Design

3) Add Covariate factors = pairwise ordering factors


4) Define model and number of runs




Evaluating Designs


Order (4, 24)

Order (4, 12)

The 12-run experiment has:

- Half the number of runs
- Lower power to detect effects (increased chance to miss an effect – type II error)
- More correlation of main effects with 2-factor interactions

Summary

An Order experiment is one in which there are multiple process steps and the <u>order</u> in which the steps are performed is studied.

- Order-of-Additions experiments are an important class of order experiments.
- Pairwise order factors (e.g. B enters before C: B<C) are used to:
 - Analyze the experiment treated as you would any other process variable
 - Find optimal subsets of the full permutation experiment to create manageable sized experiments
 - The factor levels are (1 = true; -1 = false)
- The recommended analysis method is 2-stage forward stepwise regression:
 - Stage 1 main effects; Stage 2 interactions (limited to those with strong heredity)
- Fractional subsets can be created by using the pairwise ordering factors as "covariate" variables with the custom design platform in JMP

Forward thinking:

- Mixture-Order experiments ingredient amounts and order
- Process-Order experiments e.g. change process step order and reaction temperature.

We protect and beautify the world™

