Finding Needles in A Haystack: Variable Selection for Models Karen Copeland, Ph.D. Boulder Statistics

Abstract

TUCSON 2019

There are many steps to building predictive models. One key step is identifying variables to include in your model. This is particularly challenging when you have an abundance of variables to choose from, many of which are likely not important. Thus, you have needles hiding in a haystack, how can you find the needles? I explore a variable selection process that includes predictor screening followed by generalized regression with lasso fitting followed by one-click bootstrapping.

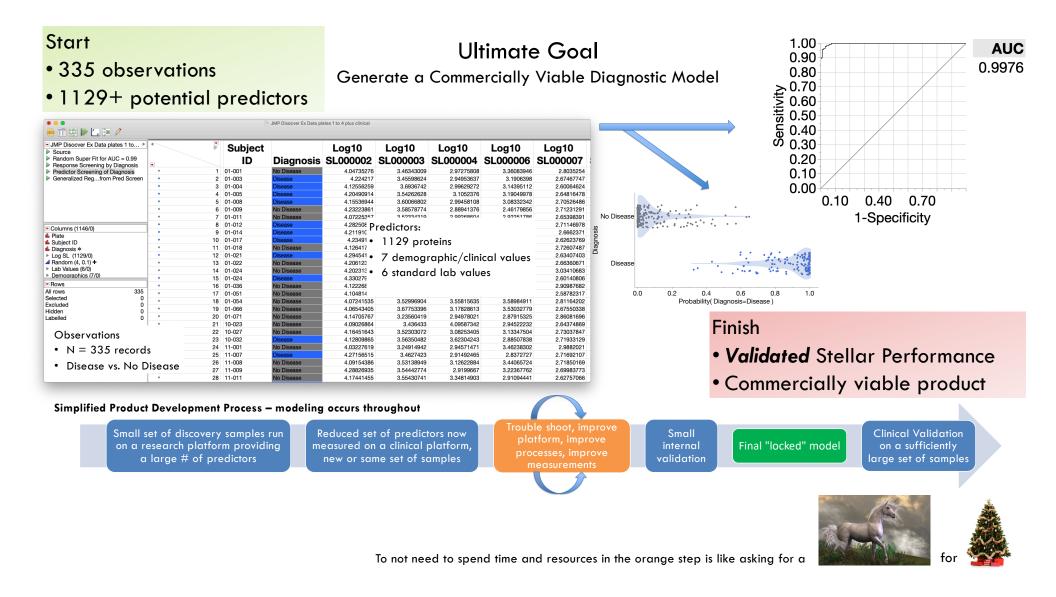
Objectives

- Robust Variable Selection
- Robust Model Construction

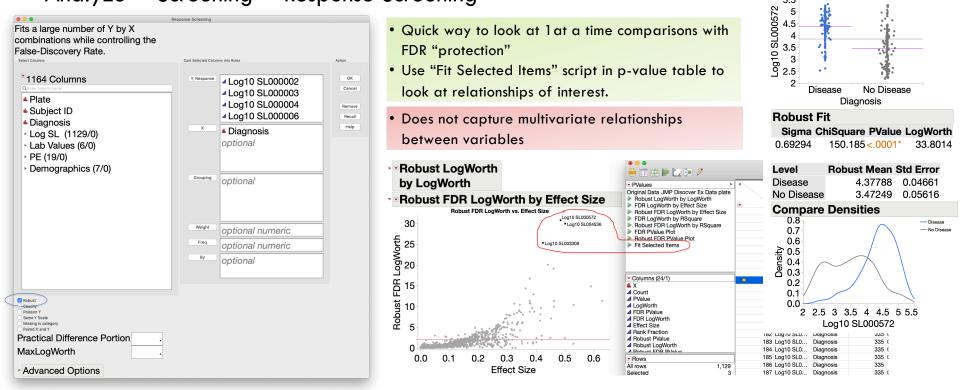
Tools

- Response Screening
- Predictor Screening
- Generalized Regression
- One-Click Bootstrapping

My Challenges


- Large number of potential variables.
- Small number of observations.
- Measurement reproducibility.

My Reference Frame

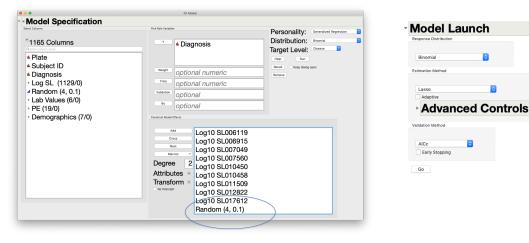

- Response Type = Binary (0/1)
- Industry = Medical Diagnostics
- Specific Goal = develop commercially viable diagnostic tests based on multivariate algorithms
- Small initial data sets (patients samples = \$\$\$)

Alternative Methods

- Machine Learning –Genetic Algorithms
- -SVMs
- -Bootstrap Forests
- -Etc. etc.
- Train/Validate/Test Sets
- Struggle = Reality: Small # of observations for initial development work.

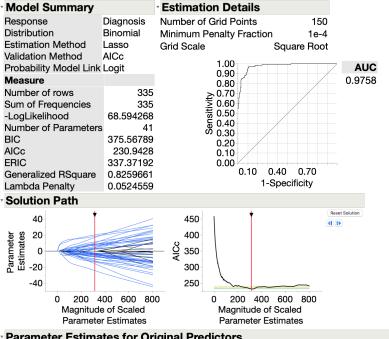
Tool #1: Response Screening Analyze > Screening > Response Screening

Oneway Analysis of Log10


SL000572 By Diagnosis

5.5

• Answers the question: Do I have a simple winner?


lool #2: Pre	dictor Screenin	a			Diagnosis	<u>م</u>
		U		Predictor	Contribution Portion	Rank
Pre-	creening > Pre	dicto	 • Uses bootstrap forests to generate a list of 	Log10 SL004536 Log10 SL000572 Log10 SL003309 Log10 SL000051 Log10 SL003183	17.8711 0.1060 11.3699 0.0674 7.7334 0.0459	1 2 3 4 5
ity to predict an outcome.	Cast Selected Columns into Roles * Diagnosis optional x 4 Log10 SL000002 4 Log10 SL000003 4 Log10 SL000003	Action OK Cancel Remove Recall Help	 "interesting" variables. Top three align with Response Screening (this is promising!). Begins to capture multivariate relationships between variables. 	Log10 SL003302 Log10 SL003326 Log10 SL002528 Log10 SL000527 Log10 SL001729 Log10 SL007049 Log10 SL004477 Log10 SL000441 Log10 SL003301	3.33690.01982.98220.01772.70670.01602.43460.01442.34460.01392.22230.01321.90920.01131.90880.0113	6 7 8 9 10 11 12 13 14
Demographics (7/0) Iumber Trees 1000	Log10 SL000006		 Contribution = G² (likelihood ratio chi-square) Portion = Contribution/∑Contributions Bigger is better Random components to bootstrap forests, so re-running can lead to a different ranking. Use a large number of trees to improve 	Log10 SL000087 Log10 SL010450 Log10 SL000522 Log10 SL000507 Log10 SL000500 Log10 SL000408 Log10 SL004047 Log10 SL004008 Log10 SL008039 Log10 SL000521 Log10 SL000524 Log10 SL006915	1.73310.01031.21380.00721.09310.00651.08080.00640.99520.00590.87080.00520.78920.00470.74190.00440.70160.00420.69890.00410.64720.00380.63190.0037	15 16 17 18 19 20 21 22 23 24 25 26 26
			robustness ranking. • Interpretation is "relative".	Log10 SL000406 Log10 SL007327 Log10 SL008102 Log10 SL005185	0.5673 0.0034 0.5408 0.0032	27 28 29 30
·	re "fake" variables tha andom number genera ge noise vs. maybe no	ator to o	create	Log10 SL000124 Log10 SL003738 Log10 SL007804 Random (4, 0.1) Log10 SL005236 Log10 SL004067 Log10 SL001888	0.0504 0.0003 0.0503 0.0003 0.0502 0.0003 0.0502 0.0003 0.0500 0.0003	497 498 499 500 501 502 503

Tool #3: GenReg ₩ Analyze > Fit Model

- I typically start with a sub-set of variables based on the predictor screening step. Here I used the top 50 variables as my candidate set.
- Use the copy selected from the predictor screening results window to paste variables into the model launch window.
- Run Genreg and then I start with the default model launch (Lasso with AIC validation method).
- This uses all data, no cross-validation, or other checks for model over specification.
- Include one or more "fake" variables as a way to judge noise vs. maybe not noise.

Binomial Lasso with AICc Validation

Parameter Estimates for Original Predictors							
			Wald	Prob >			
Term	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%	
Log10 SL006915	-4.986595	1.1428393	19.038724	<.0001*	-7.226519	-2.746671	
Log10 SL010458	6.6789915	1.6105966	17.196823	<.0001*	3.5222801	9.8357029	
Log10 SL003183	-4.019035	1.1702335	11.795016	0.0006*	-6.312651	-1.72542	
Log10 SL004536	2.1328797	0.6416591	11.049025	0.0009*	0.8752509	3.3905085	
Log10 SL000550	1.5190438	1.375364	1.2198468	0.2694	-1.17662	4.2147076	
Log10 SL003043	-1.093451	1.0397501	1.1059627	0.2930	-3.131323	0.944422	
Random (4, 0.1)	-2.277062	2.1950834	1.0760881	0.2996	-6.579347	2.025222	
Log10 SL004260	-1.254563	1.3696116	0.8390539	0.3597	-3.938952	1.429826	
Log10 SL002528	-0.493093	0.5945202	0.6878989	0.4069	-1.658331	0.672145	

Tool #4: One-Click Bootstrap Right Click on Statistic of Interest

Parameter Estimates for Original Predictors

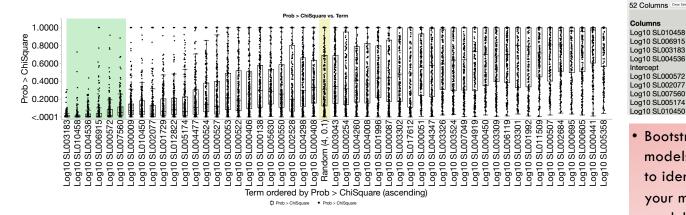
	Bootstrapping	Prob >	
Term	Number of Bootstrap	250	ChiSquare
Log10 SL006915	Samples		<.0001*
Log10 SL010458	Random Seed		<.0001*
Log10 SL003183	Split Selected Column		0.0006*
Log10 SL004536	Discard Stacked Table if Split Works		0.0009*
Intercept	3	Cancel OK	0.0034*

Run 250 models using bootstrap samples from your data set.
Evaluate the *p*-values on the estimates to try to separate true signal from lucky signals (i.e., noise).

• The more models an estimate appears in with a small *p*-value the higher your confidence that you may have a true signal.

Columns View Sele

▲ Log10 SL010458 ▲ Log10 SL003183

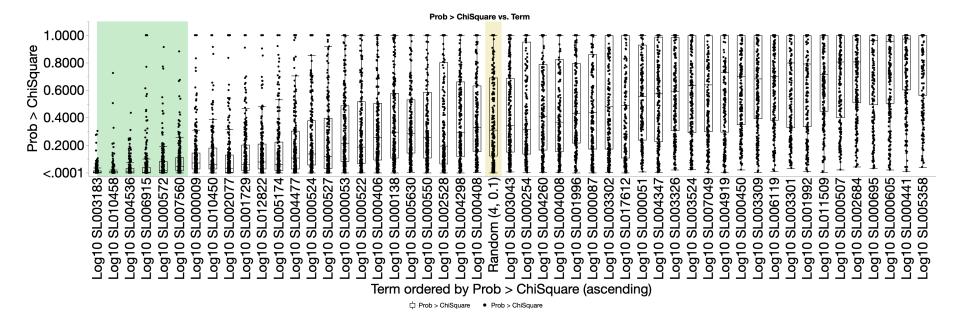

▲ Log10 SL004536
 ▲ Intercept
 Summary Statistic

53 Columns

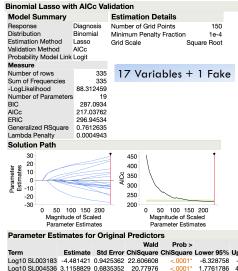
▲ BootID• 4 Log10 SL006915

• Right click on the p-value column for bootstrap dialog.

- I use fractional weights.
- Uncheck "Discard Stacked Table if Split Works" if you want to build the visual.
- I use 250 to 500 bootstrap samples.

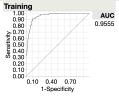

Column > Column Viewer

- Select Show Quantiles
- Order by Median p-value


a set.	• • •		Generalized	Regression Bootstrap Resul		
a 301.	🗎 🗎 🗎	i 🔛 🕨 🛄 🎘 🥢		regression bootstrap resu	its (Prob - ChiSquar	(a)
e true	Source Make	ralized Regression Boot ce e Combined Data Table ibution	strap Results (Pr ≯		BootID∙	Log10 Si
	P Diat	ibution .		× 🛇 1	0	
	Colur	nns (53/0)		2	1	
	6 Boot			- 3	2	
value		0 SL906915		4	3	
, and c		0 SL010458 0 SL003183		6	4 5	
		0 SL003183		7	6	
nal.	4 Inten	cept		8	7	
		0 SL000572		9	8	
		0 SL012822 0 SL001729		10	9	
tor		0 SL001725		11	10	
	Log1	0 SL007560		12	11	
_	- Log1	0 SL005174		13	12	
	41 001	0 SL000009 0 SL010450		14	13	
	show summary	0 81 000052		15	14	
	Show Quartile Log1	0 SL000524		10	16	
	Find Columns with 4 Log1	0 SL000087 0 SL004477		18	17	
		0 SL004298		19	18	
	4 Log1	0 SL000138		20	19	
		0 SL000527		21	20	
		0 SL000522 0 SL005630		22	21	
		0 SL000406		23	22	
					22	
					22	
i					22	
N	Min	Max	Mean	Std Dev	Med	lian
				Std Dev 0.0658011321		
N 250	Min <.0001*	Max 0.7255	0.0187* (0.0658011321	Med 0.00	19*
N 250 250	Min <.0001* <.0001*	Max 0.7255 1.0000	<mark>0.0187*</mark> (0.0611 (0.0658011321 0.1612269485	Med 0.00 0.00	19* 38*
N 250 250 250	Min <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040	0.0187* (0.0611 (0.0183* (0.0658011321 0.1612269485 0.0392289796	Med 0.00 0.00 0.00	19* 38* 51*
N 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356	0.0187* (0.0611 (0.0183* (0.0325* (0.0658011321 0.1612269485 0.0392289796 0.0589540099	Med 0.00 0.00 0.00 0.00 0.00	119* 138* 151* 182*
N 250 250 250	Min <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040	0.0187* (0.0611 (0.0183* (0.0325* (0.0658011321 0.1612269485 0.0392289796	Med 0.00 0.00 0.00	119* 138* 151* 182*
N 250 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356	0.0187* (0.0611 (0.0183* (0.0325* (0.0415* (0.0658011321 0.1612269485 0.0392289796 0.0589540099	Med 0.00 0.00 0.00 0.00 0.00	19* 38* 51* 82* 45*
N 250 250 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356 0.5745 0.9141	0.0187* (0.0611 (0.0183* (0.0325* (0.0415* (0.0674 (0.0658011321 0.1612269485 0.0392289796 0.0589540099 0.0715185239 0.1226791301	Med 0.00 0.00 0.00 0.00 0.01 0.01	119* 138* 151* 182* 45* 84*
N 250 250 250 250 250 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356 0.5745 0.9141 1.0000	0.0187* (0.0611 (0.0183* (0.0325* (0.0415* (0.0674 (0.1390	0.0658011321 0.1612269485 0.0392289796 0.0589540099 0.0715185239 0.1226791301 0.25025978	Med 0.00 0.00 0.00 0.00 0.01 0.01 0.01	119* 138* 151* 182* 45* 84* 129*
N 250 250 250 250 250 250 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356 0.5745 0.9141 1.0000 0.8824	0.0187* (0.0611 (0.0183* (0.0325* (0.0415* (0.0674 (0.1390 (0.0904 (0.0658011321 0.1612269485 0.0392289796 0.0589540099 0.0715185239 0.1226791301 0.25025978 0.1212732255	Med 0.00 0.00 0.00 0.01 0.01 0.03 0.04	119* 138* 151* 182* 45* 84* 129* 85*
N 250 250 250 250 250 250 250 250 250	Min <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*	Max 0.7255 1.0000 0.3040 0.4356 0.5745 0.9141 1.0000	0.0187* (0.0611 (0.0183* (0.0325* (0.0415* (0.0674 (0.1390 (0.0904 (0.1674 (0.0658011321 0.1612269485 0.0392289796 0.0589540099 0.0715185239 0.1226791301 0.25025978	Med 0.00 0.00 0.00 0.00 0.01 0.01 0.01	119* 138* 151* 182* 45* 84* 129* 85* 105

Bootstrapping the *p*-values (i.e., building multiple models from variations of the dataset at hand) helps to identify robust variables, variables that appear in your model regardless of the variation of the data used, however, they do not guarantee truth.

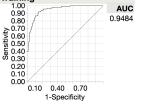
p-values by predictor for 250 models from bootstrap samples



- For each variable there are 250 data points, one p-value for each model.
- Each model is built on a bootstrap sample, that is, each model uses a varied data set.
- Even apparently strong variables have models that they either don't appear in (p-value = 1.0) or are a weak contributor to (0.5 < p-value < 1.0).
- Even apparently weak variables have models in which they are a strong predictor (small p-values).
- The goal is to use variables that are strong in most data set variants so that they generalize to other data sets.

leilli	Loumate	old Entor	omoquare	omoquare	LOWEI 33 /0	opper 3570
Log10 SL003183	-4.481421	0.9425362	22.606608	<.0001*	-6.328758	-2.634084
Log10 SL004536	3.1158829	0.6835352	20.77976	<.0001*	1.7761786	4.4555872
Log10 SL000572	1.7391803	0.3927534	19.608718	<.0001*	0.9693977	2.5089629
Log10 SL001729	3.4288147	0.8631581	15.780011	<.0001*	1.7370558	5.1205735
Intercept	81.643721	22.930554	12.677	0.0004*	36.700661	126.58678
Log10 SL007560	-12.83758	4.153425	9.5532987	0.0020*	-20.97814	-4.697013
Log10 SL010458	5.6038282	1.8334015	9.3423139	0.0022*	2.0104273	9.1972292
Log10 SL002077	-6.09728	2.0657852	8.7116797	0.0032*	-10.14614	-2.048415
Log10 SL000524	-4.18677	1.6173219	6.7013965	0.0096*	-7.356663	-1.016878
Log10 SL005174	-2.947807	1.1578742	6.481496	0.0109*	-5.217199	-0.678415
Log10 SL006915	-2.919309	1.4728623	3.9285816	0.0475*	-5.806066	-0.032552
Log10 SL012822	-3.66332	2.0206726	3.2866821	0.0698	-7.623765	0.297126
Log10 SL000009				0.0923	-0.499124	6.5761254
Log10 SL000522	-1.762469	1.1960108	2.1715655	0.1406	-4.106608	0.5816688
Log10 SL000527	1.5952944	1.2920777	1.5244192	0.2170	-0.937131	4.1277201
Log10 SL010450	-4.043185	3.733497	1.1727772	0.2788	-11.3607	3.2743352
Log10 SL004477	1.3419076	1.3697396	0.9597744	0.3272	-1.342733	4.0265479
Log10 SL002528	-0.549786	0.5720311	0.9237374	0.3365	-1.670947	0.5713741
Random (4, 0.1)	-1.696441	2.3267124	0.5316087	0.4659	-6.256713	2.8638316

ROC Curve for Diagnosis = Disease


Final Thoughts

- When the signal is big and clear modeling is easy.
- When the signal is multivariate and subtle, modeling can be hard.
- Understanding your measurement systems is important.

Parameter Estimates for Original Predictors							
			Wald	Prob >			
Term	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%	
Log10 SL003183	-5.486987	0.9530614	33.145624	<.0001*	-7.354953	-3.619021	
Log10 SL004536	2.8620517	0.5393201	28.16189	<.0001*	1.8050038	3.9190996	
Log10 SL000572	1.604481	0.3396572	22.314521	<.0001*	0.9387652	2.2701968	
Log10 SL001729	2.2128049	0.5406826	16.749485	<.0001*	1.1530865	3.2725234	
Log10 SL010458	4.7036362	1.643923	8.1866174	0.0042*	1.4816063	7.925666	
Log10 SL005174	-2.556415	1.0370155	6.0770418	0.0137*	-4.588928	-0.523902	
Log10 SL007560	-10.01754	4.2360656	5.5923776	0.0180*	-18.32007	-1.715	
Intercept	31.262826	15.603872	4.0141323	0.0451*	0.6797978	61.845854	
Log10 SL000009	2.8432101	1.520104	3.4984148	0.0614	-0.136139	5.8225592	
Log10 SL012822	-3.440751	1.8746441	3.3687508	0.0664	-7.114986	0.2334837	
Log10 SL000524	-2.987806	1.9612424	2.3208242	0.1277	-6.83177	0.8561585	
Log10 SL000522	-1.194812	1.1682856	1.0459255	0.3064	-3.484609	1.0949862	
ROC Curve for	r Diagnos	is = Disea	ise				

Reduced to 11 variables

Training

Objectives

- Robust Variable Selection
- Robust Model Construction

Measure Of Success?

- Does the model predict outcomes on a set of data not used in the model construction?
- Does the model predict across diverse data sets?
 - -Different patient groups
 - -Different lots of materials
 - -Different labs, instruments