An Accelerated Lifetime Model With Combined Stress Factors for Reliability Evaluation of Automotive Sensors

François Bergeret, Six Sigma Master Black Belt, Ippon Innovation; Jean Milpied, R&D Manager, TE Connectivity Sensor Solutions

Abstract

- The evaluation of sensors life time and reliability is a key topic in the automotive industry.
- There is a need for invention and creation of customized models for life time acceleration.
- Using JMP "reliability" module, a two stress parameters accelerated lifetime model is built and used to evaluate reliability of parts whose environmental conditions exhibit high temperature and vibrations.
- Another part of the study is focused on the evaluation of confidence intervals of failure occurrence in conditions where the sampling ratio is high compared to total population.

Objectives

- Building 2 stress parameters models with JMP "reliability" module
- Correcting the confidence intervals calculated by classic inference statistics and build related JMP tools

Conclusions

- Degradation studies are really useful when no failure are expected during the time of the trials
- Our modified confidence interval provides to the customers an accurate estimation when the sampling rate is low

Building a 2 stress parameters accelerated model with JMP

METHOD

- Acceleration factor are used to generate failure. There are some cases however where it is no possible to generate failures during the time of the trials.
- Innovation1: use of degradation models, where the response is no more a failure time but a parameter of interested related to the failure mode.
 - The theory of ALT tests can be used: no failure are observed but by extrapolating the parameter measured and using a specification limit, it is possible to generate "pseudo failures" that are then analyzed with a Weibull or another survival distribution.
- Innovation2: use of 2 acceleration factors. This is especially useful to get a good representation of the failure modes on sensors.
 - JMP software and the degradation platform have been very useful and easy to use.
 - an EYRING model with temperature and vibrations factors is considered.
 EYRING equation:

RESULTS (Figure 1)

- Degradation of the response of an Automotive sensor as a function of stress is simulated
- The JMP platform is used to evaluate MTTF results

Real product life in the field: confidence intervals of failure occurrence

METHOD

- Assume that a sample of size n is drawn from a
 population of size N, and the proportion of defects p is
 estimated from that sample. A confidence interval can be
 drawn for the unknown proportion P of defects using the
 standard formulae proposed by Agresti.
- These formulas apply when the sampling rate n/N is low, typically lower then 10%. When the sampling rate is higher than 10%, we propose a correction that takes into account the sampling rate, to have a better estimate of the variance of p. The proposed corrected 95% confidence interval is:

$$[p-2\sqrt{\frac{p(1-p)}{n}\times(1-n/N)}: p+2\sqrt{\frac{p(1-p)}{n}\times(1-n/N)}]$$

RESULTS (Figure 2)

- An application case of field return is simulated
- The JMP platform is used to make risk assessment

References

- Nelson, Accelerated Testing, Wiley
- Boulanger & Escobar, Experimental Design for a Class of Accelerated Degradation Tests, Technometrics
- Agresti, Coull, Approximate Is Better than "Exact" for Interval Estimation of Binomial Proportions. The American Statistician

An Accelerated Lifetime Model With Combined Stress Factors for Reliability Evaluation of Automotive Sensors

François Bergeret, Six Sigma Master Black Belt, Ippon Innovation; Jean Milpied, R&D Manager, TE Connectivity Sensor Solutions

Figure 1

Simulation database for acceleration life test: 3 levels for T, 2 levels for vib

USL = 2% => MTTF = 794 time units

Click Here to Return

Figure 2

Simulation example: 1400 parts delivered (N), 300 analysed sample size (n) with potential failure

sample size n	population size N	observed proportion p	95% CI lower bound	95% CI upper bound	95% CI CORRECTED lower bound	95% CI CORRECTED upper bound
300	1400	0.05	0.025	0.075	0.028	0.072
300	1400	0.1	0.065	0.135	0.069	0.131
300	1400	0.2	0.154	0.246	0.159	0.241
300	1400	0.3	0.247	0.353	0.253	0.347
300	1400	0.5	0.442	0.558	0.449	0.551

For an observed proportion of 50%, the modified bounds for failure occurrence at 95% Confidence Index are now:

[44.9% to 55.1%]

Whereas classical formula gives

[44.2% to 55.8%]

Click Here to Return