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The number of potential organic molecules that could exist is estimated to be more than 10^60, yet 

high-throughput screening (HTS) methods are restricted to 10^6 – 10^9 molecules, of which 

frequently less than 10^3 molecules will show any desired biological activity.  For this approach to be 

successful, we must ensure our 10^6 subset of molecule is representative of the greater 10^60 set.  

However, the molecules in a pharma company’s historical collection are typically unrepresentative of 

the greater ‘chemical space’.  Are there means of supplementing this set to be more representative?  

Following on from this the challenge of drug discovery is: which molecules should we design next in 

order to maximise information and minimise costly synthesis of new molecules?  Normally a data 

scientist might consider Design of Experiments (DoE) to achieve this, but in the multi-dimensional 

world of chemical space, this is a challenging task.  The unique combination of interactive 

visualisations, DoE capabilities and data manipulation tools within JMP enable us to incorporate 

chemically-aware methods to systematically explore and assess large, complex datasets. In this way 

we analyse the existing data in order to determine what to make, so as to maximise input for the next 

iteration, accelerating progress in drug discovery. 

 

Introduction 

 
Drug discovery is a long journey, from millions of 

potential start-points to a single drug candidate molecule 

that may one day become a marketed drug.  An analysis 

across the pharmaceutical industry reveals that it takes 

between 11 and 14 years from project inception till a 

drug reaches market.  The average cost per successful 

drug is $5 billion (Forbes, 2014).  There are many 

reasons for these long timescales and huge costs.  From a 

statistical point of view one of the reasons is that we are 

looking for an extremely unlikely outcome. 

Given the variety of ways in which atoms can be put 

together to make molecule, and restrictions on what 

could exist in nature and what would be a ‘drug-like’ 

molecule, we can estimate the total number of drug 

molecule that can exist.  Total enumeration has been 

performed up to 17 atoms, which results in 166 billion 

combinations.  Drugs frequently contain 40 or more 

atoms, however and it has been estimate that there are 

10^60 potential drug-like molecules.   

The traditional method of finding ‘hits’ (molecules 

with some activity against the target protein) is to screen 

large collections of compounds against a protein assay, 

known as high-throughput screening (HTS).  The 

numbers of compounds that can be screened in this way 

is around a million.  Recently we have seen the creation 

of DNA-encoded libraries, where mixtures of several 

compounds can be tested at once.  These methods can 

easily screen billions of compounds.  The number of 

compounds that can be easily screened is however just a 

tiny fraction of the potential compounds available to us.  

How then can we hope to be successful with these 

methods?   

We face a similar problem in the next stage of drug 

discovery.  The identification of a hit compound (or 

series of similar compounds) allows drug designers to 

focus on a single ‘scaffold’.  The task is then to 

synthesise and test analogues, looking to explore  

 
 

Fig. 1 – A typical drug molecule (Iressa) showing 
scaffold (yellow) and substituent groups (blue). 

 
different groups off the core scaffold and in so doing 

investigate the local structure-activity relationships 

(SAR), see figure 1.  The challenge here is that, even 

restricting ourselves to small numbers of atoms, there are 

hundreds of potential substructure groups to choose from 

and many more for larger numbers of atoms.  As drug 

designers, how do we choose which compounds to make 

in order to allow rapid and efficient exploration of the 

SAR?   

In order to simplify the problem we invoke the 

argument that similar chemical structures have similar 

properties.  This implies the existence of a ‘chemical 

space’ with multiple dimensions in which all potential 

chemical structures exist.  Therefore an ideal screening 

set for HTS would consist of a set of compounds with 

properties that space them evenly throughout chemical 

space.  This works fine conceptually, but we have no 

workable definition of chemical space we can use.  We 

do have a variety of methods of calculating properties of 

chemical structures but find that these will always give 

an incomplete description of chemical structure and the 

range of potential structures is simply too big.  In reality, 

though drug companies supplement their screening 

collections with new compounds on a regular basis, we 

must acknowledge that screening sets cannot represent 

the wider chemical space, which is the reason that so 

many HTS’s return only very weak hits or no hits at all. 
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Fig. 2 – Representative scaffold of GPCR active 

compound, where X shows the position of the group 
under investigation. 

 
In the scenario where chemistry has been limited to a 

single scaffold we limit the scope of the available 

chemistry sufficiently to begin to apply statistical 

methods to maximise diversity in sets of compounds.  

Figure 1 shows a compound with three groups around a 

fixed scaffold.  We tend to vary each of these in turn 

during the first round of exploration (before making best 

combinations in subsequent rounds), synthesising 

‘libraries’ of similar compounds which differ only at one 

substituent position 

The traditional method for designing a chemical library 

is to pick a tractable synthetic method and make as many 

compounds as possible from the available reagents.  

While this is efficient in terms of costs per compound, a 

single synthetic route will lead to a less diverse set of 

compounds.   

Here we investigate if it is possible to accurately 

represent a constrained set of compounds with numerical 

descriptors and so apply the principles of Design of 

Experiment (DoE) to generate more diversity, with fewer 

compounds. 

 

Methods 
 

A hit chompund was identified from screening that was 

active against a class-A G-protein coupled receptor of 

interest.  The identified molecular scaffold contained a 

substituted phenyl ring.  We wished to explore the SAR 

of this substituent position.  Based on experience in the 

field and an idea of the different underlying properties of 

molecular substructures we picked three properties to 

represent 94 small chemical substituents.  The properties 

are: 

 Pi (a measure of lipophilicity, a term describing 

partitioning between aqueous and organic solvent); 

 Molecular Refractivity (MR, a measure of 

molecular size of the group) 

 Sigmap (a measure of the electronic properties of 

the group, e.g. electron-withdrawing or electron-

donating) 

 

Judging from principal component analysis (PCA) the 

size and lipophilicity terms are moderately correlated, 

however it was judged to be important to leave both 

terms in the model so as to describe the cases where 

these terms diverge. 

The problem with using these continuous values as 

inputs for DoE design is that the particular combination 

of variables that it selects may not exist within the 

compound set.  Instead we converted each into a 

categorical variable by binning each into high, medium 

and low values (‘high’ and ‘low’ were the upper and 

lower quartiles, while ‘medium’ was the remaining 

50%).  A custom design based on these inputs selected a 

minimum of 9 compounds to represent the set, which 

were synthesised.  A total of 10 compounds were 

available for modelling (including the original hit).   

 
Fig. 3 – The output of a MLR model based on pi, MR 
and sigmap and built on the 10 initial compounds.  

There is no relationship to pIC50. 

 

 
Fig. 4 – Representation of the 3D structure of one 

compound in the training set, showing how a bulky 
substituent (CF3) can induce a twist in the molecule 57 

degrees out of plane. 

 

Results 
 

A simple multiple-linear regression (MLR) model was 

fitted to the data for the 10 compound training set.  

Disappointingly, no model for the measured activity 

(pIC50) was possible, see figure 3.   

We considered what other properties could be used to 

describe these compounds, particularly what property 

might describe the outlier compounds and explain their 

apparently anomalous behaviour.  We realised that the 

outlier compounds would have a noticeably different 

shape to the majority of the set.  We set about using 

molecular mechanics to calculate the minimum energy 

conformation of each molecule and selected the dihedral 

angle between the phenyl ring and adjacent carbonyl (see 

figure 4) to represent differences in the shape.  Including 

this descriptor in the MLR model resulted in a greatly 

superior fit.  Both pi and sigmap descriptors from out of 

the model as not significant (at 95% confidence).  The 

final model is as shown in figure 5.  The combination of 

MR (size) and dihedral angle adequately describe ~63% 

of the variance in pIC50. 

Being a relatively simple model, we can also interpret 

it in order to understand the observed relationship.  In 

Figure 5 the Parameter Estimates show that there is a  
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Fig. 5 – The output of a MLR model based on MR and 
dihedral angle and built on the 10 initial compounds.  

There is a reasonable relationship to pIC50. 

 

 

 
 

Fig. 6 – The predictions of the MLR model plotted 
against measured data for the 17 compound test-set.  
The dotted line is the 1:1 line while the red line ans 

summary of fir refer to the hollow squares only 

 

 
negative correlation with MR and a positive correlation 

with dihedral angle, i.e. the most potent compounds are 

those with greatest twist out of plane but have the 

smallest size.   

On the basis of this we made another 17 compounds, 

most of which had good predicted pIC50 (plus a few 

negative controls).  

Figure 6 shows the measured pIC50 plotted against the 

predicted pIC50 for the 17 compounds of the training set.  

Though not every compound predicted well, 10 of the 

compounds (shown in hollow squares in figure 6) are 

predicted to be potent and confirmed to be so. 

Satisfied that the model was both predictive (useful in a 

forward direction for telling us properties of unmade 

compounds) and interpretable (useful in a reverse 

direction for telling us which properties are important for 

potency) we determined that one substituent group from 

the existing set represented the optimum potency that 

could be achieved, even when considering the larger set 

of compound that was possible.  We were also able to 

determine that it was not worth expanding our scope to 

larger substituents with more atoms as we had already 

observed a negative correlation with molecular size. 

 

Conclusions 
 

In this work we have shown that the principles of 

Design of Experiment (DoE) can be applied to drug 

design, but that careful consideration needs to be given to 

framing the SAR question and in limiting as much 

variability as possible so that it becomes possible to 

represent chemical diversity through a small number of 

descriptors. 

We have also shown that descriptor selection requires a 

certain amount of trial and error, it being difficult to say 

which descriptors are most important a priori.   

Successful application of DoE in this case permitted a 

full exploration of the structure activity landscape, 

making only a quarter of the potential compounds and 

ensuring the exploration was focussed on the most 

interesting property space.   
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