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Abstract
One of the new features introduced in JMP Pro 11 is mixed models. This new modelling
personality in the Fit Model platform enables one to fit a variety of regression models with fixed
and random effects along with an appropriate covariance structure. What’s a mixed model?
When and why should one fit a mixed model? And how does JMP fit such a model? In this paper
I will try to dispel myths about the mixed models by 1) briefly reviewing the statistical
background, 2) discussing why mixed models provide better estimates and consequences of
fitting traditional regression models to data where measurements of a response variable are
correlated or a key explanatory variable is missing, and 3) illustrating JMP® Pro’s mixed models
by fitting different flavours of mixed models that are widely employed in real life applications.

Acknowledgement: | would like to thank Christopher Gotwalt and Laura Lancaster for their
help.

*The material presented in this Paper applies to JMP Pro 12 as well. The key enhancement in
the new JMP Pro 12 is improved optimization algorithm that enables JMP to run faster than in
JMP Pro 11 for large data.
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JMP Pro 11 has added a new modeling personality, Mixed Model, to its Fit Model

platform. What’s a mixed model? How does JMP fit such a model? What are the key
applications where mixed models can be applied? In this paper, | will try to dispel myths about
the mixed models and demonstrate JMP’s capability with real-life examples.

What'’s a Linear Mixed Model

Linear mixed models are a generalization of linear regression models, y = X8 + €. Extending
the model to allow for random effects, Z, the new model becomes y = X8 + Zy +&. This is the
linear mixed model as there are both fixed effects, X, and random effects, Z.

The following assumptions are made for the random effect parameters, y and random error &:
(1) y and € are normally distributed, and (2) there are no correlations between y and €. JMP
provides several commonly used structures for €. The fixed effect coefficients,, and
covariance matrices for ¥y and € are jointly estimated by the restricted maximum likelihood
method. Fitting mixed models requires additional data on each cross-section unit or, in case of
modeling spatial data, dimensions of measurements. There are mixed models for non-normal
distributed responses or non-linear mixed models; however, | limit the scope of my discussion
to the linear mixed models that are supported in JMP Pro.

Why Mixed Models

When there exists correlation among responses or an important explanatory variable is missing,
failure to account for that leads to biased estimates of the effects of treatment and other
factors.

Here are some common use cases for mixed models:

e Allowing coefficients (e.g., intercept and slopes) to vary randomly across subjects (i.e.,
random coefficient models). A variant is individual growth model, which can be applied
to predict individual growth trajectory and stability analysis;

e Analysis of randomized block designs, and split-plot designs where hard-to-change and
easy-to-change factors result in multiple error terms;

e Controlling for unobserved individual heterogeneity in the form of random effects (i.e.,
panel data models);

e Analysis of repeated measures where within-subject errors are correlated;

e Multiple responses that are correlated because measures are taken from the same
subjects;

e Subjects are hierarchical (i.e., students within schools). This is known as Hierarch Linear
Model or Multi-level Models;

e Spatial variability (i.e., geospatial regression);

With JMP Pro you can easily specify and fit all of these models using the point-and-click
interface and review the results in a user-friendly way.

Steps to Specify a Mixed Model in JMP Pro
1. Select Analyze =>Fit Model, and choose Mixed Model Personality;
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2. Select a continuous response variable from you data table as Y and construct fixed
effects as you normally would do with a standard least squares fit;

3A. Use Random Effects tab to specify random coefficients or random effects;

3B. Use Repeated Structure tab to select a covariance structure for model errors;

4. Click Run.

I'll now turn to example to show four different flavours of mixed models: random coefficient
model, analysis of repeated measures, panel data model and geospatial regression.

Example 1: Random Coefficient Models—allowing intercept and slopes to vary randomly
across subjects

In this example we are interested in estimating the effect on wheat yield of pre-planting
moisture in the soil while allowing each wheat variety to have random deviation from
population effects. So, a random coefficient model is called for. The experiment randomly
selects 10 varieties from wheat population and assigns each to six plots of land. In total, 60
observations with 6 measurements of yield for each variety is collected. (The data, “Wheat”, is
available in JMP’s Sample Data directory.)

| followed the steps laid out above to specify the model. From Fixed Effects tab, specify
Moisture along with a default intercept as fixed effects.

4~IModel Specification

Select Calumns Pick Rale Variables Parsonality: [Mixed Model vl
~! 3 Columns v || dvield
“!ariet}' gotional Unbounded Variance Components
dyield
droisture [ hew | [ fun
E' cotiono Recall | [ keep dialog open
Remaove |

Construct Mode| Effects

Ficed Effects l Rancdom Effects l Repeated Structure l

E| Maisture
s )
e
Degree

Aftributes =
|:| Mo Intercept

Next, from the Random Efects tab,using Nest Random Coefficients button to request random
intercept and Moisture effect for each variety.
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Construct Model Effects

Fixed Effacts | Random Effects l Repeated Structure

Add ] Intercept[Variety]&R andom Coefficients(1)

Cross | Maoisture[Variety]&Random Coefficients(1)

[
[
[

Mest ]

[Nest Random Cuefficients]

[ Macros ¥ ]

Degree
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Add Moisture to Random Effects
Tab.

Then select Moisture where it has
been added under Construct
Model EFfects, then Select
Variety in the Select Columns
Pane, and then click the "Nest
Random Coefficients" button.
Then you will get what is shown
at left.

Lastly, from Repeated Structure tab, select Residual for the model error term.

Construct Mo

del Effects

Fixed Effects | Rancdlom Effects | Repeated Structure

Fepeatad

Structure

Residual
Repeated AR

Subject [7

Covariance Structure

Residual b

Unstructured

Spatial

Spatial Anisotropic

Spatial with Mugget

Spatial Anisotropic with Mugget

The following screenshot shows Random Effects Covariance Parameter Estimates, Fixed
Effects Parameter Estimates and Random Coefficients. Let’s discuss them in turn.
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Random Effects Covariance Parameter Estimates

Covariance

Parameter Subject Estimate Std Error 95% Lower 95% Upper
Var(Intercept) Wariety 18894659 91110743  1.0372813  36.752036
Cov(Maisture Intercept) Variety  -0.072717 0.08242  -0.234257 0.0885234
Var({Moisture) Variety  0.0023942 0.0013492 -0.00025  0.0050385
Residual 0.3520553 0.0790171  0.2369917  0.5775592

Fixed Effects Parameter Estimates

Term Estimate 5td Error DFDen tRatic Prob>|t] 95% Lower 95% Upper
Intercept 33.433883 1.3996989 9.2 2389 0001* 30.273007 36.589759
Moisture 0.6616554 0.0165282 8.7 39.32 001" 0623361  0.6999498

Random Coefficients
4 Variety

Variety Intercept Moisture
0.9577955 -0.049211
-2.284277 -0.066697

-0.40812 0.0672228
0.696021 -0.023306
1.1159079 -0.019904
4.6391469 0.0238838
-10.73005 00564236

2401166 0.0224337
-0.176212 0.0233563
10 3.7886181 -0.034207

B R - L B o

4 Covariance Matrix

Random

Effect Intercept Moisture
Intercept  18.89466 -0.07272
Moisture  -0.07272  0.002394

The variance estimate for Intercept is 18.89 with a standard error estimate of 9.11, so the z-
score is 2.07 (=18.89/9.11). Using the Normal Distribution function from JMP Formula Editor we
can find the p-value to be 0.0192, indicating that the variation in baseline yield across varieties

The Random Coefficients report gives the BLUP (Best Linear Unbiased Predictor) values for how
each variety is different from the population intercept and population Moisture effect reported
in Fixed Effects Parameter Estimates. For Variety 1, the estimated moisture effect on its yield is
0.61 (=0.66-0.05), and baseline yield is 34.39 (=33.43+0.96) and the predicted yield equation is

Yield = 34.39 4+ 0.61 * Moisture.
4 Fixed Effects Parameter Estimates

Term Estimate 5td Error DFDen tRatio Prob:|t] 95% Lower 95% Upper
Intercept 33.433881 1.3006084 92 2389 <.0001* 30.278007 36.589754
Moisture 0.6616534 0.016825 a7 3932 <0001 0.6233617 0.6999492

< Random Coefficients
AVariety

Variety Intercept Moisture
0.9577924 -0.049211
-2.284289 -0.066697
-0.408109 0.0672225
0.6960205 -0.023306

1.115904 -0.0719904
4639151 0.02388587
-10.73004 0.0564233
2.4011709 0.0224336
-0.176207 0.0233566
0 3.7886051 -0.034207

i === T I = R R S R R R
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Combining both the fixed effects and random coefficient estimates, we find a significant overall
effect on wheat yield of moisture, and discover significant variation in the moisture effect

across different varieties (if we assume the p-value that we calculated by hand in this case is
accurate, which isn't necessarily the case -- consider the Wald p-values that IMP16 and up now
generates, and also consider sample size in making your determination of statistical signifcance).

Other Applications of Random Coefficient Models

Individual Growth Model is a type of random coefficient model in which random time effect is
estimated for each individual. This is done by specifying a continuous time variable such
as day or month as a random effect, and using Nest Random Coefficients button to
request separate slope (i.e., growth) and intercept for each individual.

In educational research, subjects are often nested in a hierarchical order. By adding multiple
groups of random effect statements you can fit Hierarchical Linear Models/Multi-level Models.

Example 2: Analysis of Repeated Measures—accounting for correlated errors

Repeated measures are the multiple measurements of a response collected from the same
subjects over time. In this clinical trial, subjects (i.e., patients) were randomly assigned to
different treatment groups. Each subject’s total cholesterol level was measured several times
during the trial. The objective of the study is to test whether new drugs are effective at
lowering cholesterol. What makes the analysis of repeated measures distinct is the correlation
of the measurements within a subject. Failure to account for it often leads to incorrect
conclusion about the treatment effect. (The data, Cholesterol Stacked, is available in JMP’s
Sample Data directory.

JMP Pro offers three commonly used covariance structures: (and many others)

e Unstructured provides a flexible structure that estimates covariance for all pairs of
measurement times. In this example of six repeated measures, 15 covariance
parameters as well as 6 variance estimates will be estimated. This structure is most
lenient but not without risk of over-fitting.

e AR(1) (first-order autoregressive) estimates correlation between two measurements
that are one unit of time apart. The correlation declines as the time difference
increases. AR(1) is a parsimonious structure with only two variance parameters to be
estimated.

e CS (compound symmetry) postulates that the covariance is constant regardless of how
far apart the measurements are. The # of parameters to be estimated is 2.

The following screenshot shows the Fixed Effects part of the repeated measures analysis, which
includes Treatment, Month, AM/PM, and their interactions.
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- | Construct Model Effects

Personality: [Mixed Maodel

Fixed Effects | Random Effects | Repeated Structure

Unbounded Variance Components | Add |
[ = | [ = | Cross |
. = | Nest | (Leave Blank)
[E' Keep dialog open |Nest Random Coefficients|
Remove | | Macros = |
Degree

Fixed Effects l Randaom Effects \ Repeated Structure I

Add || Treatment
Cross | Month
El Treatment*Manth
= AM/PM

E| Treatment"AN/PIM

Degree Month™AM/P I

Attributes =
D Mo Intercept

(Fixed effects part of the

Traatment Maonth* AR/ PR

model)

| will consider three different covariance structures for the within-subject errors. First, let’s use
Unstructured. Apply Time column as Repeated, and Patient column as Subject--this defines
the repeated measurements within a subject. It is important to note that JMP requires that
Subject column be uniquely valued and that Repeated column be categorical for the

Unstructured option.

Construct Model Effects

Fixed Effects l Random Effects

Repeated Covariance Structure

Repeated Structure ‘

Structure [ Unstructured

Repeated | Time

Subject | Patient

(Unstructured Covariance Structure)

Key reports include Repeated Effects Covariance Parameter Estimates, Fixed Effects
Parameter estimates, and Tests Fixed Effects Tests.
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| Repeated Effects Covariance Parameter Estimates

Repeatad Effect: Time
Subject: Patient

Covariance
Parameter

Var{lune PM)

Var{lune AM)
Cov{une PM, June AM)
Var{hay Ph)

Var{hMay AM)

CoviMay PN, May AN)
Var(April PM)
Var{april AM)
Cov(april PM April AN)
Cov{May PML APl AM)
Cov(May AN April AN
Cov(May PN, APl P}
Cov({May AN April PM)
Cov{June PM, April AN
Cov{June AN, April AN
Cov{June PM April PIV)
Cov{June AM April PI)
Cov({une AM May AM)
Cov{lune AN, May P}
Cov{une PM May AN)
Cov{lune PM.May PM)

Estimate
65.568482
63.512277
63.878686
57.058089
56.603347
55.365523
19.268932

18725
13.354584
9.4147226
9.2756709
6.6230805
5.5074058
1.5810194
1.1945478
0.7647113
0.3183447

1.106725
0.6455101
0.9262595
0.6543895

Fixed Effects Parameter Estimates

| Fixed Effects Tests

Source

Treatment

Maonth
Treatment*Maonth
AMN/PIM
Treatment™Al/PM
Manth™AR/PR

Treatment*Maonth*ANM/PM
(Results using Unstructure

Nparm
3

Q. & koW = S R

Std Error 95% Lower 95% Upper
23181959 20132677  111.00429
22.454981  19.501323  107.52323
22700344 19.286829  108.37054
20173081  17.519577  96.5956602
20.012305  17.279949 95826744
19.83529 16489068 94241973
6.8125963 59164888 32.621376
66202872 57494754 31700525
6.6035621 54121399 31.297628
8.5038584  -7.252534  26.081979
8.4629182 -7.311344 25862686
8.4532303 -9.944945 23191108
8.3704001 -10.89828  21.913089
8.7687993 -15.60551 18.76755
8.6266098 -15.7133  18.102392
8.88826027 -16.65596  18.185386
8.7461245 -16.82374  17.450434
14992149 -28.27735 30.490796
15.050552 -28.85303 30.14405
15.232066 -28.92804  30.780561
15.292233 -29.31785 30.626625
DFNum DFDen F Ratio Prob > F
3 16.0 27496713 0001”
2 15.0 240.48166 0001*
6 133 12347461 a0ar”
1 16.0 26093593 0001*
3 160 0.6339843 060338
2 15.0 1.1938247  0.3289
6 133 11642781 03671
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One way of testing statistical significance of the covariance estimates is to calculate the z-scores
and find their p-values, as | did in the previous random coefficient model example. However,
we can check the confidence limits: if the 95% confidence interval for a covariance estimate
includes zero, then we can say that the estimate is not statistically significant from zero at
a=5%(1). As we can see, all six variance estimates are significantly different from zero but most of
covariance estimates are not. This suggests that a parsimonious structures, such as AR (1),
should be considered.

Fixed Effects Tests report shows a highly significant treatment effect. Cholesterol level is also
found to vary significantly from month to month and from morning to afternoon.

(1) This is just the "Confidence Interval version" of the 2-Sample t-test (reference: Bluman,
Elementary Stats (7th Ed. 2015).
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Next, we consider AR(1) as the covariance structure for the within-subject errors. Please note
that Repeated column used in AR(1) by JMP must be a continuous variable. So, Days—number
of days from the trial start date at each measurement--is used instead of a categorical variable
used for the Structure = Unstructured option.

| tm Construct Model Effects

| 4~ Model Specification Fixed Effects Random Effects = Repeated Structure
Select Columns Pick Role Variables Personality: | pyiced Model =

|8 Columns c
e Patient ‘V » Unbounded Variance Components Repeated Covariance Structure
Av
th Treatment — Structure v
i Time = [ Keep dialog open AR(1)
:Th:n;:r'! === Repeated || 4l Days raw
4 Construct Model Effects
A Days
Fixed Effects | Random Effects | Repeated Structure
Days raw . -
Trestment Doys raw Subject || th Patient
Degree

(AR(1) Covariance Structure)

Attributes [+
[ No Intercept

Construct Model Effects

Fixed Effects | Random Effects | Repeated Structure
dd

Cross

(Leave Blank)

est Randomn Coefficients

Macros +

2

= =

=]

o

m

v 11
m
.

The Repeated Effects Covariance Parameter Estimate report shows a highly significant within-
subject correlation of 0.95. Fixed effects results are similar to those in the UN option
--treatment effect and time effects (in Days) are statistically significant.

Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen tRatio Prob>|t] 95% Lower 95% Upper
Intercept 2767608 1.9946744 527 13846 <0001 27217582 28017815
Treatrment[A] -32.98374 2.1833359 521 -151 -37.36478 -28.6027
Treatment[E] -20.03827 2.1833330 521 -9.18 -24.41931 -15.65723
Treatment[Control] 26.049018 2,1833350 521 11.83 21.668876 30430950
Days raw -0.735803 0.0505395 533 -1456 -0.83716  -0.63446
Treatment[A]*(Days raw-30.5833) -0.877856  0.087537 533 -1003 -1.0534M -0.7023
Treatment[B]*(Days raw-30.5833) -0.643066  0.087537 533 -7.35 -0.81921 -0.46811
Treatment[Control]*(Days raw-30.5833) 0.788161 0.087537 53.3 9.00 0.6126056  0.9637164

Repeated Effects Covariance Parameter Estimates
Subject: Patient (Results using AR(1))

Covariance

Parameter Estimate Std Error 95% Lower 95% Upper
AR(1) Days raw 0.7983061 0.0473103 07035796  0.8910327
Residual 100.3539 18519406 72.230307  149.60244

Note that in this example we have to create a new Column = "Days raw" from the sample dataset
without the recoded Column formula for "Days" so that JMP will accept the input in the "Repeated"”

Dialog Box. 3
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To complete our example, finally, let’s fit the model with a CS structure. To do so, select
Residual as the Repeated Covariance Structure—but no need to specify Repeated and Subject
columns with this option; instead, we add the subject ID, Patient, as a random effect on the
Random Effects tab. That is, within-subject covariance is modelled through the random subject
effect. Construct Model Effects

Construct Model Effects

Fixed Effects | Random Effects l Repeated Structure l Fixed Effects Random Effects = Repeated Structure
[ Add | Patient Repeated Covariance Structure
%: Structure | pecidual w
Mest
-_
Mest Random Coefficientsl
S — (Leave Blank)
Macros ™ |
Degree -
Subject
(Leave Blank)
(CS Covariance Structure with random subject effect andresiduaterror)

Construct Model Effects

Fixed Effects | Random Effects = Repeated Structure

(Results using CS)

Treatment
o Random Effects Covariance Parameter Estimates
Mest Treatment*Month Variance Wald p
< || Treatment™AM/PM :
Month*AM/PM Component Var Ratio Estimate Std Error 95% Lower 95% Upper Value Pct of Total
E:ff:et Treatment*Month™AM/PM Patient 0.33372 11.707432 6.2749012 -0.591148 24.006012 0.0621 25.022
D”No“;ster:e . Residual 35081923 5.546030 26320843  40.105827 74,978
? Total 46789355 T7.7386523 24.678062  66.607248 100,000

Judged by the 95% confidence limits, the covariance between any two measures on the same
subject is not statistically significant at a=0.05 (actually, p-value= 0.0621). Fixed effect test
results are similar to the previous models and are thus not shown here.

So, which repeated structure should be adopted? One criterion for model comparison is AlCc.
From the Fit Statistics reported by JMP (not shown), AlCcs are: Unstructured—703.84, AR(1)—
652.63 and CS—832.55. So, AR(1) is the winner.

Example 3: Panel Data Models--controlling for unobserved heterogeneity
This example is taken from Vella and Verbeek (1998), which is discussed in Introductory
Econometrics by Jeffrey Woodridge as Example 14.4. See references below for more info.

The original data came from the National Longitudinal Survey of Youth 1979 Cohort (NLSY79).
In the data, each of the 545 male workers worked every year from 1980 through 1987. We're
interested in estimating the effect on wage earnings of union membership controlling for
education, work experience, ethnicity, etc.
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Although NLSY79 collects detailed background information on the workers to be used as control

variables, there is still individual difference that cannot be observed or measured. Panel data

provides a way of accounting for individual heterogeneity: if the unobserved heterogeneity can
be assumed to be uncorrelated with all the explanatory variables included in the model, we can

account for it by treating it as a random effect.

Following Woodridge’s discussion a Log(Wage) equation is fit in which worker’s ID is entered as

a random effect to capture the unobserved differences.

Pick Role Variables Personality: [Mixed Model - |
v || dLogwacE

| Unbounded Variance Components

Help \ Run |
[Il Recall | Keep dialog open
Remove ‘

Construct Model Effects

Fixed Effects l Random Effacts l Repeated Structure l

Add | Vears of Education
[ T | Black
Hispanic
Mest .
(mest ]
Macres * | \Union member (¥es/Mo)

Degree Work Experience
Attributes = Work Experience”Work Experience

YWear(1980)
Mo Intercept

Year{1981)

Year{1932)

Year{1983)

Year{1l984)

Year{1l985)

Year(1986)

(Fixed effects part of the Log(Wage) Equation)

v || dLogWAGE

+| Unbounded Variance Components

Help | Run |
By | ontional Recall | [ keep dialog open
Remove |

Construct Model Effects

Fixed Effects | Random Effects I Repeated Structure l

—TI—]
e
T —

Degree

(Random effects part of the Log(Wage) Equation)

| select Residual for the model error term. The model is called one-way random effect model

in econometrics.

The results are shown below.
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| =/ Fit Mixed
P Actual by Predicted Plot P Actual by Conditional Predicted Plot
4 Fit Statistics

-2 Residual Log Likelihood 4473.0746

-2 Log Likelihood 4373.9563
AlCc 4408.0972
BIC 4516.4201

4 Random Effects Covariance Parameter Estimates

Covariance

Parameter  Estimate Std Error 95% Lower 95% Upper
Subject ID 0.1100163 0.0076783  0.0949671  0.1250654
Residual 0.1232764 0.0028279 01179162 0.1290123

4 Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen tRatio Prob>|t] 95% Lower 95% Upper
Intercept 0.1577073 0.2165583  559.0 073 0.4668 -0.26766  0.5830748
Years of Education 0.0918895 0.0108335 5391 8.48 0001"  0.0706084 01131706
Black -0.139383 0.0484973 54338 -2.87  0.0042 -0.234648 -0.044118
Hispanic 0.0217842 0.0433036 5358 0.50  0.6151 -0.063281  0.1068498
Married 0.0634614 0.0167953 42935 3.78 0.0002" 0.030534  0.0963888

Union member (Yes/MNo) 0.1053187 0.0178703 43278 5.89 0.0702839 01403536
Work Experience 0.1060383 0.0154897 1602.6 6.85 0.0756561 01364204
Work Experience*Work Experience  -0.00474 0.0006886 41074  -6.88 -0.00609 -0.00339
Year(1980) -0.134647 0.0825171 6347 -1.63 -0.296686  0.0273926
Year(1981) -0.094303 0.0711689 6511 -1.33 -0.234051  0.0454452
Year(1982) -0.103939  0.060326  696.5 -1.72 -0.222382  0.0145032
Year(1983) -0.114648 0.0499671  796.9 -2.29 -0.212731 -0.016565
Year(1984) -0.091851 0.0401671 10347 -2.29 -0.170669 -0.013033
Year(1985) -0.077197 0.0312602 1758.3 -2.47 -0.138508 -0.015886
Year(1986) -0.043066 0.0242344  4019.7 -1.78 -0.090579  0.0044465

(Panel Model Results)

From the Random Effects Covariance Parameter Estimates report we find that individual
heterogeneity accounts for 47.8% (=0.11/(0.11+0.12)) of the total variation, indicating a large
unobserved heterogeneity effect. In other words, an OLS analysis would likely yield misleading
results.

The Fixed Effects Parameter Estimates report shows an estimated rate of return to education
at 9.2% and a union premium of 10.5%, both of which are highly statistically significant. As a
comparison, a pooled OLS would estimate the union premium at 18.2%. See Woodridge (2013,
Page 495).
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Example 4: Modeling geospatial data--taking spatial correlation into account

Like repeated measures are correlated over time, spatial data are likely correlated in space.
That is, measurements that are relatively close together are more alike than those farther
apart. Thus, we need to take spatial dependency into account in the analysis.

Spatial data are recorded along with coordinates such as latitude and longitude, positions of
row and column, north-south and east-west directions. The distance between two
measurements are calculated using a Euclidean distance function, which is used to form a
covariance structure. If a distance function doesn’t depend on the directions of measurements,
then the covariance is said to be isotropic; otherwise it is anisotropic. In addition, a nugget
effect can be added to account for abrupt changes over small distances in a local area.

JMP Pro provides four Euclidean distance functions for isotropic structures: power, exponential,
Gaussian and spherical. Various forms of anisotropic structures are available. A nugget effect
can also be added to covariance structures.

The following example is taken from SAS for Mixed Models, 2nd Edition, 2006, pp. 457-460.
(http://www.sas.com/store/prodBK 59882 en.htm). In order to investigate the water drainage
at a hazardous waste disposal site, 30 samples were taken at various locations at the site and
recorded by their north-south and east-west directions. A linear relationship between water
drainage (measured by log-transmissivity) and the thickness of a layer of salt was proposed.
(The data, Hazardous Waste, is Data Set 11.6 in the zipped file
http://support.sas.com/publishing/bbu/59882/59882.zip.)

A spatial regression model is fit using a spatial anisotropic power structure with a nugget effect.
This structure allows (1) distance to be a power function of spatial correlation, (2) spatial
correlations to differ in different directions, and (3) variation over small distances.

Pick Role Variables

[ v || diog-transmissivity

Personality: | Mixed Model - |

+| Unbounded Variance Components

[ Help | [ Run
&| opitonal [ Rell | Keep dialog open
| Remove |

Construct Model Effects

Fixed Effects l Rancdom Effects l Repeated Structure l

| add | Thickness of Layer of Salt
[ cross |
[ mest |
[ Macros * |
Degree

Attributes (=
Mo Intercept

(Fixed effects part of the model)
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Construct Mode| Effects

Fixec Effacts | Random Effects | Repeated Structure l

Repeated Covariance Structure

Structure [Spatial Anisotropic with Nugget = |

Type [iner - |

Repeated | East-West
Maorth-South

subject || ootional

= Fit Mixed (Spatial anisotropic power with nugget)
P Actual by Predicted Plot
4 Fit Statistics

-2 Residual Log Likelihood 78.631234

-2 Log Likelihood 70.747191
AlCc 86.399365
BIC 91.154375

4 Repeated Effects Covariance Parameter Estimates

Covariance Parameter Estimate 5td Error 95% Lower 95% Upper
Spatial Power East-West 0.8052924 01535787  0.5042838 11063011
Spatial Power North-South 09149311 0.0656425  0.7862741  1.0435881
MNugget 0.042169 0.0475184  -0.050965  0.1353033
Residual 1.4913473 0.6745013 0.7232787  4.6686809

A4 Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen tRatio Prob>|t] 95% Lower 95% Upper
Intercept -4.946099 0.5237702 2.1 -9.44 0 g0 -6.727095  -3.165102
Thickness of Layer of Salt  -0.02503 0.0075612 21.2 -3.31 0 -0.0407 46 -0.009313

Covariance Parameter Estimate report suggests highly significant spatial correlation and that
two correlation coefficients are, respectively, 0.81 (East-West) and 0.91 (North-South).
However, there appears to have no nugget based on the confidence limits. Fixed Effects
Parameter Estimates show a significant negative effect (-0.025) on water drainage of
thickness of salt. We refit the model by removing the nugget effect:

Construct Model Effects

Fixed Effects  Random Effects = Repeated Structure

Repeated Covariance Structure

Structure Spatial Anisotropic v
Type Power w
al East-West

Al Meorth-South
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Fit Statistics Repeated Structure = Spatial Anisotropic without Nugget
-2 Residual Log Likelihood  80.346035

-2 Log Likelihood 72197131

AlCe 84697131

BIC 80.203118

Repeated Effects Covariance Parameter Estimates

Cowvariance Parameter Estimate Std Error 95% Lower 95% Upper
Spatial Power East-West 0.864312 01113235 0.646122  1.0525021
Spatial Power North-South  0.8163802 0.1486885 0.3251361  1.1080043
Residual 1.6477606 07543611 0.7933083  5.251850

Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob>|t] 93% Lower 95% Upper
Intercept -4.920739 0.5027641 24 979 00033  -6759791  -3.081727

Thickness of Layer of Salt  -0.021282  0.007246 171 294 noaze -0.03656  -0.006003

(Results using spatial anisotropic power without nugget)

We notice some minor changes: the estimated spatial correlations are 0.86 and 0.82,
respectively, and effect of thickness of salt is -0.021. Comparing the goodness of fit using AlCc,

the second model is slightly better as its AlCs is smaller (86.4 vs. 84.7).

To formally test the existence of spatial correlation, we fit an independent errors model by

selecting Residual as the structure (i.e. assuming no spatial correlation).
Construct Model Effects

Fixed Effects | Random Effects | Repeated Structure

Repeated Covariance Structure

Structure Residual v

(Leave Blank)

(Leave Blank)

The difference in -2 Residual Log Likelihood value between the two models forms a x2
likelihood ratio test. The -2 Residual Log Likelihood from the independent errors model is
94.07, so the difference is a 13.72 (=94.07-80.35). This yields a p-value of 0.001 for DF=2.

Therefore, significant spatial correlation is found at this site.
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Mixed Model for Log-transmissability  Independent Errors Model (Structure = Residual)

Fit Statistics
-2 Residual Log Likelihood 94.068661
-2 Leg Likeliheod 84.336683
AlCc 91.25976
BIC 04,540276

Repeated Effects Covariance Parameter Estimates

Covariance
Parameter  Estimate StdError 95% Lower 95% Upper
Residual 1.0408237 0.2781718  0.6554778  1.9037972

Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen tRatio Prob>|t] 93% Lower 953% Upper
Intercept -5.024542 0.2016519 280 -2492 <0001* -5437607 -4.611477
Thickness of Layer of Salt  -0.033839 0.0065829 280 -514 =0001°  -0.047344  -0.020375

Fixed Effects Tests

Source Nparm DFMum DFDen F Ratio Prob > F
Thickness of Layer of Salt 1 1 280 26.455749
Summary

Hopefully, these examples have illustrated the versatility of linear mixed models and ease of
fitting a mixed model with JMP. Before | close I'd like to share some general tips.

In order to run a mixed model, data needs to be organized in a “tall & skinny” format
where multiple measures of a response are stacked into a single column. If your data is
in a “short & wide” format, use the JMP Tables function Stack to transpose.

e Follow the JMP Repeated Covariance Structure Requirements when entering Repeated
and Subject columns.
http://www.jmp.com/support/help/Launch the Mixed Model Personality.shtml#1013
652

e Try different covariance structures and evaluate different models by comparing AlCc or

BIC. The smaller the AlCc (or BIC), the better fit of a model. Ceteris paribus, a

parsimonious model is better.

e Anindependent errors model (i.e. a model with only fixed effects and a Residual
repeated structure) can serve as a baseline model to perform a x2 likelihood ratio test
on the existence of a covariance structure.

e Keep in mind that when both Random effects and Repeated effects are included in a
model there is often insufficient data to estimate both effects.
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