Query Builder

The New JMP 12 Tool For Getting Your SQL Data into JMP
By Eric Hill, Software Developer, JMP

Contents
T o o [¥Tord o] o HAR TP PO U PP PRSP 2
NY=Totd o) o T Y/ 1] =4 4 o TN o o o 1= T ot 4 o o PP 3
Section 2: Selecting Tables fOr the QUUETY.......uui i e e e st e e s s abe e e e ssbee e s eabeeessnarees 5
SeCtion 3: BUIlAING ThE QUUETY ...ttt e ettt e e et e e e ettt e e e e ebteeeeeebteeeeebteeaeebsaeasanstaeeeastseesassaeanannes 11
Yo o g Y= @] [T s oY o TSRS 12
NNV Lo T o oY=l O LU= oY SRR 14
(UL aT o1 a =48 d o TS O LU= oY PPRUUPRRE 14
ANSWETING the QUESTIONS .eeiieeiiiii ittt e e et e e e st e e e e s beeeesaabeeeeeasbaeeeasbeeaeessseeesesnseeessssseeeennnsees 15
L= T o = PRSPt 18
o 0o oY T o= ST =T USRSt 22
Y1001 1 11 =0 PSPPI 24
WIITING YOUF OWN SQLL.c.iiiiiiiieeie ettt ettt et e e s ettt e e e e s s st bt e e e e e e s s s sabbbaeeeeesessnsbbbaaeeesssssasnssnaaeaesssnnas 25
Section 4: Managing BackgroUNd QUETIES.ccccuiiiiiiiiieeiciieeeeeiree ettt e e s stte e e s stae e e e sbaeeeesbteeeessteeesesteeeesasseeesnnes 26
(O TUT= V] =Y (U L - o [SRR 27
RUNNING QUETTES WINGOW ...ttt ettt e e e e ettt e e e e e e e s e e aab e e e e e e e e eaasebaeeaeeeeseannssseeaaeeesssnnnsnsannaeens 27
Y= Totd o] BT o = Ta o T O LU =T 1L PSSPt 27
Section 6: Running Queries from JMP Scripting Language (JSL).....cccuveeiriieiieeeiieeeciee et eeteeesreeereeesvreeevne s 28
(6e] 0Tl (V11T HA OO ST TP P TSP PPV 30

Query Builder: Getting your SQL Data into JMP 1

Introduction

JMP puts a vast array of analytical tools at your fingertips, but those tools do you no good if you can’t get the
data you need to analyze into JMP in the way that you need it. JMP has had support for importing data from
relational databases into JMP for quite some time via File > Database > Open Table. Open Table is fine as far as
it goes, but it does have some notable limitations:

e Most data in relational databases is stored in a normalized way, requiring joins to get all of the data you
need, but Open Table does not help you with joins; you have to write the SQL yourself.

e While Open Table provides the Formula Editor for building a WHERE clause, it does not, for example,
show you the distinct values of a categorical variable to help you filter on it.

e |t can be difficult to securely share your queries with others, because Open Table stores your password
in the connection string of the JSL scripts that it generates.

e Open Table does not help you with post-processing steps that are required once data has been
imported, such as data clean-up, modeling types and formatting.

Query Builder was designed from the ground up to address the limitations of Open Table, helping you build
multi-table queries with prompted interactive filtering that can be securely shared with co-workers.

In this paper, | will use Query Builder with a freely available PostgreSQL sample database called dellstore2.
PostgreSQL is an open-source database that can be freely downloaded from here:

http://www.postgresql.org/download/

The dellstore2 sample database can be found here:

http://wiki.postgresql.org/wiki/Sample Databases

The dellstore2 sample database is also available for other database platforms (MySQL, Oracle and SQL Server).

Query Builder: Getting your SQL Data into JMP 2

http://www.postgresql.org/download/
http://wiki.postgresql.org/wiki/Sample_Databases

Section 1: Making the Connection

Initiate Query Builder using File > Database > Query Builder from the menu:

File | Edit Eric Tables Rows Cols DOE Analyze Graph Tools

New b SN
5 Open. Ctrl+O
olumn 1
Close Ctrl+W

Import as Data

=l Save Ctrl+5
Save As...
Revert
Database v |EF3 | Query Builder..,
SAS r Open Table...
Internet Open... Save Table...

You can also launch it from the first page of JMP Starter:

Click Category: Opening and Creating Data Tables and Text
O
Basic @ Mew Data Table | Create a new Data Table, and display 2

Model

Multivariate Open Data Table ?|PE“ a JMP file containing a data tabl
Reliability e

Graph E:né Query Builder | Get data from a database.

Surface

Measure

Control @ Write and edit text, including scripts.

Consumer Research

DOE @ Open Script Open a file containing text, a script fo

-

Lastly, on Windows, you can also find a Query Builder tool on the Home Window toolbar:

Eile Eric Tabl

il e D

E Analyze Graph Tools

5 0 . { united2 ~ |
o [g [N e ||

5 7

After launching Query Builder, you will be greeted with Select Database Connection dialog box:

Ciuery Builder

Recent Files

Query Builder: Getting your SQL Data into JMP

~Connections

to connect to a database
to disconnect from a database

~S5chemas - Tables

Refresh

| Mext || Cancel || Help |

The Select Database Connection dialog box is a subset of the Open Table window. Query Builder and Open
Table use the same ODBC connections and in fact share connections, so any connections you make in either
place will show up in both.

Click New Connection... to connect to your database using an existing DSN or to create a new DSN. You will be
prompted to supply any required credentials:

=N Select Database Connection

~ Connections

Fleasze supply any miszing information required to connect.

Database | dvdrental 55L Mode |disable

Server impdev? na zas.com Port 5432

Uzer Mame | jrmphest Passward

Options

| (]S | | Caticel |

| MNext || Cancel || Help |

After connecting, JMP will retrieve schemas from the connection to help you make sure this is the connection
that you want:

Query Builder: Getting your SQL Data into JMP 4

~Connections

Postgres dvdrental to connect to a database

to disconnect from a database

5chemas - Tables

actor
actor_info
address
category
city
country

| Refresh

[nest |[Cancel |[Help

You can also see the tables available in the selected schema. Click Next to continue to the next step.

Section 2: Selecting Tables for the Query

Data Source: Postgres dvdrental |Change Data Source..

4 Schemas |=| Select Tables for Query
Lo | [—

optional

Available Tables

actor

actor_info

address

ctategury publicrental (Unknown Rows, 7 Columns)

city
country Columns | Table Snapshotl

customer
customer_list Column Name Data Type Key
film rental_id intd 7
film_actor rental_date | (5 timestamp | §

film_category inventory_id intd inventory
film_list customer_id int2 customer
inventory return_date timestamp
language staff_id int2 staff
nicer_but_slower_film_list last_update timestamp
payment

sales_by_film_category
sales_by_store

staff

staff_list

store

Refresh

|BuildQuew||ImportNow|| Cancel || Help

Figure 1: Selecting Tables for the Query

Query Builder: Getting your SQL Data into JMP

When you click Next, the Select Tables dialog box will appear. In the Select Tables dialog, you will select which
tables you want to include in your query (see Figure 1 above). Select tables in the Available Tables list that you
want to include in the query and add them to the Primary and Secondary table lists at the upper right.

e The Primary table in a query is normally the table from which all rows should be retrieved, regardless of
whether they have a matching value in some other table. This is your fact table, in data warehousing
terms. There can only be one primary table in a query.

e Secondary tables are normally look-up tables. By default, rows from secondary tables are only included
in the query when the value of a column in the primary table matches the value of a specified column in
the secondary table. These are your dimension tables, in data warehousing terms. You can add as
many secondary tables to the query as you want.

The panel in the lower right shows information about the selected table. The Columns tab displays information
about each column in the table, including whether it is a key of some kind:

publicrental (Unknown Rows, 7 Columns)

Columns | Table Snapshc:-t-

Column Name Data Type
rental_id @ intd

Key Reference Indexed
rental_date | i3 timestamp | §

T

T

+

inventony_id @ int4

«
inventory |«
o

customer_id @ intZ customer
return_date || r:" timestamp
staff_id 123 int2 T staff

last_update |5 timestamp

The Table Snapshot panel shows a snapshot of the data so that you can make sure the table has the information
you need:

public.rental (Unknown Rows, 7 Columns)
Columns Table Snapshot I
ey [
=] 5000 Rows rental_id rental_date inventory_id customer_id return_date stafi

1 2 | 05/24/2005 10:54:33 PM 1525 459 05/28/20057:40:33 PM
2 3 05/24/200511:03:39 PM 1711 408 06/01/2005 10:12:39 PM
3 4 05/24/2005 11:04:41 PM 2452 333 06/03/2005 1:43:41 AM
4 5| 05/24/2005 11:05:21 PM 2079 222 DE/02/20054:3533:21 AM
5 6 05/24/2005 11:08:07 PM 2792 549 05/27/2005 1:32:07 AM
3 7 05/24/200511:11:53 PM 3995 269 05/29/2005 8:34:53 PM
7 8 05/24/200511:31:46 PM 2348 239 05/27/2005 11:3346 PM
8 9 05/25/2005 12:00:40 AM 2580 126 05/28/2005 12:22:40 AM
9 10 05/25/2005 12:02:21 AM 1824 399 05/31,/2005 10:44:21 PM

10 11| 05/25/2005 12:09:02 AM 4443 142 06/02/2005 8:56:02 PM

11 12 05/25/2005 12:19:27 AM 1584 261 05/30/2005 5:44:27 AM

12 13 05/25/2005 12:22:55 AM 2254 334 05/30/2005 4:23:55 AM

13 14 05/25/200512:31:15 AM 2701 446 05/26/2005 2:56:15 AM

14 15 05/25/2005 12:39:22 AM 3049 319 06/03/2005 3:30:22 AM

15 16 05/25/200512:43:11 AM 389 316 05/26/20054:42:11 AM

16 17 05/25/2005 1:06:36 AM 2830 575 05/27/200512:43:36 AM ;

Query Builder: Getting your SQL Data into JMP 6

Normally, when building a query, you have a question or questions in mind that you are hoping to answer, and
those questions drive decisions about which tables your query needs to include. The data we are exploring is
from a fictitious DVD rental company. The questions | would like to answer are:

1. Which movie genres are bringing in the most revenue?
2. Which actors are bringing in the most revenue?
The rental table has a record for each DVD rental event over the life of this company, so that is going to be the

primary table for this query. | can see from the Columns panel that rental has columns with foreign key
relationships to the inventory and customer tables:

publicrental {Unknown Rows, 7 Columns)

Columns | Table SnapShot.

Column Name Data Type Key Reference Indexed
rental_id 23 intd i o

inventory_id @ intd inventory |«
customer_id @ int2 customer |«

return_date timestamp
staff_id 23 int2 staff

Figure 2: Foreign Keys

A foreign key relationship (also known as a foreign key constraint) means that the values in the column of one
table are required to be found in the primary key column of another table. From Figure 2, we can see that
values from the inventory_id column of the rentals table must exist in the primary key column of the inventory
table, values from the customer_id column of the rentals table must exist in the primary key column of the
customer table, and values from the staff_id column of the rentals table just exist in the primary key column of
the staff table. For this query, | am looking for more information about the movie rented, rather than the
customer of the staff member involved in the rental, so | will add the inventory table to the query as a
secondary table.

Looking at the Columns panel for the inventory table, | can further see a foreign key relationship with the film
table:

public.inventory (Unknown Rows, 4 Columns)

Columns | Table Snapshotl

Column Name Data Type Key Reference Indexed

last_update ' timestamp

Figure 3: inventory table details

Query Builder: Getting your SQL Data into JMP 7

So the film table goes into the query also. Looking at the details of the film table, | see a rental_rate column,
which should be what | need for computing revenue, but | don’t see anything about the category of the film or
the actors in the film:

public.film (Unknown Rows, 13 Columns)

Column5| Takle Snapshc-t.

Column Name Data Type Key Reference Indexed
film_id (@23 ints T o
title /A varchar o
descripticn A text

release_year @ year

language_id @ int language |«
rental_durati

rental_rate numeric

length @ int2

replacement_cost @ numeric

rating /A, mpaa_rating

last_update LT timestamp

cpecial_features [/Ah _text

fulltext /B tsvector o

Figure 4: Columns in the film table

However, looking at the Available Tables list, | see a film_actor table and a film_category table, which appear to
map a film’s ID to its actors and category, as well as actor and category tables that have more information about
the actors and categories. So | am going to want these tables in the query as well. However, if | simply add
those 4 tables, something appears to go wrong:

| Select Tables for Query

Primary | public.rental (1)

public.film_actor (£14)
public.film_categery (t15)
public.inventory (t3)
public.actor (t12)
public.category (t13)
public.film (t4)

opfional

XIE X

gegeee

Figure 5: Automatic join unsuccessful

The “stop sign” icons with the “X” in the middle signify that JMP was unable to automatically join those two
tables, so | will have to set up the joins manually. If you find that JMP’s automatic join function frequently does
not do what you need it to do, you can turn it off from the red triangle next to Select Tables for Query.

If | select public.film_actor (t14) and click the Edit Join button (), the Edit Condition dialog box comes up,
allowing me to configure the join. Initially, the dialog box looks like this:

Query Builder: Getting your SQL Data into JMP 8

Right Column
[film_actor (14)
@ actor_id

@ film_id
last_update

| Mest || cancel |[Help

Figure 6: Editing the join condition

since no join condition exists yet. | want to join film_actor.film_id to inventory.film_id. To accomplish this, |
simply select the inventory table from the Left Column list and select film_id in both lists:

Left Column Right Column
| inventary [t3) i |ﬁ|m_actur 14
@ inventory_id @ actor_id

store_id last_update
last_update

| Mest || cancel |[Help

Figure 7: Editing the join condition

Similarly, | can set the join condition for public.film_category to be inventory.film_id = film_category.film_id.
After doing so, things look better:

|=| Select Tables for Query

[Primay | public.rental (t1)

public.inventony (£3) ao I:'
public.film_category (t15) ao
public.film_actor(t14) ao
public.film (¢4) @ | %]
public.categony (t13) ao
public.actor (t12) ao
optional

Figure 8: Joins between tables are valid

Query Builder: Getting your SQL Data into JMP 9

All of the secondary tables are showing the left outer join Venn Diagram icon. Using the join we just made
between film_actor and inventory as an example, a left outer join means that all rows from the inventory table,
which is the left table in this case, will be included in the query whether there is a match in the film_actor table
or not, but only rows from the film_actor table that match a row in the inventory table will be included.

By the way, the t1, t2, t3, etc., in parentheses after the table names are the table aliases that JMP assigns to the
tables as you add them to the query. Table aliases make it easier to generate correct SQL and make the
generated SQL more readable. You can change the table alias for a table by right-clicking on the table in the
Primary or Secondary table list and selecting Change Alias. Table aliases cannot contain spaces or special
characters.

If you need something other than left outer join, you can change the join type using the check boxes on the Edit
Join dialog. The join type and Venn Diagram icon will change to reflect the state of the checkboxes.

3 Edit Join “

Join

Include non-matching rows from inventory @

|:| Include non-matching rows from film_actor
Left Cuter Join

omn Londairons

Left Column Right Column
@) inventeryfilm_id| = |@ film_actorfilm_id

| 0K || Cancel || Help |

Figure 9: Changing the join type

To check whether you have the joins set up correctly, you can click the Preview Join button. That will run the
query and bring up a snapshot of the first few hundred rows of data so that you can check that things look right.

Now that we have all the tables in the query that we need, we can click Build Query to bring up Query Builder
itself, where we can specify which columns to include in the query, filter criteria to use, how the resulting data
should be ordered, and much more.

Query Builder: Getting your SQL Data into JMP 10

Section 3: Building the Query

When the Query Builder window comes up initially for this query, it looks like this:

| Query Marme: 1 . Data Source: Postgres dvdrental

£ = | Tables Included Columns‘ Sample £ |« |Filters
rental (£1)

inventory (t3) Variable
film_category (£15) Mame JMP Mame Format Aggregation

film_actor (£14)
film (14) o
categery (t13) o

artnr (#13%

Change...

w | Available Columns
@ t1.rental_id

[t1.rental_date) [] Distinct rows only
tl.inventory_id
tl.customer_id
tl.return_date
l.staff_id Query Preview | SQLl Post-Query Scn'ptl Query Status
tl.last_u
t3.invent
£2.film_id Add columns to the query
t3.store_id
t3.last_update

£15.film_id
t15.category_id o £ Order By
t15.last_update
t14.actor_id
t14.film_id o
) t14.last_update
@2 t4.5lm_id

A thtitle [] Update preview automatically
A td.description

EEEHEEHEEEHEHE®

i

RunQueryl Save ||Sa1reAs...|| Close || Help |

(1) The Query Name box holds the name of the query, which defaults to the name of the primary table. The
Query Name is the name assigned to the JMP data table that results from running the query, and is also the
default file name when saving the query to a file. The Data Source shows you the name of the data source
that the query is using.

(2) The Tables box shows you the tables that are currently in the query. To add or remove tables or change
joins, click the Change... button.

(3) The Available Columns list shows all of the columns from all of the tables in the query. Select columns from
this list and drag them to the Included Columns, Filters, or Order By panels. Or, if you prefer, there are
right-click options to accomplish the same thing.

(4) The Included Columns panel shows a grid of all columns that your query includes. Use the Included
Columns grid to set things like the format and modeling type that data for the column should have after
being imported into JMP. You can also specify aggregations along with Group By for columns if you want
your data summarized before it comes into JMP.

There is also a Sample tab in this panel for generating random samples of data on the server, for those
databases that support sampling.

(5) The Query Preview tab in this area automatically updates to show a snapshot of the data your query will
return when you run it. The SQL tab shows the SQL that Query Builder is generating based on current

Query Builder: Getting your SQL Data into JMP 11

(6)

(7)

Adding Columns

selections. The Post-Query Script tab allows you to specify a JSL script that will be run after your query
completes. The Query Status tab shows the status of queries that are running in the background and allows
you to cancel them.

The Filters panel lets you specify criteria for filtering the data (creating the WHERE clause) and turn the filter
into a prompt that runs each time you run the query.

The Order By panel lets you specify the column or columns to use for ordering the returned rows (ORDER BY

Every query needs some columns. Add columns to the query using any of these methods:

1. Click the Add All button to add all available columns from all tables in the query
2. Select specific columns from the Available Columns list and click Add or drag them over.
3. Double-click on a column in the Available Columns list.

For this query, | will add film_id, title, and rental_rate from the film table, category_id and name from the
category table, and actor_id, first_name, and last_name from the actor table.

Included Columns | Sample.

Variable Name JMP Name
23 t4.film_id filrm_id 2
Bt title title

@ td.rental_rate | rental_rate
@ t13.category_id|category_id
A t13.name name

@ t12.actor_id actor_id
8 t12 first_name |first_name
/A t12.last_name |last_name

[l o N1 N N1] S

[Add | [addan

Figure 10: After initially adding columns

Format

Best

Best
Best

Best

w

Aggregation

Mone
Mone
Mone
Mone
Mone
Mone
Mone
Mone

| [Distinct rows only

Group By

v
v |
v
v
v

|

Using the JMP Name, modeling type and Format columns of the Included Columns, | can control what the
name, modeling type and format of each column will be after the data is imported into JMP.

Included Columns - Sample.

Variable Mame JMP Name
iz 4.film_id Film ID
At title Film Title

@ td.rental_rate |Rental Rate
@ t13.category_id |Category ID
A t13.name Category Mame
@ t12.actor_id Actor ID

A t12.first_name |first_name

/B t12.last_name |last_name

[Add | [Addan |

Figure 11: After adjusting column details

Query Builder: Getting your SQL Data into JMP

FEREFLAFF

Format

Best

W

Currencyw

Best

Best

ha

ha

Aggregation

Mone
Mone
MNone
Mone
MNone
Mone
Mone
Mone

[] Distinet rows only

Group By

%]

12

For the purposes of this analysis, | would also prefer that the actor names were concatenated in a single column
rather than split into separate first_name and last_name columns. To achieve that, | can add a computed
column by selecting Add Computed Column from the red triangle menu on the Available Columns panel.

| actor [t12) | Generic SOL

actor_id Cperators

Column Functions
last_name Date/Time Functicn:
last_update Murmeric Functicns
String Functicns
System Functicns

st name | |

S0L ConcatBars

This will add a column named Calc1 to the Available Columns list, but | can right-click it and use Rename
Column to rename it to ActorName, add it to the query and remove first_name and last_name. Here is how the
preview of the query looks after doing so:

........ B

/A t13.name Category Mame | i Mone +]
-~ - = B |Best w |Mone v]
iz ActorName |Actu:rr Mame | 4l |Best w |Mone v []
[add | | aagdan | [] Distinct rows only

Query Preview SQLl Post-Cuery Scrl'ptl Cluery Status

7ok]

|E|MMM‘ N le Rental Rate CategoryID Category Name Acto@lD Actor Name
1 5299 12 Music Winslet, Fay
2 52.99 12 Music P77 Garland, Kevin
3 5299 12 Music Crowe, Sidney
4 5299 12 Music Leigh, Matthew
5 52.99 12 | Music Miranda, Tom
& 5299 3 Children Hurt, Whoopi
71 52.99 3 Children 59 Gooding, Bwan
8 50,99 11 Harror Malden, Greta
g9 50.99 11 Haorror Meeson, Christian

£

Update preview automatically Update

Figure 12: Query Preview with computed column

Query Builder: Getting your SQL Data into JMP 13

Saving the Query

At this point, | have enough time invested in this query that | would like to save it so that | do not lose my work.
Simply click the Save button at the bottom-right of the Query Builder window to save the query. You will be
prompted to supply a file name, with the text from the Query Name box supplied as the default. | will name the
query film_category_actor. A message will be displayed at the bottom-left of the Query Builder window
confirming that the query was saved:

é} t13.name

E, 13 last_update Update preview automatically
G2 +12.artor id N

"ChUsers\Public\ JIMP\Projects\SQLQueryBuilder DemoshBrussels\film_category_actor.jmpquery” saved.

Saving a query creates a file with a .jmpquery extension. Back on the Query Builder window, you’ll notice that
the Query Name has been changed to match the file name, so it is now film_category_actor.

If you need to create another query that is similar to the one you have open, but you want to preserve the
original, you can use the Save As... button to save a copy with a different name.

Running the Query

| can also run the query at this point to create a JMP data table containing all the rows from the database. Click
the Run Query button at the bottom of the Query Builder window to run the query. By default, JMP runs
queries in the background so that you can continue working while your queries run. Use the Query Status tab in
the bottom-center section of the window to see the status of queries that are still in process from this Query
Builder window, or use View > Running Queries to see the status of all queries that are currently running in the
background. This particular query takes just a second or two, returning 88,020 rows:

File Edit Tables Rows Cols DOE Analyze Graph Tools Add-lns View Window Help

HeEd s R OEEE

~ | film_category ador2 o] 4 -

SQL SELECT "t4"film_id" A4 = Film ID Film Title Rental Rate CategorylID Category Mai

333 FreakyPocs 5299 12 Music ~

333 FreakyPocs 5299 12 Music

333 FreakyPoos 52.99 12 Music

333 FreakyPocs 5299 12 Music

333 FreakyPocs £2.99 12 Music
Graduate Lord 52.99 3 Children
Graduate Lord 5299 3 Children
Lowe Suicides 5099 11 Horror
Laove Suicides 50.99 11 Horrr

w | Source

w | Modify Querny
| Update From Database

| Columns (7/0)

ik Film D

il Film Title

il Rental Rate

ik Category D

ik Category Mame
il Actor 1D Love Suicides 5059 11 Horror
Lowe Suicides 5099 11 Horror

U-T - - RN R - R T, R RV P (S R

Idals Snatchers 5299 3 Children
ldals Snatchers 5299 3 Children
ldals Snatchers 52.99 3 Children

3

% O

Figure 13: Results of query in JIMP Data Table

Query Builder: Getting your SQL Data into JMP 14

Notice that the resulting JMP data table has 3 scripts and a SQL table variable defined:

e The SQL table variable contains the SQL that was submitted to the database to perform the query.

e The Source script will run the query again.

o The Modify Query script will bring the Query Builder window back up with the query loaded in it.

e The Update from Database script will run the query again and update this JMP data table in-place with
the results.

Answering the Questions

At this point, | am close to being able to answer the original questions | was seeking answers to, but | have a
decision to make: Do | want to have the database summarize the results, or do | want to bring the raw data into
JMP and have JMP do the work? If the raw data is not too large to fit in memory and does not take a
prohibitively long time to import, then importing the raw data into JMP and doing the analysis there as many
advantages — JMP is much more capable of analyzing data than a relational database.

For the task at hand, it is a simple matter of using the Distribution platform on Category Name and Actor Name,
using Rental Rate as the Freq variable. If | order the resulting histograms by Count Ascending, | get a result that
answers both of our questions:

£ [« Distributions

£ = Category Name

Sports Degeneres, Gina
avis, Busan

Drama Berry, Henry

. . Carrey, Matthew
Animation DEFUI_DH SﬁErIItEtt
A om, Walter

SC_I Fi Akroyd, Chnistian
Foreign Wlthers&oon Angela

: oight, Helen
Acticn Keitel, Mary
Travel Zellweger, Camerch
ooding, Gregory

Mew Mansfield, Ed
Guiness, Sean

Comedy HKgmer J%ﬁar‘u:lrla

. udson, Angela
Documentalr} Mcqueen ulla
Family D|? ||: hael

r andy, Mary

Games T Wlﬂlﬁ Ben

: racy, Renee
Chlldreln Hoffman, Woody
Music Paltrow, Kirsten

H Fyder, Jada
arrar inslet, Fay
Classics Weed, Uma

£ Frequencies

A = Actor Name

Degeneres, lodie
FAkroyd, Kirsten
Garland, Kevin
Heston, Geoffrey

—

Level Count Prob C’%";&F'Eﬂﬁ;
Classics 13331 0.05192 Johaom, Kenneth
Horrar 13713 0.0530 Molte, ng}fne
Music 14000 0.03452 e el N
Children 14253 0.05551 Sw;d'r-:hjcém
Games 14258 0.05553 Gooding, Ewan
Family 15001 0.05842 DUEﬁ‘;ﬂE;DRUECEQg
Documentary 15170 0.05903 Crawford, Rip
Comedy 15221 0.05928 B;‘c";?i-‘tRﬁEE;ﬁ—
N 1390 oge W re——
Travel 13910 0.06196 Bacinner Vivien

Figure 14: Using the Distribution Platform on the query result

Query Builder: Getting your SQL Data into JMP

15

If, however, bringing all the raw data in was prohibitive in size or elapsed time, | can as an alternative use the
Aggregation column in the Included Columns panel to have the database summarize the data. For that,
however, | will need to answer the two questions one at a time.

To answer the question of Which movie genres are bringing in the most revenue?, | can remove the columns
having to do with actor information from the query and ask the database to sum Rental Rate grouping by
Category Name, and then | can order the result by the summed Rental Rate. Here are the steps:

1. Click the Aggregation column for Rental Rate and select Sum.

Included Columns | Samplel

Variable Name JMP Name Format Aggregation Gro

& tdrental_rate Rental Rate

(i23) t13.category_id | Category ID |§|

| t13.name |Category Na P v [
Average DISTINCT [¥]
Count
Count DISTINCT 7=

B

Mazxirnurm

[add | [Addan |
Minimum
Std Dev

Query Preview | 5oL | Post-Cueny
Std Dev DISTINCT

30cak | Std Deviation Pop.

| 2250 A Rental Rate Cate
1 5299 Sum
2 5298 Sum DISTINCT
3 £2.09 Vari
a 5209 arance
5 $2.09 Wariance DISTINCT -
B 52.99 3 Children |

Notice that Group By becomes checked for all variables that do not have a specified aggregation. Once
any column in a query specifies an aggregation, all columns in the query that do not specify an
aggregation are required to be Group By columns.

2. Right-click on the Variable Name column for Rental Rate and select Order By.

3. Select SUM(t4.rental_rate) in the Order By panel and click the downward-pointing arrow button
(Descending).

Query Builder: Getting your SQL Data into JMP 16

The result looks like this:

Included Columns‘ Sample £l |= | Filters

Variable Name JMP Name Format Aggregation

@ t4rental_rate |Sum-Rental Rate | 4l |Currencys |Sum hd
@ t13.category_id| Category ID i |Best w |Mone v
/& t13.name Category Name | ih MNone v
[add | | addan | [] Distinct rows only

Query Preview | SQLl Post-Cuery Scn'ptl Query Status

30cek ¥

= 16-\3.%:\-\: Sum-Rental Rate CategoryID Category Name
1 $21,778.52 15 Spors ~
2 519,192.54 7 Drama
3 518,653.00 2 Animation
4 $17,505.57 14 Sci-Fi
5 51673741 9 Foreign £ Order By
& 516,079.93 1 Action T SUM(td.rental_rate)
7 51591021 16 Travel .
Update preview automatically Update

Remove

Similarly, taking the category columns back out and putting the actor columns back in, | can answer the question
of Which actors are bringing in the most revenue?:

Sample 2l [« | Filters

Included Columns

Variable Name JMP Name Format Aggregation Group By

@I td.rental_rate |Sum-Rental Rate | 4 |Currencys [Sum ¥] @
@ t12.actor_d |ActorID th |Best v |Mone hd

@ ActorMName |Actor Name 4l |Best w |Mone hd

Add Add All [] Distinct rows only

Query Preview SQLl Post-Cuery Scrl'ptl Query Status

30k |7

w | 2010 B Sum-Rental Rate Actor ID Actor Name
1 5246047 107 Degeneres, Gira A
2 $1,983.88 60 Berry, Henry
3 §1,935.22 181 Carrey, Matthew
4 5184828 81 Damaon, Scarlet
5 51,829.60 102 Torn, Walter £ Order By
B 5180048 58 Akroyd, Christian = SUMItd . rental_rate)
7 §1,79946 144 Witherspoon, Ang... ~

Update preview automatically Update

Remove

Query Builder: Getting your SQL Data into JMP 17

Filtering

Let’s go back a moment to the state where our query was retrieving all of the raw data and we were using the
Distribution platform to answer our revenue questions. One option we have when doing the analysis in JMP is
that we can request the script for the JMP analysis:

I | (=] Tables | ‘/_*1 ~ Distributions
Uniform Scaling A« | Actor Name
e 1 Degeneres, Gina
. avis, Suzan
Arrange in Rows Berry, Henry
Carrey, Matthew
Save for Adcbe Flash platform (SWF)... Dam?ﬂr];.‘ Su:?rlit:tr
Script » Redo Analysis =
= - o
Change Action Relaunch Analysis o
= Travel =
£ = | Available G New | Automatic Recalc =
= BewW =
@ tl4.2 Create a script (J5L) to produce this Copy Script B
@ t14.4 analysis, and put it on the clipboard. -
ﬁg t14.lasw Family Save Script to Data Table ol
. film_id B) =
A tiitle e B Save Script to Journal =
| can then paste that script into the Post-Query Script panel of Query Builder:
@ t12.actor_id Actor ID B | Best v Mone v [
{23 ActorName Actor Mame 4 |Best v |Mone v [

Add Add All [] Distinct rows only

Query Preview| SqL Pest-Query Script | Query Status|

Distribution(
Freg{ :Rental Rate),
Mominal Distribution{ Column{ :Category Name),
Order By("Count Ascending™)),
Mominal Distribution{ Column{ :Actor Name)},
Order By{ "Count Ascending™))

Figure 15: Adding a post-query JSL script
That script will now run each time | run the query.

Now, | would like to refine my questions a bit. Rather than look at category and actor revenue over for all
rentals in the database, | may want to look at it based on the country where the movie was rented, the store
from which it was rented, or over a certain date range.

Query Builder: Getting your SQL Data into JMP 18

The rental table has rental_date, and customer_id fields, so I’'m close to having what | need. We saw earlier
that customer_id is a foreign key reference to the customer table. From the customer table, we can get the
country that the customer is from and the store from which the DVD was rented.

If | click the Change... button in the Tables panel of Query Builder, | can go back and add more tables to the
query. To get country information, | will need to add the customer, address, city, and country tables to the
query. Fortunately, with the key relationships that the administrator of this database has set up, all of the tables
auto-join successfully.

After adding the necessary additional tables, back in Query Builder, | can add the columns | need to the query:
rental_date, store_id, and country. | have also set friendly JMP Names and corrected the modeling type of
store_id:

i@ t12.actor_id Actor ID i | Best w |Mone v [

= : :]

-@" t1.rental_date |Rental Date Al |mid/y himisw []

@ t2.store_id Store ID i [Best w]

/A t7.country Country i]
|| Distinct rows only

Query Preview SQLI Post-Cuery Scriptl Cuey

1040 Caks [

| 00 Rows tor ID ActorMame Store ID
1 147 Winslet, Fay 05,/24/2005 10:54:33 PM 1 lIran
2 127 Garland, Kevin 05/24/2005 10:54:33 PM 1 Iran
3 105 Crowe, Sidney 05/24/2005 10:54:33 PM 1 Iran
4 103 Leigh, Matthew 05/24/2005 10:54:33 PM 1 Iran
5 42 Miranda, Tom 05/24/2005 10:54:33 PM 1 Iran
& 140 Hurt, Whoopi 05/24/2005 11:03:35 PM 1 5rilanka
7 139 Gooding, Baan 05/24/2005 11:03:39 PM 1 5rilLanka
& 157 Malden, Greta 05/24/2005 11:04:41 PM 2 Azerbaijian
9 61 Meeson, Christian 05,/24/2005 11:04:41 P 2 Azerbaijan

Update preview automatically Update
Figure 16: After adding Rental Date, Store ID, and Country columns

First, let’s filter on the customer’s country. | can right-click on the t7.country variable in the Included Columns
panel and select Filter By. After doing so, a filter for country appears in the Filters panel:

/A t13.name Category Mame | ik

rate @ t12.actor_id Actor ID B | Best

. @ ActorMame Actor Mame 4l |Best
zment_s

- @ il.rental_date |Rental Date dl |m/diyt
date @ t2.store id tu::-reID . |Best
feat ™ t7.country Country
. Filter By [] Distinet rov
5_id Order By
5
- T A Resimse Lo | 0 2 RN — |

Query Builder: Getting your SQL Data into JMP 19

A 1= Filters

Inverse

= | t7.country

(AT

[] Afghanistan
[] Algeria

[] American Samoa
[] Angola

[] Anguilla

[] Argentina
[] Armenia

[] Australia

[] Austria

[] Azerbaijan

[] Bahrain

Figure 17: Country filter

At this point, | can simply scroll down through the list of countries and check the ones | am interested in, and
then run the query, and only rows from those countries will be included.

Similarly, | can add filters for store_id and rental_date, after which the Filters panel looks like this:

£l [= | Filters
[T Inverse

w | t7.country

[] Estonia

[] Ethiopia

[] Faroe Islands
[] Finland

France

[] French Guiana
[] French Palynesia
[] Gambia
Germany

[] Greece

[] Greenland
|:| Holy See [WVatican City State)

w | t2.store_id

[+ (A
4
2

| t1.rental_date

tl.rental_date |2 ¥ |
(m/d/y h:mus)

Query Builder: Getting your SQL Data into JMP 20

When | add the rental_date filter, since it is a continuous variable, | get a Simple Comparison filter by default.
What | would like instead is a Range filter. Using the red triangle menu next to tl.rental_date, | can change the
filter type to Range:

I w | t1.rental date

Continuous

Categorical n/d/y h:mis)
| Filter Type r Sirnple Comparison
Prompt on Run ‘ Range |

Is NULL or Is Mot MULL

Custom Expression
Delete

Now the filter for tl.rental_date looks like:

= | t1.rental_date
| .| 2 Rental Date £|

[m/d/fy himis) {my/d/y hinns)

MmN

allowing me to specify a date range. So, if | want to find all rentals from the second half of 2005, | can do:

| t1.rental_date
| 07/01/200512:00:00 AM | £ Rental Date =< 12/31/2005 11:5%00 PM |
(m/d/y h:m:s)

--- T
Sun Mon Tue Wed Thu Fri Sat
1| 2| 3
4| s|| || 7| 2| of 10l
21 Order By

11| 12| 13| 14| 15| 16 ‘l?é
18| 19| 20| 21| 22| 23 245

25| 26| 27| 28| 29| 30| =z1|]

Ik

i i Ll T

|Run Query” Save

Figure 18: Date Range Filter

All of the filter types in Query Builder have a way for you to effectively disable them, allowing you to add several
filters to a query even though not all of them may be active for a given query. For categorical filters showing a
list of values, selecting the (All) item at the top disables the filter. For filters requesting numeric values, setting
the value to missing (.) disables the filter (or part of the filter). So if | want all rentals from January 1, 2006
forward, | can do this:

Query Builder: Getting your SQL Data into JMP 21

| t1.rental_date
[01/01/200612:0000 AM | £ Rental Date [§ |
(mfdfy h:ms) (m/dfy h:m:s)

neR

Now the Filters panel for my query looks like Figure 19 below.

2l |« | Filters
[] Inverse
A w Filters
w| t7.country
|
[] Estonia L] Inverse
% Ethiopia ¥ t13.name
Faroe Islands

[Finland] (am
France] Act.mn .
["] French Guiana O An.lmatlon
[] French Polynesia [T] Children
[] Gambia [[] Classics
Germany [] Comedy
[] Greece [] pocumentary
[] Greenland Drama
[] Holy See (vatican City State) E] Family
_— [] Foreign
w| t2.store_id [] Games
[g Horror
11
2 OR

- t4.title
w | t1.rental_date td.title | Like A
[01/01/2006 120000 AM | £ Rental Date < | .
[m/dfy h:m:s) [m/dfy h:m:s)

Figure 20: Filter with two OR groups
Figure 19: Using Missing to Inactivate Filter

With the filter selections shown in Figure 19, running the query now will return rows where the customer’s
country is either France or Germany, and the DVD was rented at store 2 on or after January 1, 2006. By default
multiple filters are AND’d together, so a row must match all filters to appear in the result. If you need an OR
filter, click the OR button, which will create another filter group, and the two filter groups will be OR’d together.
For example, the filter shown in Figure 20 above returns rentals where the category is Drama or the movie title
contains “Bucket”.

Prompting Filters

While it is nice to be able to specify filter criteria in Query Builder, you may also want to create a query to be
used by others that don’t really need to be presented with the entire Query Builder user interface, but you want
them to be able to enter different filter criteria each time they run the query. The simplest way to accomplish
this is to select All Prompt on Run from the red triangle menu next to Filters:

Query Builder: Getting your SQL Data into JMP 22

I 2 = | Filters
| All Prompt on Run

Clear Prompts

Delete All

! Add Customn Expression

T —
I | M1 Ananla

That turns all of the filters in the query into prompting filters. If you only want some of the filters to be
prompting and not others, you can turn prompting on and off for each individual filter using its red triangle
menu.

After setting All Prompt On Run, when | run this query, | am presented with a prompt to set the filter values the
way | want:

[] Inverse

Country: sl
[] Afghanistan
] Algeria
[] American Samoa
[] Angola
] Anguilla
[] Argentina
[] Armenia
[] Awustralia
] Austria
[] Azerbaijan

[] Bahrain

Store ID: (40

1
]2

Rental Date: | 01/01/200512:0000 AM | £ Rental Date <| 12/31/2006 11:58:59 PM
{m/d/y h:m:s) {m/d/y h:m:s)

The default settings for the prompt will be whatever was selected in Query Builder (or in the saved query file if
the query is run directly from the file) before the query was run.

You can also customize the labels used in the prompt. For example, suppose instead of “Country:” | wanted the
prompt to say “Customer country:”. Back in Query Builder, using the red triangle menu for the t7.country filter,
select Configure Prompt. That brings up a dialog box allowing you to change the label for the prompt and also
change the table that supplies the category levels for the prompt:

Query Builder: Getting your SQL Data into JMP 23

Prompt message: |Customer country:

Spource of values: Table column

Column: |public.country.country

actor A country id

actor_info country
address dl last_update
category
city

customer g

Sampling

If your database supports random sampling, the Sample tab in the top center section of Query Builder will show
the sampling options that your database supports. I've been using PostgreSQL for the examples in this paper,
which supports simple random sampling of a specified number of rows:

' Included Columns SamP|Ei

Sample this result set

Sample Amount:

/® Random M Rows

Sample By:
(@ Rows

SQL Server and Oracle support different sampling options, so the Sample tab will reflect the different options:

Included Col 'Samlel
| Included Columns] e included Columns| Sample |
(v Sample this result set
Sample Amount:
Sample Amount:
(® Percent
(® Percent -IJ
() First N Rows 1000
Sample By:
() Random M Rows 1000 i
(®) Rows
Sample By:

() Blocks or Pages

(@ Blocks or Pages
Generated result set:

Generated result set:
[] Repeatable Seed: 100

[T] Repeatable Seed: 100
Figure 21: SQL Server sampling options Figure 22: Oracle sampling options
The sampling is performed by the database, before the data is downloaded to JMP, so this is a good way to limit
the number of rows retrieved from queries that would otherwise retrieve a prohibitively large number of rows.

Query Builder: Getting your SQL Data into JMP 24

Writing Your Own SQL

We recognize that, as many features as Query Builder has now or may have in the future, there are times when
you may need a query that does things that Query Builder does not directly support. Also, you many have
already written and painstakingly debugged some SQL that performs exactly the query that you need JMP to
perform. Query Builder has two options for supplying your own SQL for a query:

1.

Custom Filter Expression — If Query Builder is doing what you need as far as selecting tables and
specifying the columns to include, but you just want to have a custom SQL expression included as part of
the filter, you can select Add Custom Expression from the Filters red triangle menu:

- I"—'I_v Filters

£ = |Filters
[Inverse

w| Custom Expression

td.replacement_cost = (td.rental_rate * 5)

Add Custom Expression
mn

i ! . . . Figure 24: The resulting filter
Figure 23: Adding a custom filter expression

Enter whatever SQL you want into the Custom Expression box, as long as it is valid SQL for the query.
If a Custom Expression filter is set to be a prompting filter, the custom expression will appear in the
filter prompt dialog and be editable.

Convert the entire query to a Custom SQL query — If you just want to write your own SQL for an entire
query, then, after launching Query Builder and specifying the data connection, you can use the red
triangle menu at the top left of Query Builder next to the Query Name field and select Convert to
Custom SQL:

-~
| ‘ | Cuery Name: |fiIm_cateqc-r*,.f_actc-r_c||
Copy Modify Script
d
Copy Run Script
Save Modify Script to Script Window N
Save Run Script to Script Window flhl-
it
Convert to Custom SOL ‘fEl’
B — re.Ci

Figure 25: Convert to Custom SQL

The Query Builder window will switch to custom SQL mode, giving you a large area to enter your own
SQL. If you had started building the query interactively, the Custom SQL box will be initialized with the
SQL generated based on the selections you have made so far (see Figure 26 below).

Query Builder: Getting your SQL Data into JMP 25

[»| Query Name: [film_category_actor_ci

Custom SOL |

SELECT "t4"."film_id" AS "film_id2",
"£13", "name”, "t12"."actor_id", tl12.last_name ||

"t4" . "replacement_cost"
FROM “public"."rental™ "t1"
LEFT QUTER JOINM "public"."inventory"™ "t3"
N "t3v."inventory_id" =

LEFT QUTER 10INM
oM "tl1sT.
LEFT QUTER J0IN
oMo "ti14T.Film_idt =

Data Scurce: Postgres dvdrental

nggn

"t4n, "title”,

LEFT QUTER JOIMN “public”."film" "t4"
oN ("tar.UFilm_id" = "t3"."film_id" }
LEFT QUTER JOIN “public"."category"™ "t13"
oM ("t13"."category_id" =
LEFT QUTER JOIM "public"."actor" "tl12"

oM { "t12"."actor_id" = "tl4"."actor_id")

"t4"."rental_rate”,

"t13" . "category_id",

*, " || tl2.first_name AS ActorName,

"t1". "inventory_1id")
"public"."film_category™ "t15"
"Film_id" = "t3"."film_id")
"public"."film_actor" "tl4"
Film_id)

"t15"."category_id")}

WHERE < ({ t4.replacement_cost > (t4.rental_rate * 5)

Query Preview | Post-Query Script| Query Status

a0 o (7]

[*]myoame FilmID

L= I = R B L A

]
]
]
]
]
]
]
]
]
]
]
]
)

You can edit the SQL as needed, or paste in SQL from another source, and then you can click the Update

Film Title
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur
Academy Dinosaur

Mrardan Mimacaor

Rental Rate CategoryID

50.99
50.99
50.99
50.99
50.99
50.99
50.99
50.99
50.99
50.99
50.99

50.99
N o0

T @ h @ @ h @ @

Category Name Actor ID

Documertany
Documentany
Documertany
Documentany
Documertany
Documentany
Documertany
Documentany
Documertany
Documentany
Documertany
Documentany

[

1
1
1
1
1
1
1
1
1
1
1
1

1

Update

Actor Name
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope
Guiness, Penelope

Fuinare Danalqma

replacemen

|Run Quenr| |

Save

| [save as... ||

Close | |

Help

Figure 26: Custom SQL query

button to update the Query Preview. Some caveats:
o You cannot do prompted filtering with a custom SQL query.

o Once you convert a query to custom SQL and edit the SQL, if you revert the query back to
interactive, you will lose any customizations you have made to the SQL. Query Builder does not

attempt to interpret the SQL.

Section 4: Managing Background Queries

Query Builder runs queries in the background by default, and it is also possible from JMP Scripting Language
(JSL) to run queries in the background (see Section 6). JMP provides two ways for you to view the list of

currently running background queries and stop running queries if necessary.

Query Builder: Getting your SQL Data into JMP

Query Status Panel

In the bottom middle section of Query Builder, there is a Query Status tab. Any background queries that were
launched from that Query Builder window will appear in that tab:

. Query PrE'.riew[SQL[Post-Query Script Query Status

Recorcs

Query SQL Read . |
rentals | SELECT £3,CustiD, t2.Genre, t2.ltemNo, t2.LengthMi| 27500/ - ~°F |

If you want to stop a running query, simply select it in the list and click the Stop button. If some rows have been
retrieved, JMP will open a data table containing whatever rows have already been retrieved. The name of the
data table will reflect that the result is partial.

Running Queries Window

From the View menu on the Home Window or other JIMP window that includes a menu, select Running Queries.
This will open a window that looks the same as the Query Status tab of Query Builder, but the Running Queries
window will contain all queries that are currently running in the background, regardless of how they were
invoked (a Query Builder window or JMP Scripting Language):

Query sQL
g5_AIRLINE_ONTIMEPERF |SELECT t1."Carrier”, £1."FlightDate", £1."TailNum"

rentals SELECT 13.CustlD, t2.Genre, t2.ltemMo, t2.LengthMi

Here again, select a query and click Stop to stop it from running, opening any partial result.

Section 5: Sharing Queries

In the introduction, it was mentioned that Open Table created scripts that were difficult to share, because the
database password is included in the connection string. Query Builder works differently. If you save a
.jmpquery file for a query whose connection required a password, and you open that file in a text editor, you
will see something like this:

Query Builder: Getting your SQL Data into JMP 27

1 Names Default To Here{ 1 J;
2 New 5QL Query(
connection(

"ODBC :DSN=Postgres dvdrental; DATABASE=dvdrental; SERVER=]jmpdevZ.na.sas.com; PORT=5432;
UID=jmptest;PWD=%_PWD_%; CA=d; A6=; AT=100; AB=4096; B0=255; B1=8190; BI=0; C2=dd_;;
[cx=1c20502bb; a1=7.4; "

),

s QueryName("film_category_actor”™),

ot I TR) B A FY |

You can see that the user name (UID) is present in the connection string, but then you see PWD=%_PWD_%.
“% PWD_%" is not the password; it is a placeholder put there by Query Builder. When Query Builder sees that
placeholder, it knows that a password was required originally, so if this query is opened at a time when the user
opening it does not already have a connection to the Postgres dvdrental DSN, Query Builder will know to
prompt the user for the password.

And what about the DSN itself? What if you send this .jmpquery file to a JIMP user who does not have a DSN
named Postgres dvdrental defined on their machine? Open Table is unable to proceed in such a scenario, but
Query Builder will inform the user of this situation and give them a chance to connect to a different DSN (that
presumably connects to the same database) or create a new one.

Because of the potential of different users having different DSN’s defined on their machines, some organizations
have moved to DSN-less connections. Query Builder cannot currently convert a DSN-based connection string to
a DSN-less one, but if you change a connection string in the script for a query so that instead of specifying a DSN,
it specifies a DRIVER and SERVER, Query Builder will propagate this DSN-less connection in any scripts or
.Jmpquery files that it generates.

Section 6: Running Queries from JMP Scripting Language (JSL)

Queries built by Query Builder can also be run from JMP Scripting Language (JSL) scripts. The best option is to
save the query as a .jmpquery file, open it from JSL, and run it. Suppose, for example, that you have a query
saved in the c:\users\public\temp folder named pg_rentals.jmpquery. Here are some things you can do with
that query file from JSL:

e Open a.jmpquery file into Query Builder:

open("c:\users\public\temp\pg_rentals.jmpquery"”);
e Get the query as a scriptable object without opening it in Query Builder:

query = open("c:\users\public\temp\pg_rentals.jmpquery"”, Private);
e Open the query in Query Builder for editing:

query << Modify;

e Runthe query in the foreground or background, depending on the user's preference setting:

query << Run();

Query Builder: Getting your SQL Data into JMP 28

e Run the query in the foreground. The resulting data table will open in JMP when the query finishes.
dtResult will be a reference to the result data table.

dtResult = query << Run Foreground();

e Run the query in the foreground, but do not open the resulting data table in JMP; keep it private.
dtResult will be a reference to the result data table.

dtResult = query << Run Foreground(Private);

e Run the query in the background. The resulting data table will open in JIMP when the query finishes. Run
Background cannot return a reference to the result data table because the query is simply launched in
the background. Examples following this one show how to get a reference to the result data table when
running queries in the background.

query << Run Background();

e Run the query in the background. If the query succeeds, invoke the Distribution platform on the result
data table (queryResult is a special JSL variable within an On Run Complete script that refers to the
result data table). If the query is canceled by the user or has an error, write a message to the JMP Log.

query << Run Background(
On Run Complete(
queryResult << Distribution(Nominal Distribution(Column(:title)));

)>
On Run Canceled(Write("\!NThe query was canceled!")),

On Error(Write("\!NError running query!");)

);

e Run the query in the background. Upon successful completion of the query, invoke the MyFunc
function. The query result data table is always passed as the first parameter to the function.

::MyFunc = Function({dt}, {Default Local},
Write("\!nNumber of Rentals: ", NRows(dt));
dt << Distribution(Nominal Distribution(Column(:title)));

)
query << Run Background(On Run Complete(::MyFunc));

If opening a query from a separate .jmpquery file in your JSL script is not satisfactory, you can get the raw script
for creating a query scriptable object from the red triangle menu at the top left of the Query Builder window:

]

*| Query Mame: [g5 AIRLIME OMTIMEP| Data S
Copy Modify Script

Copy Run Script
Save Modify Script to Script Window

Save Run Script to Script Window

te
Convert to Custom 50L |

'|'|_' & T ACTOEEap
[— 1 o

For example, invoking Save Run Script to Script Window for a simple query gives me:

Query Builder: Getting your SQL Data into JMP 29

Eile Edit Eric Tables DOE Analyze Graph Tgels Add-lns View Window Help

SRS E % 8 BN {eerets vl

MNew SQL Query(
Connection(
"ODBC:DSN=5QL Server SQBTest;UID=;Trusted Connection=Yes;APP=IMP;WSID=071148;

}_9
QueryName("g6_Rentals"),
Select(
Column{ "Genre", "t2"),
Column{ "ItemMo™, "t2"),
Column{ "LengthMins", "t2"),
Column{ "OrderDate™, "t1", Numeric Format("m/d/y", "-1", "NO", "™)}),
Column{ "YearMade", "t2")

Table("g&_ Rentals", Schema("SQBTest"™), Alias("t1")),
Table(
"g6_Movies",
Schema("SQBTest”),
Alias("t2"),
Join(
Type(Left Outer),
EQ(Column{ "ItemNo™, "t2"), Column{ "ItemNo™, "t1"™))

New SQL Query returns a SQL Query scriptable object just like Open does when opening a .jmpquery file and
can be used in all of the same ways.

Conclusion

Query Builder is a new feature in JMP 12 that helps you build highly customized multi-table SQL queries against
your relational databases. The goal is to make it easier for you to get your data into JMP in analysis-ready form
more quickly than was possible before and to make it easier to share your queries securely. We hope you will
try it out and send us feedback (eric.hill@jmp.com) on what works well and what doesn’t work for you.

Query Builder: Getting your SQL Data into JMP 30

mailto:eric.hill@jmp.com

