

Improving Analog Product knowledge using Principal Components Variable Clustering in JMP on test data.

Yves Chandon, Master BlackBelt at Freescale Semiconductor

Feb 27 .2015

External Use

Prescale, the Prescale logo, AtVec, C-6, Code/TEST, Code/Wantor, Cold/Fine, C-Ware, the Energy Efficient Solutions logo, Khertis, mobileGT, PEG, PoeseQUICC, Processor Expert, CarrNo, Carlow, SaleAasure, the SaleAasure logo, StacCore, Symphony and VortGa are trademarke of Prescale Semiconductor, Inc., Areg, U.S. Pite, & Tim, OT, Aritata, BaelSt, Bee/Stack, CoreNet, Flastis, Layencope, MagNV, MKC, Patritom is a Package, QortQ Converge, QUICC Engine, Ready Play, SMARTMOS, Tower, TurboLink, UMENS, World and Xinheis are trademarks of Prescale Semiconductor, Inc. All other product or service manues are the property of their imspective owners. 0 2014 Freescale Semiconductor, Inc.

We Touch Millions of Lives Every Day

At Home | At Work | In your Car | Online & On the Go

External Use 1

We Touch Your Life **Every Day**

Automotive Applications & Products

	Driver Assistance Powertrain		Safety	Body	Cockpit	
		10 M	Aller State			
Applications	 Active Cruise Control Blind-spot Detection Collision Warning & Prevention Emergency Braking Night Vision Surround View Park Assist 	 Engine Management Transmission Control Alternator Regulator Hybrid Electric Inverter Controller Battery Management 	 Braking Chassis Airbags Electronic Stability Control Electronic Power Steering Tire Pressure Monitoring System 	 Body Control Modules Secure -Vehicle Networking Doors, Window Lifts, Seat Control Security, Lighting Heating, Ventilation, Air Conditioning 	 Instrument Cluster Infotainment Navigation Internet of Things connectivity 	
Products	 Millimeter Wave Radar Transceivers Microcontrollers Microprocessors Sensors Power Supply / Management 	 Microcontrollers Power Management Sensors System Basis Chips Injector Drivers 	 Microcontrollers Power Management Drivers Network Transceivers RF Transmitters Sensors 	 System Basis Chips Microcontrollers Network Transceivers Drivers & Switches Sensors Solution Integration 	 Applications Processors Microcontrollers System Basis Chips Power Management Audio Codecs Integrated Graphics Processors 	

Freescale Semiconducteurs France – Toulouse

- Largest Freescale facility in EMEA
- Broad range of skills & competencies
- Global or European leadership for programs in
 - Analog
 - RF high power
 - Radar & RF connectivity
 - Sensors
- Leveraging on a rich R&D ecosystem
- Location of a Freescale Discovery Lab

Headcount : Turn over (2013) : Operation started : Certifications :

500 employees 73 millions €

1967

Quality : ISO9001, QS9000, ISO/TS 16949, Environment : ISO14001

Introduction

Analog Integrated Circuits for automotive are used in many applications like Breaking systems, Airbags, Lighting, Injection Driving etc... Some of those application are very critical for safety.

The parts are manufactured on silicon wafers. It takes about 3 months of process for a 25 wafers lot, each wafer having 1000 dies. A first set of 1000 tests is performed on each die of the wafers. (Typical values)

A final product is obtained after sawing the wafers and assembling silicon dies in a package. Cars must work in Siberian winter as well as Sahara's summer. For this reason many products are tested at -40°C and 125°C on 2000 tests.

External Use

Principal components

Test files are tables of 100 to 5000 columns containing from a few lines to 300000 lines.

We know the Pareto principle " for many events, roughly 80% of the effects come from 20% of the causes". *With so many tests to handle, could we find the minority of tests that would represent the rest?* Those would be the "vital few"

Principal Components Analysis has been known for long as a useful technique for variable reduction. However from a practical point of view, principal components are not always convenient for the subject matter expert.

JMP now includes a « Cluster variables » command within the Principal Components procedure that is very helpful. The clusters are groups of variables that are somehow similar. The clusters are not orthogonal to each other like principal components

The file used is a reduced set for demonstration purpose. It has 228 variables and 3000 rows

Clustering example

- The graph and eigenvalue summary of Principal Components is displayed
- Cluster summary is displayed by order of total variation explained
- For each cluster, the proportion of variation explained by the cluster is also displayed

Cluster members Table

⊿ Cluster Members					
		RSquare with	RSquare with	1-RSquare	
Cluster	Members	Own Cluster	Next Closest	Ratio	
1	X_9	0.949	0.458	0.093	
1	X_8	0.945	0.458	0.102	
1	X_32	0.91	0.433	0.159	
	X_31	0.907	0.425	0.161	
	X_24	0.895	0.408	0.177	
	X_25	0.894	0.412	0.18	
	X_30	0.894	0.428	0.185	
	X_26	0.888	0.398	0.186	
	X_35	0.886	0.407	0.193	
	X_34	0.872	0.39	0.209	
	X_21	0.871	0.412	0.219	
	X_20	0.85	0.373	0.239	
	X_22	0.875	0.484	0.242	
	X_27	0.824	0.305	0.254	
	X 23	0.86	0.496	0.278	
	X 11	0.848	0.531	0.325	
	x 10	0.846	0.531	0.329	
	X 33	0.768	0.357	0.361	
	x 29	0.76	0.337	0.362	
	X 28	0.765	0.356	0.365	
	X 18	0.754	0.352	0.38	
	X 19	0.744	0.339	0.387	
	X 17	0.764	0.45	0.429	
	X 16	0.746	0.484	0.492	
	X 124	0.202	0.102	0.889	
	X 55	0.974	0.27	0.036	
	X 54	0.971	0.267	0.039	
	X 56	0.969	0.201	0.043	
	X 53	0.966	0.269	0.047	
	X 57	0.963	0.209	0.047	
	X 48	0.903	0.235	0.05	
-	A_40	0.940	0.247	0.009	

- The table displays the list of clusters with all the members and how well the test variable is correlated with its own cluster.
- Unlike Principal Components, clusters are not orthogonal

External Use

This info can be extracted easily with « make into data table »

How well does the most representative variable correlates with others?

- For each group, a fit is performed between the most representative variable of the group and the rest of the group with the scatterplot matrix
- It is easy to see how well the most representative represents the rest

How can we use this information?

- It is interesting to do again this analysis on the same file with specifications adding a 0.999999999 confidence ellipse
- If we tighten X_9 limits, then we have a very high confidence that the remaining parameters will be in spec, providing we can explain the behavior of the outliers.

How well do most representative variables represent the rest

The histogram of Rsquare in each family show about 60% of the tests are explained by their most representative.

It should be possible to enhance this correlation using the multivariate tools in JMP

External Use

10

Quantiles

100.0%	maximum	0.9998886844
99.5%		0.9998874778
97.5%		0.9994449796
90.0%		0.9827135243
75.0%	quartile	0.8843182918
50.0%	median	0.6747869106
25.0%	quartile	0.3051129362
10.0%		0.0524725292
2.5%		0.0072334235
0.5%		0.0035067597
0.0%	minimum	0.0034640597

Summary Statistics

Mean	0.575294
Std Dev	0.3476792
Std Err Mean	0.0230256
Upper 95% Mean	0.6206653
Lower 95% Mean	0.5299227
N	228

Example of stepwise regression

- X_114 has a moderate correlation with X_125 with most representative variable in cluster 23
- The model given by stepwise regression between X_114 and the 45 "Most representatives" is greatly enhanced from 0.43 to 0.83.

1.28

Summary of Fit				
RSquare	0.833598			
RSquare Adj	0.832591			
Root Mean Square Error	0.001127			
Mean of Response	1.262759			

Enhancing the model with Partial Least Squares Regression

- Let's try to model all the remaining test variables by the most representatives.
 PLS regression seems to be the best tool.
- PLS works very well to relate 2 groups of variables when the group of input variables shows some correlations.
- PLS does not show Rsquare but Percent Variation explained. It can be seen that some variables are well explained while a significant number still has a poor figure.

Note: The minimum root mean PRESS is 0.75996 and the minimizing number of factors is 15.

Percent Variation Explained for Y Responses

Comments on PLS results and a the possible alternative

- JMP pro PLS module is limited to 15 Factors
- While this is sufficient for many applications, it may not be enough when the numbers of variables is large.
- PLS takes into account all the variabilities of the output and input variables, therefore it is sensitive to data problems (example : variables with far outliers)
- We are looking for a multivariate technique that can give good results in terms of explaining correctly the « trivial many » by the « vital few », while keeping a good computing performance. The partition platform is another way to build our model

Partition platform

- A partition decision tree is performed to model all the 182 remaining variables by the 45 « most representatives » after adding a validation column.
- The CTRL Go broadcasting makes it really easy
- Computation is very fast

Models comparison for stepwise regression, PLS and Partition

- Models for Stepwise Regression, PLS and Partition Decision Tree have been run on the 182 variables by the 45 most representatives. For each analysis, the "save prediction formula" is used.
- Prediction formulas are entered in the Model Comparison platform
- "Make into combined data table" command builds a table with all Rsquare

External Use | 15

Measures of Fit for X_141							
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_141 Predictor	Partition		0.9892	0.0038	0.0027	3000	
Pred Formula X_141 2	Fit Least Squares		0.9929	0.0031	0.0022	3000	
Pred Formula X_141 3	Partial Least Squares		0.8589	0.0137	0.0108	2994	
Measures of Fit for X_142							
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_142 Predictor	Partition		0.9881	0.0040	0.0029	3000	
Pred Formula X_142 2	Fit Least Squares		0.9924	0.0032	0.0023	3000	
Pred Formula X_142 3	Partial Least Squares		0.8607	0.0137	0.0107	2994	
Measures of Fit fo	or X_143						
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_143 Predictor	Partition		0.7633	0.0041	0.0031	3000	
Pred Formula X_143 2	Fit Least Squares		0.8006	0.0037	0.0029	2994	
Pred Formula X_143 3	Partial Least Squares		0.4886	0.0060	0.0046	2994	
Measures of Fit fo	or X_144						
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_144 Predictor	Partition		0.6380	0.0411	0.0316	3000	
Pred Formula X_144 2	Fit Least Squares		0.7229	0.0360	0.0282	2994	
Pred Formula X_144 3	Partial Least Squares		0.6462	0.0406	0.0316	2994	
Measures of Fit fo	or X_145						
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_145 Predictor	Partition		0.6502	0.0404	0.0310	3000	
Pred Formula X_145 2	Fit Least Squares		0.7241	0.0359	0.0281	2994	
Pred Formula X_145 3	Partial Least Squares		0.6475	0.0405	0.0316	2994	
Measures of Fit fo	or X_147						
Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq	
X_147 Predictor	Partition		0.9990	0.0011	0.0008	3000	
Pred Formula X_147 2	Fit Least Squares		0.9995	0.0008	0.0006	3000	
Pred Formula X_147 3	Partial Least Squares		0.8631	0.0133	0.0104	2994	
Measures of Fit for X_149							
Prodictor	Creater	2469	PEquara	DACE	A A E	F	

Models comparison for stepwise regression, PLS and Partition (2)

Method	Compution time	Modeling ability
Stepwise	40 mn	Good
PLS	30 s	Average
Decision Tree	15 s	Good

Stepwise and Decision Tree improve the average Rsquare over PLS but also over simple regression (0.57 to 0.72)

Means and Std Deviations								
Std Err								
Level	Number	Mean	Std Dev	Mean	Lower 95%	Upper 95%		
Fit Least Squares	183	0.715330	0.299101	0.02211	0.67171	0.75896		
Partial Least Squares	170	0.487653	0.247064	0.01895	0.45025	0.52506		
Partition	183	0.727032	0.295992	0.02188	0.68386	0.77020		

Conclusion

- Principal Components Clustering procedure combined with multivariate techniques are very useful tools for variable reduction.
- Partition Decision Tree is particularly efficient. It combines fast computation with good modeling accuracy
- Overall, the Pareto Principle works on this data set. It is possible to represent fairly well 80% of the variables by 20%.
 - This information is useful to have a better picture of the product. It can be used for quality improvement as well as cost savings.

External Use