

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

Abstract

In the past, ULIS faced a major crisis which impacted the functionality of the big-runner products.

click on icon to view Ulis presentation

The application JMP[®] was successfully used during the main steps of crisis resolution, using the 8D methodology: JMP[®] has been a key contributor to the success of this crisis resolution within the phases

- Problem description
- Root cause analysis
- Permanent Corrective Action

Objective

To show the Ulis application of the JMP[®] platform which has been used as a graphical and statistical "tool box" in order to facilitate analysis or provide a new way of looking at data.

We will focus on a broad variety of JMP[®] tools such as:

- X by Y analysis
- Graph builder
- Distribution platform
- DOE (screening and response surface
- Power platform

Methods

- Use of the 8D methodology
- Use of JMP[®] as a statistical and graphical "toolbox"

click on icon to view final improvement

Conclusions

- An efficient support to production was delivered using different JMP tools for 8D problem resolution with a combination of powerful statistics and dynamic graphics
- Communication on subject was reinforced by the graph builder - clear, concise and compelling visualizations

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

ULIS AT A GLANCE

Independent Merchant Supplier: ULIS Inside!

ULIS manufactures high-volume infrared detectors for lightweight, low power consumption and cost-effective IR cameras

Health checks

Building inspection

Surveillance/Security

Markets & Applications

Predictive maintenance

Automotive / AEB

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

Custom Wafermaps were created in the "Graph builder platform" in order to locate the defect on silicon wafers.

8D description: Defect location (NOK = Bad dice) using custom wafermaps

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

NOK OK -175-150 -125 -100 -75 -50

Manufacturing flow chart

Analysis of wafermaps: defect not located randomly on wafers (wafer edge) -> Defect most probably generated before dicing

The graph builders' user-friendly interface was also helpful in creating chronograms of batch process histories and in determining when the problem appeared

õ

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

8D description: Chronogram of bolometer technology operation by batch Chronogram of lots by process steps before dicing: Preventive Maintenance on Process Equipment A appears to be a serious suspect

A calculation of confidence was used in order to compare the failure rates by product and to check if the defect was originally present during the qualification

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

8D description: Defect rate detected during product qualification and during production

- Defect rate between qualification and production is statistically different \rightarrow Process drift suspected - Products not impacted at the same level: Important clue for root cause investigation

8D description: Defect rate by product: Product B is statistically different

10	 Team formation
20	 Problem Description
30	 Interim Containment Actions
40	 Root cause Analysis
50	Corrective Actions
80	Validate Corrective Actions
70	 Identify and Implement Preventive Actio
\checkmark	 Team and individual recognition

Major Product Crisis: 8D Resolution Process With JMP® Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

Has appeared or got worse after qualification Product A more than B

Wafer pattern is not random

A specific process step was suspected (as it is different between product A and B)

This process step was also suspected because a preventive maintenance was done just before the defect appeared (see chronogram)

20 equipment's parameters during standard processing were collected and then analyzed. One of them was very interesting

Distribution ⊿ ■ Defect % 45.00 40.00% 35.00% 30.00% 25.00% 15.00% 10.00% 5.00%

and defect ratio

Datamining : Correlation between Equipment chamber pressure during process

The chamber pressure was clearly correlated to the defect ratio! **Root cause search was now focused on Equipment A**

Good defect ratios are

So far, the product was sorted based on a visual, qualitative criteria (OK/NOK)

The most difficult part was to find a continuous response for DOE (defect rate is too limited from a statistical point of view for DOE analysis).

The experts proposed 4 continuous responses

These responses were used in order to create a continuous ranking of the responses.

Logistic fit and Kendal's tb correlation value were performed using "X by Y platform"

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

Logistic Fit and Kendal correlation coefficient

=> Selected for further DOEs

A response was found to be able to accurately determine if the product is OK or NOT OK (steep slope) with a good confidence level

A brainstorming was organized in order to determine the parameters that influence the chamber pressure and their range of variation for trials.

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

DOE actual by predicted plot

The model was validated with experimental points but a response surface was necessary due to a strong quadratic behavior => 2 parameters were chosen for the next step based on the screening DOE

DOE Prediction profiler: was used to find a predicted value (in this example: center value) with experiment and check if this linear model is accurate

A central composite design was performed

DOE prediction profiler

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

An optimal process was determined as well as a process control limit, in agreement with product specifications

Experimental domain restriction in order to fit product specifications

The DOE response surface also helped to explain why the defect appeared: during the preventive maintenance, a spare part had to be changed on the hardware, drifting the process toward a very unstable domain

Response surface animation (video)

In order to validate the corrective action the power platform was used.

We calculated the sample size required to validate an improvement of the defect rate (more than xx% increase on the current rate)

■Sample Size				
One Proportion				
Testing if one proportion is				
different from the				
hypothesized value.				
Alpha	0.05	Ho: P = Po		
Proportion	0.25			
Two-Sided				
© One-Sided				
Enter one value to see a plot of the other two.				
Null Proportion .				
Sample Size				
Power		0.95		
Actual Test Size = .				
Continue				
Back				

Minimum sample size determination (alpha risk of 5%)

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

Minimum sample size calculation. In this case, the 8D could only be closed for a defect rate below 5% (Null Proportion=0.20 in this example, with a power of 95%) \rightarrow sample size = 50

95% power was chosen to be sure to detect the difference if it occurs. Finally, the sample size was large enough because the defect, after process improvement, has completely disappeared.

click on icon to go back

Mean defect quantification by wafer

Major Product Crisis: 8D Resolution Process With JMP[®] Véronique Audran-Esturillo, Jerome Bonnouvrier, Franck Richard ULIS

