OUTLIER SCREENING IN TEST OF AUTOMOTIVE SEMICONDUCTORS

USE OF JMP 12 PRO 'MULTIVARIATE ANALYSIS' PLATFORMS AND 'EXPLORE OUTLIERS' UTILITY

CORINNE BERGÈS BLACK BELT FOR ANALOG & SENSOR QUALITY

15, FEB, 2016

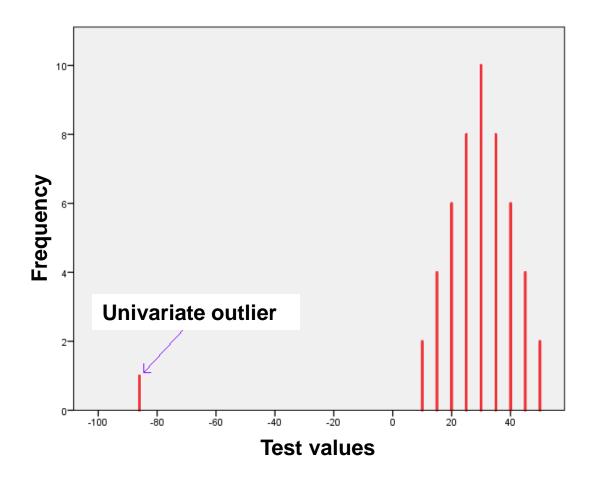
CONFIDENTIAL AND PROPRIETARY

Introduction

- Hundreds of parametric tests per part
- Parts whose test results are far from normal process variability → Likely-to-fail parts / Outliers
- Test \rightarrow Search for outliers
- Outlier detection means:
 - Univariate screening
 - Multivariate screening
 - methods without learning
 - methods with learning

Univariate analysis

Univariate outlier



Multivariate analysis with jmp

Compass

 Presentation on some multivariate techniques that are possible to be run with jmp
 Core at udv for an automative value driver

 \rightarrow Case study for an automotive valve driver

- 2. Considerations about space size
- 3. Efficiency and yield loss
- 4. 'Explore Outliers' jmp platform

1. Some multivariate technics with jmp

• Methods without learning step

Methods needing a learning step

Types of multivariate analysis

Methods without learning step

- -Based on a detection threshold that is directly linked with yield loss
- -Challenge: setting of a threshold that detects returns with the lowest yield loss
- -Examples: Mahalanobis distance estimation, k-means clustering method, deviation estimation from a linear regression

Mahalanobis distance estimation

Spatial distance based on the inverse of the variance-covariance matrix for the p-tests

K-near neighbors and clustering methods

Distance estimation from each observation to the K-near neighbors

Clustering: Iterative algorithm that assigns each observation to the nearest cluster centroid and replaces the last centroids by new ones including the last observation assigned

Deviation estimation from a linear regression

Bivariate method (2 tests) on tests highly correlated

Distance estimation from each point to the linear regression line between the 2 tests

Types of multivariate analysis

Methods needing a learning step

-Implementation step:

- Learning on first well-known customer returns
- Running of the first built model to detect outliers among the following manufactured parts
- Improvement of the first model by new potential returns
- Challenge: building of a model that does not stick to the part sample but that could be used to detect outliers and returns on other following part samples (overfitting risk)
- Examples: discriminant analysis, partial least squares (pls)

Discriminant analysis

Membership prediction in a category (failed/not-failed) from observed values

Search for a test combination that provides a maximal Mahalanobis distance between the two groups

Entropy R-Square measures model fit

Partial Least Squares (PLS)

Trade-off between two purposes: to maximise:

Explained variance of the predictors

Correlation between variables and response

Main method advantage: to be run even if number of tests > number of parts

⁸Two available algorithms: NIPALS and SIMPLS

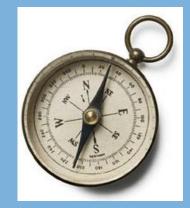
Types of multivariate analysis

Methods without learning step

- -Based on a detection threshold that is directly linked with yield loss
- -Challenge: setting of a threshold that detects returns with the lowest yield loss
- -Examples: Mahalanobis distance estimation, k-means clustering method, deviation estimation from a linear regression

Methods needing a learning step

- -Implementation step:
 - Learning on first well-known customer returns
 - Running of the first built model to detect outliers among the following manufactured parts
 - Improvement of the first model by new potential returns
- -Challenge: building of a model that does not stick to the part sample but that could be used to detect outliers and returns on other following part samples (overfitting risk)
- -Examples: discriminant analysis, partial least squares (pls)



How to do with jmp? Case study for an automotive valve driver

Case study

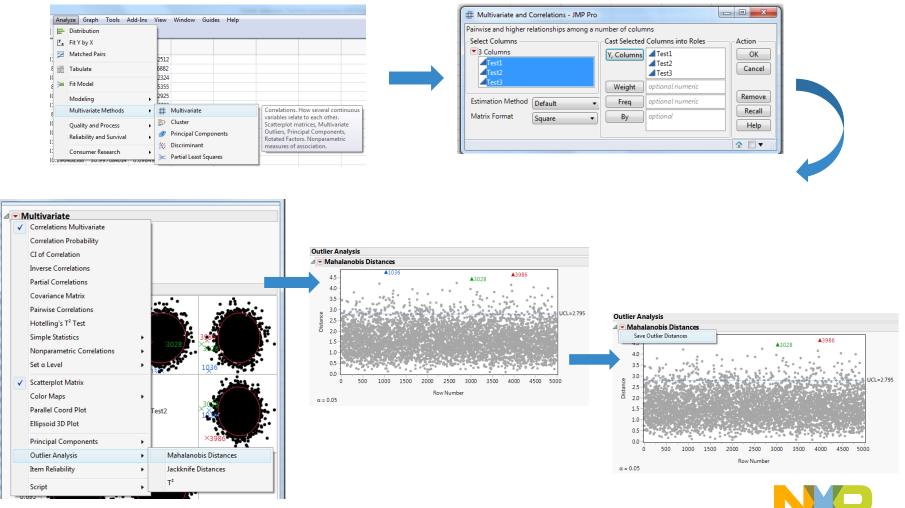
- Product: automotive valve driver
- Failing of univariate detection for several customer returns
- Test of several multivariate analysis methods:
 -745 tests (where standard deviation is not null)
 -13 000 parts → only one is failing = the customer return
 -Around 20 wafers tested at final test (after part assembly)
- Space size: n = 13 000 parts; p = 745 tests
- Question: what is the best multivariate method to detect the customer returns with jmp ?

Methods without learning (1/3)

Mahalanobis distance estimation

Spatial distance based on the inverse of the variance-covariance matrix for the p-tests

File: 'Multivariate analysis.jmp' \rightarrow 3 tests



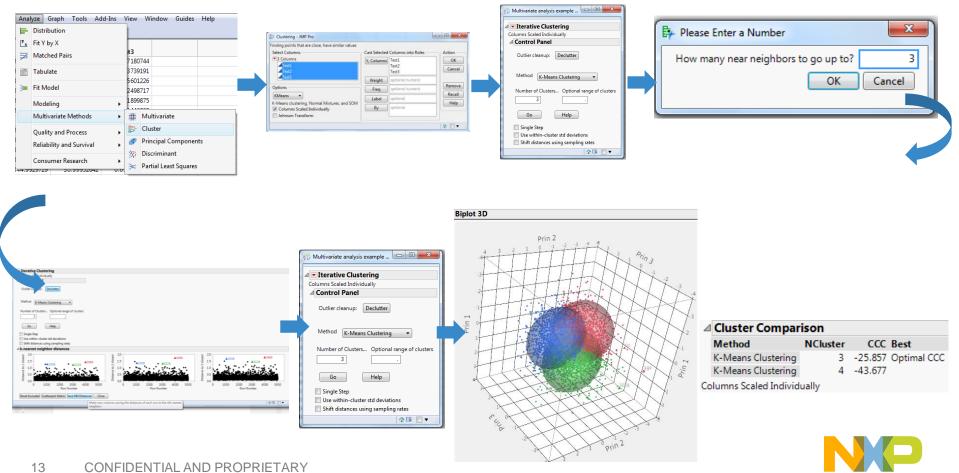
Methods without learning (2/3)

K-near neighbors and clustering methods

Distance estimation from each observation to the K-near neighbors

Clustering: Iterative algorithm that assigns each observation to the nearest cluster centroid and replaces the last centroids by new ones including the last observation assigned

File: 'Multivariate analysis.jmp' \rightarrow 3 tests

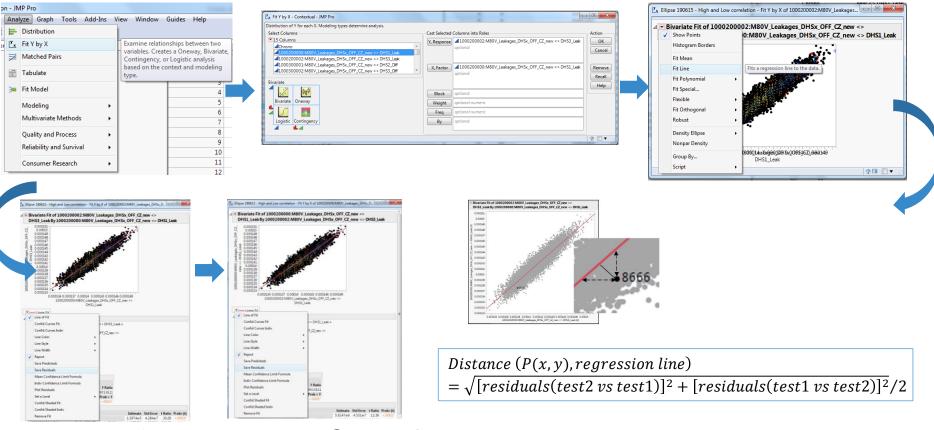


Methods without learning (3/3)

Deviation estimation from a linear regression

Bivariate method (2 tests) on tests highly correlated

Distance estimation from each point to the linear regression line between the 2 tests

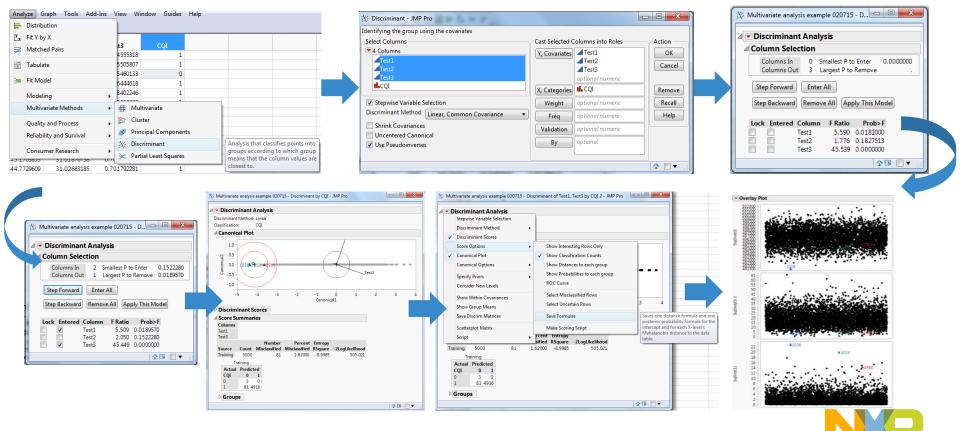


File: 'Bivariate and PCA.jmp'

Discriminant analysis

Membership prediction in a category (failed/not-failed) from observed values Search for a test combination that provides a maximal Mahalanobis distance between the two groups

Entropy R-Square measures model fit



Methods with learning (2/2)

Partial Least Squares (PLS)

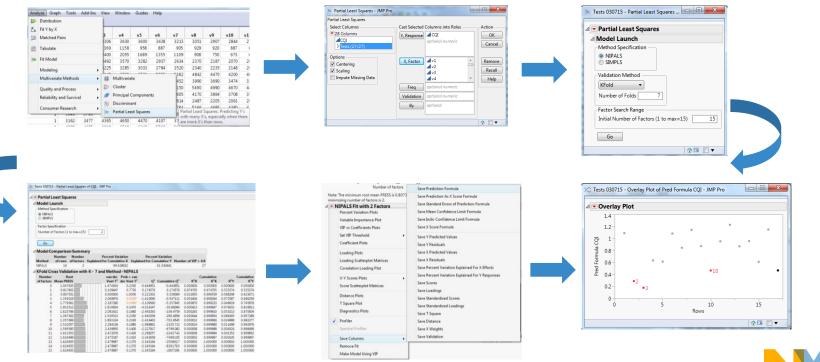
Trade-off between two purposes: to maximise:

Explained variance of the predictors

Correlation between variables and response

Main method advantage: to be run even if number of tests > number of parts

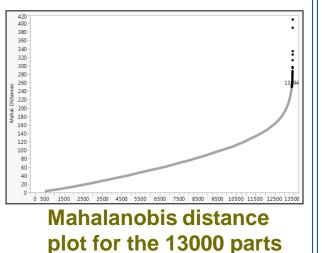
Two available algorithms: NIPALS and SIMPLS



Methods without learning

Mahalanobis distance estimation

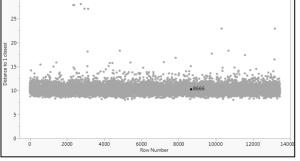
Spatial distance based on the inverse of the variancecovariance matrix for the ptests



K-near neighbors and clustering methods

Distance estimation from each observation to the Knear neighbors

Clustering: Iterative algorithm that assigns each observation to the nearest cluster centroid and replaces the last

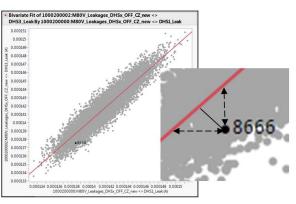


Distance of each part with the first nearest neighbor

Deviation estimation from a linear regression

Bivariate method (2 tests) on tests highly correlated

Distance estimation from each point to the linear regression line between the 2 tests



Distance computation for the return to regression line

Case study: best multivariate method \rightarrow Mahalanobis distance with a yield loss = 0.36%

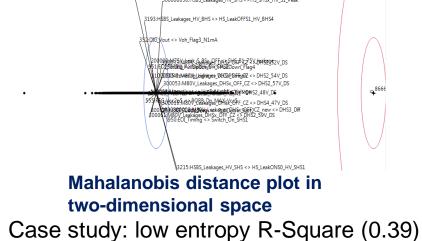
Methods with learning

Discriminant analysis

Membership prediction in a category (failed/not-failed) from observed values

Search for a test combination that provides a maximal Mahalanobis distance between the two groups

Entropy R-Square measures model fit



Partial Least Squares (PLS)

Trade-off between two purposes: to maximise:

Explained variance of the predictors

Correlation between variables and response

Main method advantage: to be run even if number of tests > number of parts

Two available algorithms: NIPALS and SIMPLS

Case study: Mahalanobis distance without learning stays the best multivariate method

2. Space size

Considerations about space size

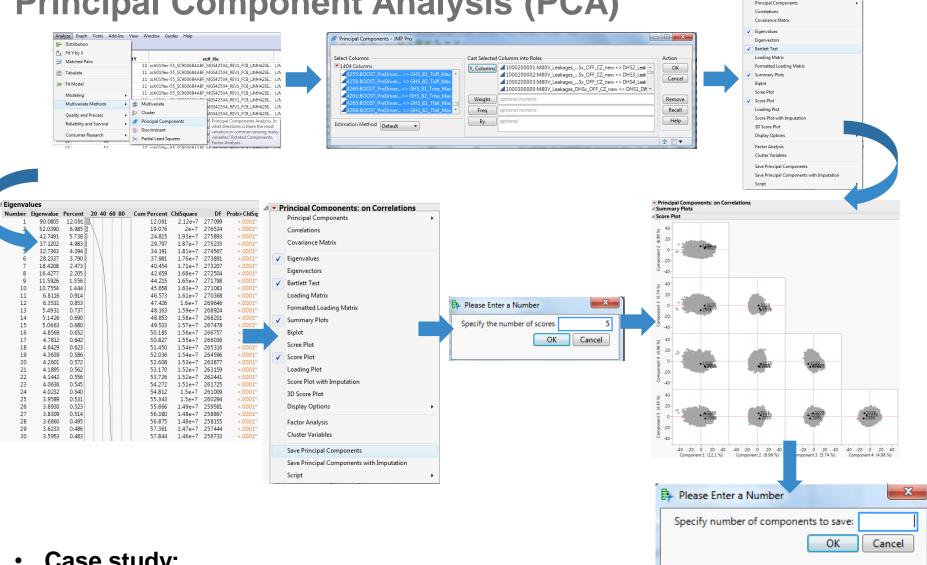
Size reduction motivation:

- -Test reduction:
 - Better results on a reduced space and on correlated tests
 - For the analysis with learning, overfitting risk reduction
- -Part reduction: noise reduction on homogeneous data

Size reduction means:

- -Statistical analysis: Principal Component Analysis (PCA)
- -Other selection criteria: functionality criteria
- -Part reduction: run on wafer lot

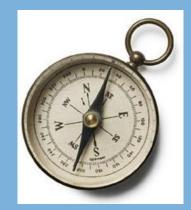
Principal Component Analysis (PCA)



Case study: After PCA, return detected with a higher yield loss (1%)

File: 'Bivariate and PCA.jmp'

Principal Components: on Correlations



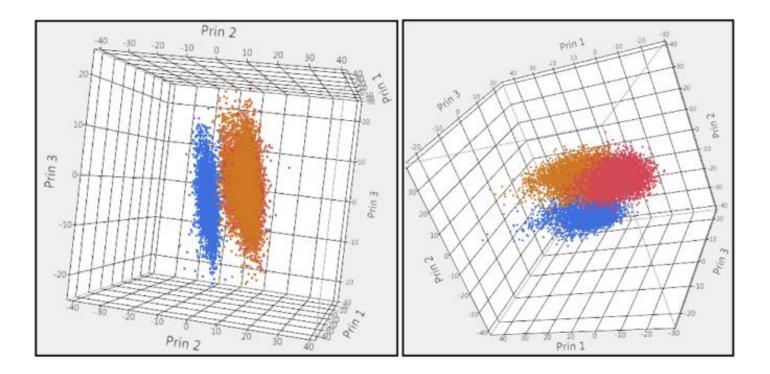
3. Efficiency and yield loss

Efficiency and yield loss (1/5)

- Efficiency: outlier detection ability with minimal yield loss
- One mean to increase efficiency: noise reduction
- Case study: test performed on fours sites → multivariate analysis to vizualize and understand additional noise due to sites:
 - -K-means clustering method
 - -Contingency analysis
 - -ANOVA

Efficiency and yield loss (2/5)

K-means clustering method



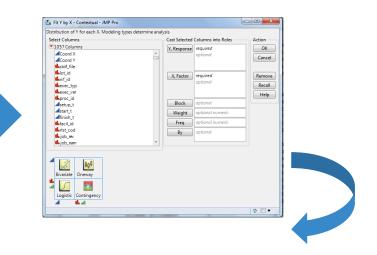
Two clusters observed: -one for one site (blue) \rightarrow Cluster #10 for the following study -one gathering data from three sites \rightarrow Cluster #20 for the following study

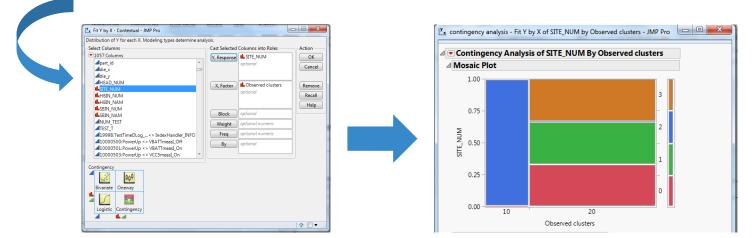
File: 'Noise analysis.jmp'

Efficiency and yield loss (3/5)

Contingency analysis

ļ	Anal	yze Graph Tools Add-Ins	V	iev	v Window	Guides Help)
	F	Distribution					
	<u>у</u> х	Fit Y by X		Examine relationships between two			
	¥	Matched Pairs		variables. Creates a Oneway, Biv Contingency, or Logistic analysi			
		Tabulate			based on the context and modeling type.		
	≽	Fit Model		F	-43.07430	30.755844569	
		Modeling			-40.05552	90.333514466	
_		Multivariate Methods	•	L	-43.05844	69.066349685	
					-43.51316	•	
			•		-39.70832	36.300463122	
					-39.5944	19.184177525	
			<u> </u>		-40.28708	70.448120344	
		Consumer Research	•		-43.12651	36.570943209	
l	_	(2.0)	_		-40.51681	80.405084228	





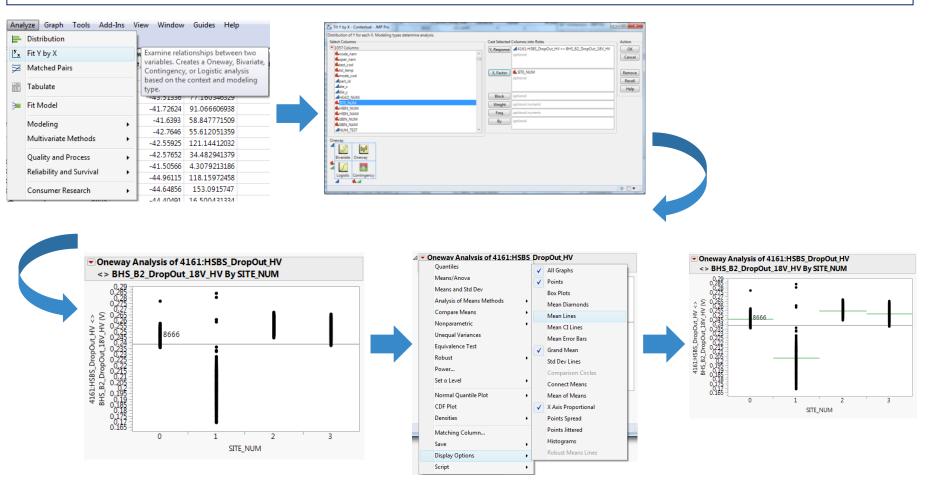
→ Cluster #10 contains site 2 data
→ Cluster #20 contains data from sites 0, 1 and 3

25 CONFIDENTIAL AND PROPRIETARY

File: 'Noise analysis.jmp'

Efficiency and yield loss (4/5)

• ANOVA \rightarrow ANOVA of one test distribution by site



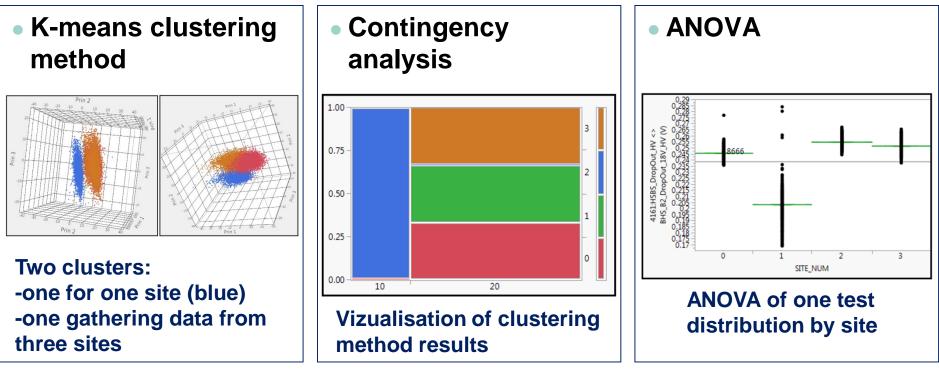
Statistical test to compare means

For this test, data from the site 1 are significantly different from the other sites

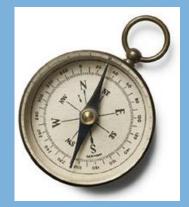
File: 'Noise analysis.jmp'

Efficiency and yield loss (5/5)

- Efficiency: outlier detection ability with minimal yield loss
- One mean to increase efficiency: noise reduction
- Case study: test performed on fours sites → multivariate analysis to vizualize and understand additional noise

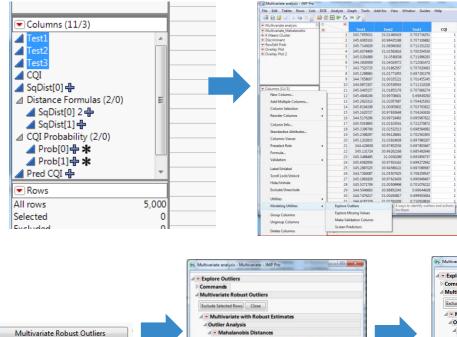


 Noise elimination after part test: possibility to shift and align means of each site → Yield loss decrease



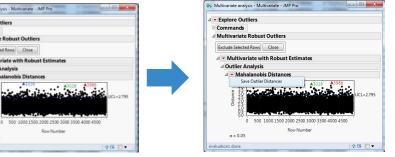
4. 'Explore Outliers' jmp platform

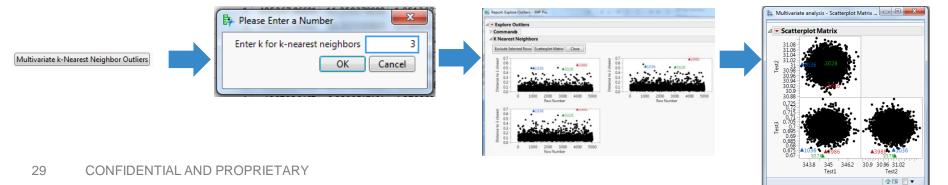
'Explore Outliers' jmp platform File: 'Multivariate analysis.jmp' → 3 tests



a = 0.05

•	Explore Outliers	
4	Commands	
	Quantile Range Outliers	Values farther than some quantile ranges from the tail quantile
	Robust Fit Outliers	Given robust center and scale estimates, values far from center with respect to scale
	Multivariate Robust Outliers	Given a robust centers and covariance, measure Mahalanobis distance
	Multivariate k-Nearest Neighbor Outliers	Outliers far from the kth nearest neighbors





Conclusion

Conclusion

- Outlier detection in univariate analysis → Robust PAT for a better detection (real outliers) and a lower yield loss
- Outlier detection in multivariate analysis:
 - -Many multivariate analysis based on the spatial Mahalanobis distance
 - -Method without learning:
 - Useful data diluted in multidimensional space
 - High computation time and cost
 - In a reduced space, higher yield loss
 - -Method with learning: reduced space but detection failing risk increase
 - One of the easiest method to be implemented: 'distance-to-regressionline estimation' method: Python used in the model design step / EWM in probe
 - Many other methods have to tested, in Python or in jmp, above all when a CQI happens
- In order to improve detection with a lower yield loss, a preliminary step has to be gage study / noise reduction and elimination → will benefit also the univariate analysis

Thank you for your attention

Any question ?

→ Please, feel free to contact Corinne Bergès: corinne.berges@nxp.com

SECURE CONNECTIONS FOR A SMARTER WORLD