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Introduction

1

- Hundreds of parametric tests per part

- Parts whose test results are far from normal process
variability = Likely-to-fail parts / Outliers

- Test 2 Search for outliers

- Outlier detection means:
- Univariate screening

- Multivariate screening
= methods without learning
= methods with learning
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Univariate analysis




Univariate outlier
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Multivariate analysis with jmp




Compass

4.

Presentation on some multivariate techniques that are
possible to be run with jmp

—> Case study for an automotive valve driver
Considerations about space size
Efficiency and yield loss

‘Explore Outliers’ jmp platform
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1. Some multivariate technics with jmp

o Methods without learning step

o Methods needing a learning step




Types of multivariate analysis

- Methods without learning step
-Based on a detection threshold that is direclty linked with yield loss
-Challenge: setting of a threshold that detects returns with the lowest yield loss

-Examples: Mahalanobis distance estimation, k-means clustering method, deviation
estimation from a linear regression

Mahalanobis distance estimation
Spatial distance based on the inverse of the variance-covariance matrix for the p-tests

K-near neighbors and clustering methods
Distance estimation from each observation to the K-near neighbors

Clustering: Iterative algorithm that assigns each observation to the nearest cluster centroid and
replaces the last centroids by new ones including the last observation assigned

Deviation estimation from a linear regression

Bivariate method (2 tests) on tests highly correlated
Distance estimation from each point to the linear regression line between the 2 tests
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Types of multivariate analysis

Methods needing a learning step

-Implementation step:
- Learning on first well-known customer returns
- Running of the first built model to detect outliers among the following manufactured parts
- Improvement of the first model by new potential returns

-Challenge: building of a model that does not stick to the part sample but that could be
used to detect outliers and returns on other following part samples (overfitting risk)

-Examples: discriminant analysis, partial least squares (pls)

Discriminant analysis
Membership prediction in a category (failed/not-failed) from observed values

Search for a test combination that provides a maximal Mahalanobis distance
between the two groups

Entropy R-Square measures model fit

Partial Least Squares (PLS)

Trade-off between two purposes: to maximise:
Explained variance of the predictors
Correlation between variables and response
Main method advantage: to be run even if number of tests > number of parts m o

“Two ‘available algorithms’ NIPALS and SIMPLS oW




Types of multivariate analysis
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Methods without learning step
-Based on a detection threshold that is direclty linked with yield loss
-Challenge: setting of a threshold that detects returns with the lowest yield loss

-Examples: Mahalanobis distance estimation, k-means clustering method, deviation
estimation from a linear regression

Methods needing a learning step
-Implementation step:
- Learning on first well-known customer returns

- Running of the first built model to detect outliers among the following manufactured
parts

- Improvement of the first model by new potential returns

-Challenge: building of a model that does not stick to the part sample but that could be
used to detect outliers and returns on other following part samples (overfitting risk)

-Examples: discriminant analysis, partial least squares (pls)
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How to do with jmp ?
Case study

for an automotive valve driver




Case study

Product: automotive valve driver

- Failing of univariate detection for several customer returns

- Test of several multivariate analysis methods:

-745 tests (where standard deviation is not null)
-13 000 parts - only one is failing = the customer return
-Around 20 wafers tested at final test (after part assembly)

- Space size: n = 13 000 parts; p = 745 tests

- Question: what is the best multivariate method to detect the

11

customer returns with jmp ?
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Methods without learning (1/3)

Mahalanobis distance estimation
Spatial distance based on the inverse of the variance-covariance matrix for the p-tests

File: ‘Multivariate analysis.jmp’ > 3 tests
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Methods without learning (2/3)

K-near neighbors and clustering methods
Distance estimation from each observation to the K-near neighbors

Clustering: Iterative algorithm that assigns each observation to the nearest cluster centroid and
replaces the last centroids by new ones including the last observation assigned

File: ‘Multivariate analysis.jmp’ > 3 tests
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4 Multivariate analysis example .. (121, SRES

Analyze | Graph Tools Add-ns View Window Guides Help
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Methods without learning (3/3)

Deviation estimation from a linear regression

Bivariate method (2 tests) on tests highly correlated
Distance estimation from each point to the linear regression line between the 2 tests

r o b
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Methods with learning (1/2)

Discriminant analysis
Membership prediction in a category (failed/not-failed) from observed values

Search for a test combination that provides a maximal Mahalanobis distance
between the two groups

Entropy R-Square measures model fit

: Multivariate analysis example 020715 - DE‘E‘—J
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Methods with learning (2/2)

Partial Least Squares (PLS)

Trade-off between two purposes: to maximise:

Explained variance of the predictors

Correlation between variables and response

Main method advantage: to be run even if number of tests > number of parts
Two available algorithms: NIPALS and SIMPLS
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Methods without

earning

Mahalanobis
distance estimation

Spatial distance based on
the inverse of the variance-
covariance matrix for the p-
tests
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K-near neighbors and
clustering methods

Distance estimation from
each observation to the K-
near neighbors

Clustering: Iterative
algorithm that assigns
each observation to the
nearest cluster centroid

Deviation estimation
from alinear
regression

Bivariate method (2 tests) on
tests highly correlated

Distance estimation from
each point to the linear
regression line between the 2
tests

and replaces the last

55555

2000 4000 6000 8000 10000 12000

000200002:M80V_Leakages DHSx OFF_CZ new <>
B; 200000:M80V_Leakages_DHSx OFF_CZ_new <> DHSI Leak

’ |

Mahalanobis distance
plot for the 13000 parts

Distance of each part with

the first nearest neighbor

Distance computation for
the return to regression line

Case study: best multivariate method - Mahalanobis distance with a yield loss = 0.36%

17 CONFIDENTIAL AND PROPRIETARY

4\




Methods with learning

Discriminant analysis  Partial Least Squares (PLS)
Membership prediction in a category Trade-off between two purposes: to
(failed/not-failed) from observed maximise:

values

o Explained variance of the predictors
Search for a test combination that

provides a maximal Mahalanobis Correlation between variables and

distance between the two groups response
Entropy R-Square measures model fit Main method advantage: to be run even
if number of tests > number of parts
s Two available algorithms: NIPALS and

|
8666
LS

| '\ ?FMOEQEMMW# &?F _(Z <> DHS4 47V DS
an\fﬂ&m gHSx%ﬂF Lo 58&52 e

Mahalanobis distance plot in
two-dimensional space

Case study: low entropy R-Square (0.39)

Case study: Mahalanobis distance without learning stays the best multivariate method

h -
L |

18 CONFIDENTIAL AND PROPRIETARY




2. Space size




Considerations about space size

- Size reduction motivation:
-Test reduction:

- Better results on a reduced space and on correlated
tests

- For the analysis with learning, overfitting risk reduction
-Part reduction: noise reduction on homogeneous data

- Size reduction means:
-Statistical analysis: Principal Component Analysis (PCA)
-Other selection criteria: functionality criteria
-Part reduction: run on wafer lot

h -
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Principal Component Analysis (PCA)

Graph Tools Add-Ins View
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Matched Pairs

Tabulate
Fit Model

Modeling
Multivariate Methods

Quality and Process
Reliability and Survival

Consumer Research

Window Guides Help

[«
o

Principal Components »
Correlations

Covariance Matrix

W

4 Eigenvalues
Number _Ei

R Bl

Percent 20 40 60 80 Cum Percent ChiSquare

Multivariate

Cluster
Principal Components
Discriminant

Partial Least Squares

1 90,0805

52.0390
42,7491
37.1202
327363

6 28.2337
7 18.4208
8 164277
9 11.5926
10 10.7554
11 6.8116
12 6.3531
13 5.4031
14 5.1426
15 5.0663
16 4.8560
17 47812
18 46429
19 43639
20 4.2601
21 41895
22 41442
23 4.0636
24 40232
25 3.9589
26 3.8930
27 3.8309
28 3.6860
29 3.6233
30 3.5953

21

12,001
6.985
5738
4.983

Factor Analysis.
TR~ 1Ay S8 CPONNRRANGE Mra

A

DF Prob>ChiSq
12091 212e+7 277099 <.0001*
19.076 2e+7 276334 <.0001*
24815  193e+7 275893 <.0001*
29797  187e+7 275235 <.0001*
34191 18le+7 274567 <.0001%
37981 176e+7 273801 <.0001%
40454 171e+7 273207 <.0001%
42659  168e+7 272504 <.0001%
44215  1.65e+7 271798 <.0001%
45658  1.63e+7 271083 <.0001*
46.573  161e+7 270368 <.0001*
47.426 1.6e+7 269646 <.0001*
48163  1.50e+7 268924 <.0001*
48.853  158e+7 268201 <.0001*
48533 157e+7 267478 <.0001*
50.185  156e+7 266757 <
50.827  1.55e+7 266036 <
51430  154e+7 265316 <.0001*
52,036 154e+7 26439% <.0001*
52,608 153e+7 263877 <.0001%
53.170  152e+7 263159 <.0001%
53726 152e+7 262441 <.0001%
54272  151e+7 261725 <.0001%
54.812 1.5e+7 261009 <.0001%
55.343 1.5e+7 260294 <.0001*
55.866 ~149e+7 259581 <.0001*
56.380 148e+7 258867 <.0001*
56.875 148e+7 258155 <.0001*
57.361  147e+7 257444 <.0001*
57.844  146e+7 256733 <.0001*

Case study: L
After PCA, return detected with a higher yield loss (1%)
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File: ‘Bivariate and PCA.mp’
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3. Efficiency and yield loss




Efficiency and yield loss (1/5)

- Efficiency: outlier detection ability with minimal yield
loss

- One mean to increase efficiency: noise reduction

- Case study: test performed on fours sites -
multivariate analysis to vizualize and understand
additional noise due to sites:

-K-means clustering method
-Contingency analysis
-ANOVA
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d yield loss (2/5)

iciency an

Eff

K-means clustering method

Prinl

Prin 2

Two clusters observed:

-one for one site (blue) =2 Cluster #10 for the following study

-one gathering data from three sites = Cluster #20 for the following study

)

File: ‘Noise analysis.mp’
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Efficiency and yield loss (3/5)

Contingency analysis
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- Cluster #10 contains site 2 data

- Cluster #20 contains data from sites 0, 1 and 3
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Efficiency and yield loss (4/5)
ANOVA -2 ANOVA of one test distribution by site
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Statistical test to compare means
For this test, data from the site 1 are significantly different from the other sites
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Efficiency and yield loss (5/5)

- Efficiency: outlier detection ability with minimal yield loss

- One mean to increase efficiency: noise reduction

- Case study: test performed on fours sites = multivariate analysis to
vizualize and understand additional noise

K-means clustering
method

Contingency
analysis

ANOVA

Two clusters:

-one for one site (blue)
-one gathering data from
three sites

1.00
0.75
0.50

0.25

0.00

10

4161:HSBS_DropOut_HV
BHS_B2_DropOut_18V_HV (V)

o O O O O O O O O O O O
CEERIR RN IRONERINTRE
SO0 =

.
+ .

RO O OO

AU A AR A A
e -

0 1 2 3
SITE_NUM

Vizualisation of clustering
method results

ANOVA of one test
distribution by site

Noise elimination after part test: possibility to shift and align means
of each site = Yield loss decrease
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4. ‘Explore QOutliers’ jmp platform




‘Explore Outliers’ jmp platform

*|Columns (11/3)
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A Distance Formulas (2/0) =
4l SqDist[0] 2k
A sqDist1]4p
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File: ‘Multivariate analysis.jmp’ - 3 tests

2= Report: Explore Outliers - JMP Pro

-:»Elg

4 |~|Explore Outliers
4 Commands

[ Quantile Range Outliers

] Values farther than some quantile ranges from the tail quantile

[ Robust Fit Outliers

Given robust center and scale estimates, values far from center with

respect to scale

[ Multivariate Robust Outliers

] Given a robust centers and covariance, measure Mahalanobis

distance

[Multwariate k-Mearest Neighbor Outliers] QOutliers far from the kth nearest neighbors

B Multivariate analysis - M

fiate - MP Pro

» Commands
4 Multivariate

=005

evaluations done

4 = Explore Outliers

Exclude Selected Rows]

4=/ Multivariate with Robust Estimates.
4 Outlier Analysis
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Conclusion




Conclusion

- Outlier detection in univariate analysis = Robust PAT for a better
detection (real outliers) and a lower yield loss

- Quitlier detection in multivariate analysis:
-Many multivariate analysis based on the spatial Mahalanobis distance

-Method without learning:
- Useful data diluted in multidimensional space
- High computation time and cost
- In a reduced space, higher yield loss
-Method with learning: reduced space but detection failing risk increase

-One of the easiest method to be implemented: ‘distance-to-regression-
line estimation’ method: Python used in the model design step / EWM in
probe

-Many other methods have to tested, in Python or in jmp, above all when
a CQI happens

- In order to improve detection with a lower yield loss, a preliminary step
has to be gage study / noise reduction and elimination = will benefit
also the univariate analysis r
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Thank you for your attention

Any gquestion ?
- Please, feel free to contact Corinne Berges:
corinne.berges@nxp.com
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