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1 INTRODUCTION 
 
The French Lorraine iron ore basin extends over 

1700 square kilometers in the eastern part of France 
and involves more than 150 cities. Figure 1 shows a 
geographical situation map of the basin. The basin 
had been worked out since the 19th and 20th centuries. 
In 1997 the industrial extraction of the deposit came 
to an end, leaving almost 40 000 km of galleries in the 
Lorraine underground, a void volume of 3 billions cu-
bic meters.  

 

 
Figure 1. Geographical situation of the Lorraine iron basin 
 
The method of exploitation consisted of rooms and 

pillars of various shapes followed by integral stoop-
ing (Figure 2). In cases where the remained pillars 
were taken off, surface collapse occurred in a more or 
less controlled way, and in order to consider surface 
structures (houses, roads, infrastructure, etc.), the 
method of exploitation consisted of leaving in place 
“enough” amount of pillars (varying from 80% to 
30%) in order to prevent uncontrolled collapse from 
occurring. 

 

 
 

Figure 2. Room and pillar mining. 
 
Unfortunately, the percentage of pillars left in 

place depended largely on the experience rather than 
depending on long-term stability analysis. 

On numerous occasions during its exploitation, the 
Lorraine Iron Basin was at the centre stage of uncon-
trolled subsidence having important effects on the 
surface. The oldest recorded event goes back in 1902. 
The most recent one in 2012. 

The history of well-known subsidence phenomena 
across this basin have brought about the distinction of 
two types: those that happen with sudden surface 
movement (in a matter of seconds), and those that 
happen over time (a few days, even months). Some of 
these events have been to such a scale that the houses 
have been expropriated because of the extent of the 
damage. 

With the end of mining activity (1997) and the sale 
of miners’ dwellings, the question of subsidence, 
hitherto an industrial hazard, became an environmen-
tal risk. The damage caused by mining, an issue pre-
viously addressed privately by the owners, became 
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ABSTRACT:  
Surface collapse is a major problem that follows many active or abandoned underground workings. Collapses 

result from roof deformation of underground workings, and/or controlled or uncontrolled rock caving. The 
uncontrolled rock caving could result in surface instability problems and loss of materials and/or human lives. 
Over the last century, and as a result of underground-uncontrolled rock caving, major accidents due to surface 
collapse have been reported in France. Some of these collapses were sudden and violent, happened over a few 
minutes and up to a few hours, and led to loss of life. Others occurred progressively, within a few days, and 
with fewer effects on the surface environment. The sudden occurrence of these accidents is of big interest in 
order to be able to predict the risk induced by abandoned underground mines, especially in areas where we’ve 
built cities and where people live. The objective of this presentation is to show how JMP data analysis platforms 
(Principal Component Analysis, Discriminant Analysis and Partition Modelling) help define criteria of accident 
rapidity where it is probable to occur according to the site’s geotechnical and exploitation properties. 
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the responsibility of government services (GEODE-
RIS) when mining concessions were handed over to 
the State.    

This increased concern of regional authority led 
GEODERIS to try to define for the basin (where geo-
logical situations are almost the same) a criterion of 
discrimination between situations (underground 
workings) where brutal collapses are likely to happen 
and others where progressive ones are to be expected. 

 In 1998, GEODERIS experts have started with a 
back-analysis of the cases already happened during 
the 20th century and they finally selected 16 “refer-
ence” accidents of unpredicted collapses in the basin.  

We performed a statistical data analysis taking into 
consideration all available information. 

With the aid of techniques like Principal Compo-
nents Analysis (PCA) and Discriminant Analysis 
(DA), we were able to define such criterion (2000). 

 
Since this first study, GEODERIS experts have 

identified other areas where subsidence literature 
searches and archives have been undertaken. Further-
more, several of subsidence phenomena occurred in 
the years 2000. An update of the base of mining sub-
sidence and collapse was possible. This research has 
allowed to identify 70 cases, including the 16 refer-
ence cases used up to now. 

We have then performed a new statistical data 
analysis, and compared the new results with the old 
ones (2014). 

2 GEOLOGICAL AND GEOTECHNICAL 
ASPECTS 

Tincelin (1959) pointed out that in order to expect a 
brutal collapse, three geological conditions have to 
take place. These three conditions are;  

1. the existence of a hard rock seam at the roof 
of the extracted iron bed; 

2. the existence of a hard rock seam near the sur-
face; 

3. and the existence of an adjacent valley. 
According to the geological study of the accidents’ 

areas, GEODERIS experts were not able to prove that 
these criterions were discriminant due to the fact that 
in many situations where progressive collapse hap-
pened, these three conditions were also present. This 
fact allowed them to say that there might be some ge-
ological conditions that could favour the existence of 
brutal collapse, but they cannot just rely only on these 
three conditions for an overall discrimination in the 
basin.  

One of the major problems that experts have faced 
in working out on the back analysis is that in two ad-
jacent situations, with the same geotechnical and ge-
ological conditions, brutal and progressive collapses 
occurred. This fact led them to conclude that not only 

geotechnical and geological conditions can discrimi-
nate between these two types of collapse, but they 
have to be coupled with geometrical conditions of ex-
traction (ratio between extracted ore and ore left in 
place, size of pillars, depth, etc.). 

3 FIRST STATISTICAL DATA ANALYSIS 
(2000) 

In 1998, GEODERIS experts have selected 16 
“reference” accidents of unpredicted collapses in the 
basin. Eight of them happened in a sudden and brutal 
way and led in sometimes to loss of life (brutal), while 
others happened in a progressive way and led only to 
the destruction of houses and infrastructures (progres-
sive). They localized and reported any geological, ge-
otechnical, or geometrical aspects over these 16 
cases. 

3.1 Data collection and preparation 
Among the collected variables in the subsided 

zones, experts have chosen these seven measured or 
observed variables:  
• width of rooms (m) “W_Gal”; 
• depth of the subsided zone (m) “H”; 
• thickness of exploited seams (m) “W”; 
• “C_surch”, a constant parameter characteriz-

ing whether the subsided zone is adjacent to 
other zones of exploitation (virgin zone, a zone 
adjacent to a caved zone, and a zone sur-
rounded by caved zones). 

The collected variables included also calculated 
variables that have physical significance:  
• ratio between volume extracted and initial vol-

ume in place (%) “Defruit”. 
• Hydraulic diameter of pillars (m) 

“Diam_hydr”. 
• maximum stress applied to pillars (MPa) 

“Sigma_tot”  
• “Type”, the type of observed collapse (Pro-

gressive or Brutal). 
We have also assigned an ID for each individual. 

3.2 Principal Components Analysis (PCA) 
In order to see the relationships between our seven 
parameters, we first performed a Principal Compo-
nent Analysis (PCA). PCA is a multivariate technique 
of data analysis in which all continuous variables are 
simultaneously considered. The general purpose of 
this analysis is first to “X-Ray” the set of original var-
iables, and second to find a way of condensing the in-
formation contained in the original variables into a 
smaller set of new composite dimensions (compo-
nents) with a minimum loss of information (Hair et 
al., 1992). 
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Here, the PCA was conducted on the correlation 
matrix to overcome the heterogeneity of quantitative 
variables. We also have used a qualitative variable 
Type to distinguish by colour the two types of col-
lapse on the different plots (red=brutal-blue=progres-
sive). 

In a multivariate space of n dimensions, each var-
iable in the model counts for one dimension. The ei-
genvalues of the correlation matrix might be thought 
of as the amount of variability that is included in each 
eigenvector, i.e. the amount of variability included in 
each component. Depending on the amount of varia-
bility that included in each component, we can decide 
to keep only a limited number of components that in-
clude most of the variability of the model. 

Our objective of using this type of factor analysis 
was to try to find from all collected variables, the ones 
that have significant representation of the population 
of 16 individuals. This technique allowed us to know 
which observed/calculated variables are correlated 
with the type of collapse and though could be used in 
the discriminant process.  

Figure 3 shows the plot of correlation circle, or 
loading plot, i.e. projection of the observed variables, 
over planes defined by “First and Second” compo-
nents of the PCA. 

In the principal component analysis, we can also 
make a projection of the individuals over the different 
planes defined by different components. The coordi-
nates of each individual present their values with re-
spect to different principal components. Figures 4 
shows the projection of individuals over the factorial 
plane defines by components 1 & 2. 

From these projections over the first, second com-
ponents, we were able to remark that: 
• The first factorial plane or Score Plot (1 & 2) 

include 66,5% of the variability of the model. 
• From the projection of individuals over the 

factorial plane 1 & 2, we can see clearly a vis-
ual discrimination between brutal and progres-
sive collapses. This fact led us to concentrate 
on the factorial plane 1 & 2 in order to extract 
the variables that could enhance the discrimi-
nation between the individuals. 

• The three variables Defruit, Sigma_tot, and 
W_gal seem to characterize the separation 
between the two types of collapses. 

 

 
Figure 1. Correlation circle: Factor plot of variables over the fac-
torial plane defined by the first two components of the factor 
analysis (JMP loading plot) 
 

 
Figure 4. Projection of 16 “historical” collapses over the facto-
rial plane 1 & 2 red=brutal blue=progressive (JMP score plot) 

3.3 Discriminant Analysis 
We wanted to find the best way to distinguish be-
tween the two types of collapse. The analysis of vari-
ance is the right method to choose the best continuous 
variable able to do so. We have performed one-way 
analysis of variance on each of the seven continuous 
variables, and the three variables that discriminate the 
2 types of collapse (α= 5%), are, in descending order 
of power, Defruit, Sigma_tot, and Diam_hydr. Fig 4 
shows the JMP results for Defruit. 
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Figure 4. One-way Analysis of Defruit by Type  
 
The Discriminant Analysis (DA) is the appropriate 
statistical multivariate technique when we want to use 
the whole set of independent continuous variables “at 
the same time” to define a discriminant function. Hair 
et al. (1992). 

This technique is also widely used in many situa-
tions where the objective is to identify the group to 
which an object belongs. 

In our case, the discriminant analysis is to be used 
in order to define a discriminant function that sepa-
rates our population of individuals (collapses) into the 
two observed groups (brutal and progressive).  

As mentioned earlier in the principal components 
analysis and in the one-way analysis of variance, we 
were able to define a group of variables (those highly 
correlated with the first and second components) to 
be included in the discriminant analysis and that the 
variable Defruit is most likely, the best one to start 
with.  

Discriminant analysis could be performed in a sim-
ultaneous approach, i.e., all independent variables are 
considered concurrently, or it could be done in step-
wise approach, i.e. variables are entered one by one 
into the discriminant function depending on their dis-
criminating power.  

The simultaneous approach is appropriate when, 
for theoretical reasons, the analyst wants to include 
all the independent variables in the analysis and is not 
interested in seeing intermediate results based only on 
the most discriminating variables. The GEODERIS 
experts have required such a result: for geotechnical 
reasons, they wanted to use a discriminant function 
with all the 7 parameters (continuous variables) they 
have identified. 

 

3.3.1 Results of the discriminant analysis 
 
Figure 5 presents the score summaries resulting of 

this discriminant analysis. There is no surprise: all the 
collapses are well classified. 

 

 
Figure 5. Score Summaries. 

 
Figure 6 presents a graph of projection of individ-

uals, over the resulting discriminant function 
Canon(1). As the discriminant function has only one 
dimension (there are only two groups of collapses), 
the X axis and the Y axis both plot the same canonical 
coordinates for presentation purpose only. The two 
categories of individuals are perfectly discriminated 
on the graph.  

 
 

 
 
Figure 6. 16 collapses projected over the discriminant dimen-
sion. 
 

We were able to define, with the help of site’s ex-
perts a discriminant function that could be used in the 
discrimination of new studied zones, or zones of high 
importance to the society. 

This statistical analysis has contributed to the def-
inition of hazard map where one can provide areas of 
likely to subside in a brutal way and others likely to 
subside in a progressive way. Figure 7 shows an ex-
ample of such a map. 
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Figure 7. Example of a hazard zones map 

 

4 SECOND STATISTICAL DATA ANALYSIS 
(2014) 

4.1 Introduction 
Since this first study in 1999, GEODERIS experts 

have identified other areas where subsidence litera-
ture searches and archives have been undertaken. Fur-
thermore, several of subsidence phenomena occurred 
in the years 2000. An update of the base of mining 
subsidence and collapse was possible. This 2014 re-
search has identified 70 cases, including the 16 refer-
ence cases used up to now. But experts have only 
identified the type for 31 collapses: the previous 8 as 
brutal, and 23 as progressive. They were unable to 
assign a type to the other 39. 

We have then performed a new statistical data 
analysis, and compared the new results with the old 
ones (2014). 

4.2 Principal Components Analysis (PCA) 
A new PCA is made considering only 31 collapses 

that we know to be either brutal (8) or progressive 
(23) as “active” individuals. The other 39 collapses 
which we do not know the type are taken as 
“additional” individuals. We use the same 7 
parameters (variables) as before. 

Figure 8 shows the new correlation circle, or load-
ing plot, i.e. projection of the observed variables over 
planes defined by “First and Second” components of 
the factor analysis. And Figure 9 shows the projection 
of individuals over the factorial plane defined by 
components 1 & 2. 

From these plots, we are able to remark that: 

• The first factorial plane or Score Plot (1 & 2) 
include 66,5% of the variability of the model. 

• From the projection of individuals over the 
factorial plane 1 & 2, we can still see a visual 
discrimination between brutal and progressive 
collapses.  

• The three variables Defruit, Sigma_tot, W_gal 
seem to characterize this separation between 
the two types of collapses. 

 
 

 
Figure 8. Factor plot of variables over the factorial plane defined 
by the first two components of the factor analysis (JMP loading 
plot) 

 
 

 
Figure 9. Projection of 31 known collapses over the factorial 
plane 1 & 2 8 red=brutal 23 blue=progressive (JMP score plot) 

 
JMP don’t give directly the projections of 39 “sup-

plementary” individuals over the factorial plane 1 & 
2. But we can save their coordinates over the first two 
factorial axes, and then use an overlay plot to get the 
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projections of the 70 points over the factorial plane 1 
& 2 (Figure 9).  So we can have an idea about the type 
of collapse for the 39 “unknown” individuals (black 
points). 

 
 

 
Figure 9. Projection of the 70 collapses over the factorial plane 
1 & 2 8 red=brutal 23 blue=progressive 39 black=unknown 
(JMP score plot) 

4.3 Discriminant Analysis 
We have also performed analysis of variance on each 
of the 7 continuous variables, still considering only 
31 collapses that we know to be either brutal (8) or 
progressive (23). We find 5 variables that 
discriminate the 2 types of collapse (α= 5%), in 
descending order of power, Defruit, Sigma_tot, 
Diam_hydr, W and W_gal. Fig 10 shows the JMP 
results for Defruit. 

 
 

 
Figure 10. One-way Analysis of Defruit by Type  
 

For the same reasons explained before, we have 
then performed a Discriminant Analysis (DA) to get 
a discriminant function with all the seven parameters 
(continuous variables) GEODERIS experts have 
identified. This DA has been trained on the sample of 

the 31 collapses whose type is known: either brutal or 
progressive. So the resulting discriminant function 
has only one dimension. This new discriminant func-
tion is of course different from the first one obtained 
in 2000, because we used 31 collapses (8 brutal and 
23 progressive) to train it. The previous function used 
only 16 (8+8) cases. 
 

4.3.1 Results of the discriminant analysis 
 
Figure presents the group membership resulting of 

this discriminant analysis. There is no surprise: all the 
collapses whose type is known are perfectly classi-
fied. More interesting, the 39 collapses whose type is 
initially unknown are now classified: 10 get the brutal 
type and 29 the progressive one. 

 

 
Figure 11. Group membership of 70 collapses 

 
Figure 12 presents a graph of projection of individ-

uals, over the resulting discriminant function 
Canon(1). As the discriminant function has only one 
dimension, the X axis and the Y axis both plot the 
same canonical coordinates for presentation purpose 
only. The two categories of the 31 individuals whose 
type is known are perfectly discriminated on the 
graph. The “black points” refer to the 39 “unknown” 
individuals. 

 

 
Figure 12. 70 collapses projected over the discriminant dimen-
sion. 
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This analysis of 70 events establishes an 
operational discriminant function which still 
mainly uses variables Defruit and Sigma_tot is not 
very different from the first function. The results 
are similar :  

• 8 sudden collapses are properly classified 
as brutal ; 23 progressive collapses are 
properly classified as progressive. 

• 10 of the 39 unknown collapses are 
classified as brutal and 29 as progressive.  

The principle of hazard qualification consists then 
of combining criteria to characterize the collapses; 
for instance, geological criteria are used to further 
examine the 10 collapses classified as brutal by the 
discriminant analysis. The final hazard maps are 
the result of the whole process of expertise.  

5 CONCLUSION: JMP AND STATISTICAL 
EXPERTISE 

In the context of the difficult management of the 
“Post-Mining” phase, French Authorities have devel-
oped a technical and administrative tool: The Mining 
Risk Prevention Plans (MRPP). MRPP aim to iden-
tify the most sensitive areas subject to “post mining 
hazards” and to define technical and regulation rules 
able to manage the principles of the future urbanism 
development on surface (Didier and Leloup, 2005). 
According to the French law, experts in charge of the 
evaluation have to work given the state of knowledge. 
The first question, concerning the existence of poten-
tial sources of hazard, is basically relative to the con-
fidence or trust of the experts regarding the data they 
collected. In the context of MRPP, concerning for ex-
ample the problems of surface instabilities, the 
sources of hazard are clearly the old mining infra-
structures (underground workings, shafts, etc.). 
Experts are limited by the quality of the information 
they can collect in the field or in archives. They usu-
ally have to face problems concerning the reliability 
of the mining maps (incompleteness, bad adjustment 
in comparison to surface, etc., cf. Figure 13), the in-
formal nature of several data (oral statements, news-
paper articles, etc.) or the difficulty to analyze events 
that occurred in the past (past collapse that is no more 
visible on surface at the time of the study, etc.). 

 
Figure 13. Example of mining map 
 

 
In this field of applied science and technology where 
the regime of proof is not the laboratory one (the “true 
versus false” dichotomy is no longer relevant), the 
statistician is the expert who deals with uncertainty, 
who explains the results in terms of confidence 
interval. And he naturally finds his place in the 
process of expertise alongside his geotechnical 
colleagues, psycho-sociologists, planners, etc. 
That's where JMP expresses all its qualities of 
decision support tool. Its extreme friendliness allows 
the statistician to be very reactive in expert meetings 
and immediately test the assumptions of each other 
(what if ?). 
Statistical analyzes presented here are very simple 
and can even seem sketchy, but when they are 
associated with dynamic visualizations (e.g. use of 
pictures illustrating some points on a factorial plane), 
they contribute to the enrichment of cross 
interpretations of experts.  
 
But in fact, when it’s time to assess ‘how stable the 
situation is’, we are talking in terms of risk and ac-
ceptance. It is now up to the stakeholders, not just to 
the experts or the engineers, to decide whether the sit-
uation is acceptable or not, and whether uncertainty 
on the result has to be reduced or not. And a kind of 
L’Aquila syndrome is not so far (Figure 14). 
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Figure 14. At Fault? 
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