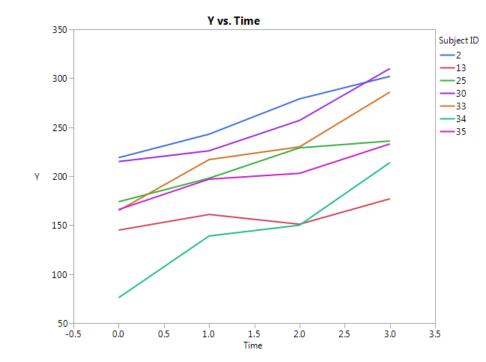

RANDOM COEFFICIENT MODELS HOW TO MODEL LONGITUDINAL AND HIERARCHICAL DATA IN JMP[®] PRO

Copyright © 2012, SAS Institute Inc. All rights r

RANDOM COEFFICIENT MODELS

- Intercepts and slopes randomly distributed – potentially correlated
 - Hence "random coefficient"
- Multilevel situations
 - Observe students within schools
 - Commonly referred to as
 Hierarchical Linear Models (HLM)
- Hierarchical Bayes models
 - Similar in the Bayesian context
 - Not our focus today

WHY THE DIFFERENT STATISTICS IS A "YOUNG" DISCIPLINE TERMINOLOGY?


- · Researchers in other disciplines had problems to solve
- Developed similar methods simultaneously
 - R.A. Fisher biologist, field research at Rothamsted, random effects
 - C.R. Henderson animal breeding, best linear unbiased predictor (BLUP)
 - A.S. Bryk & S.W. Raudenbush sociology and education, HLM

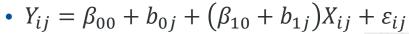
DEFINING THE MODEL A LITTLE MATH

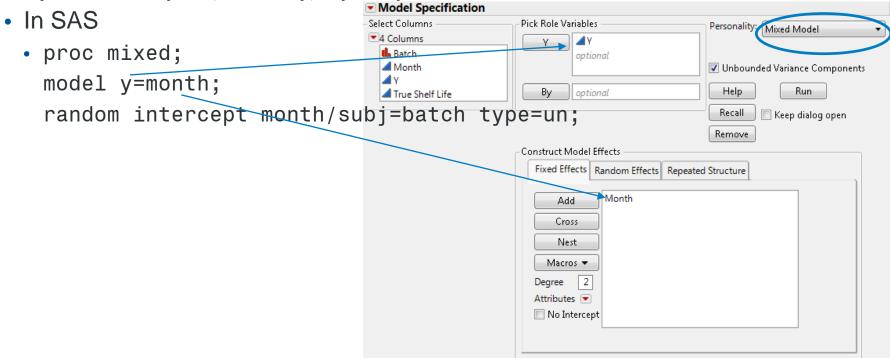
- $Y_{ij} = \beta_0 + b_{0j} + (\beta_1 + b_{1j})X_{ij} + \varepsilon_{ij}$
 - Y_{ij} is the ith observation on the ^{jth} subject
 - β₀ and β₁ are the fixed (population) effect intercept and slope
 - *b*_{0j} and *b*_{1j} are the random (subject) effect intercept and slope
 - $\binom{b_{0j}}{b_{1j}} \sim N\left(\begin{pmatrix}0\\0\end{pmatrix}, \begin{pmatrix}\tau_{00} & \tau_{01}\\\tau_{10} & \tau_{11}\end{pmatrix}\right)$
 - ε_{ij} is the random error for the ijth observation assumed ~N(0,σ²)

HLM IS RANDOM COEFFICIENT? A LITTLE MORE MATH

- Singer (1998) showed in a paper "translating" HLM for use with SAS PROC MIXED
- Level 1
 - $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + \varepsilon_{ij}$
- Level 2
 - $\beta_{0j} = \beta_{00} + b_{0j} + [\beta_{01}X_{01j} + \cdots]$
 - $\beta_{1j} = \beta_{10} + b_{1j} + [\beta_{11}X_{11j} + \cdots]$
- Combined
 - $Y_{ij} = \beta_{00} + b_{0j} + (\beta_{10} + b_{1j})X_{ij} + \varepsilon_{ij}$
 - The random coefficient model!

FROM MODEL TO SOFTWARE HOW TO FIT


- $Y_{ij} = \beta_{00} + b_{0j} + (\beta_{10} + b_{1j})X_{ij} + \varepsilon_{ij}$
- In SAS
 - proc mixed;
 - model y=month;


random intercept month/subj=batch type=un;

FROM MODEL TO SOFTWARE HOW TO FIT

FROM MODEL TO SOFTWARE HOW TO FIT

- $Y_{ij} = \beta_{00} + b_{0j} + (\beta_{10} + b_{1j})X_{ij} + \varepsilon_{ij}$
- Model Specification In SAS - Select Columns Pick Role Variables Personality: Mixed Model 4 Columns ΔY Y proc mixed; Batch optional Month 🖌 Run model y=month; Help Δy By True Shelf Life optional Recall Keep dialog open random intercept month/subj=batch type=un; Remove Construct Model Effects Fixed Effects Random Effects Repeated Structure Intercept[Batch]&Random Coefficients(1) Add Month[Batch]&Random Coefficients(1) Cross Nest Nest Random Coefficients

Macros 🕶

Degree 2

- Pharmaceutical shelf life using random coefficients and BLUP to determine shelf life
- Education High School and Beyond hierarchical survey
- Animal growth curves not limited to linear slopes

THANK YOU!

Copyright © 2012, SAS Institute Inc. All rights re