
Paper	JMP-xx	

Run	Program	-	JMP’s	Link	To	Other	Programs	
Michael	Hecht,	SAS	InsAtute	Inc.,	Cary,	NC	

Abstract	
JSL’s	Run	Program()	func+on	launches	other	programs,	sends	data	and	commands	to	them,	and	
retrieves	their	output.	With	this	powerful	tool,	script	authors	can	extend	the	reach	of	JMP	to	
drive	all	the	capabili+es	of	their	machine.	But	harnessing	this	power	can	be	challenging,	even	
for	the	experienced	script	author.	Several	examples	of	Run	Program()	are	presented,	to	
demonstrate	all	of	its	various	op+ons	and	modes.	

IntroducAon	
The	JMP	Scrip+ng	Language	includes	a	powerful	feature	that	allows	you,	the	script	author,	to	
launch	other	executable	programs	on	the	same	machine	that	is	running	JMP.	And	not	only	can	
you	launch	these	other	programs;	you	can	also	send	data	to	them	and	retrieve	their	output	—	
all	from	your	script.	This	feature	is	packaged	as	the	built-in	func+on	Run	Program().	

But	great	power	oIen	requires	greater	complexity.	And	Run	Program()	is	indeed	complex.	For	
starters,	it	returns	one	of	three	different	types	of	results,	depending	on	how	you	call	it.	One	of	
those	result	types	is	a	JSL	object	to	which	you	send	addi+onal	messages,	allowing	you	to	control	
the	executable	program	you	launched.	Another	form	lets	you	to	embed	JSL	callback	func+ons	
right	in	the	call	to	Run	Program()	itself!	

Syntax	Overview	
Let’s	start	with	the	syntax	of	Run	Program().	

Run Program(
Executable(path to executable),
Options({ list of arguments }),
Read Function(expression),
Write Function(expression),
Parameter(expression)

)

All	the	arguments	to	Run	Program()	are	named,	which	is	helpful	because	there	are	five	of	them.	
The	first	two	are	preQy	straighRorward.	Executable()	is	used	to	provide	the	path	to	the	
executable	you	would	like	to	launch.	For	JMP	running	on	Macintosh ,	this	must	be	the	full	path	1

to	the	executable.	The	Options()	argument	lets	you	specify	command	line	arguments	for	the	
executable.	

 In this paper, I show all examples on the Macintosh. But Run Program() works equally well in JMP on 1

Windows, although there are necessarily some differences. Consult the documentation for details.

For	example,	I	might	issue	this	ping	command	in	Terminal.	

machine:~ user$ ping -c 8 www.jmp.com
PING www.jmp.com (149.173.156.116): 56 data bytes
64 bytes from 149.173.156.116: icmp_seq=0 ttl=253 time=0.777 ms
64 bytes from 149.173.156.116: icmp_seq=1 ttl=253 time=0.657 ms
64 bytes from 149.173.156.116: icmp_seq=2 ttl=253 time=2.103 ms
64 bytes from 149.173.156.116: icmp_seq=3 ttl=253 time=1.831 ms
64 bytes from 149.173.156.116: icmp_seq=4 ttl=253 time=0.630 ms
64 bytes from 149.173.156.116: icmp_seq=5 ttl=253 time=0.625 ms
64 bytes from 149.173.156.116: icmp_seq=6 ttl=253 time=0.859 ms
64 bytes from 149.173.156.116: icmp_seq=7 ttl=253 time=0.902 ms

--- www.jmp.com ping statistics ---
8 packets transmitted, 8 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.625/1.048/2.103/0.543 ms

The	first	word	of	the	command	ping	is	the	executable.	The	rest	of	the	line	are	op+ons.	In	
Terminal,	I	can	find	the	full	path	to	the	ping	executable	using	the	whereis	command.	

machine:~ user$ whereis ping
/sbin/ping

So	my	Run	Program()	script	looks	like	this.	

Run Program(
 Executable("/sbin/ping"),
 Options({ "-c", "8", "www.jmp.com" }),
 Read Function("text")
);

The	tricky	parts	to	remember	are	that	Executable()	must	be	a	full	path,	and	that	Options()	is	
a	list	of	strings.	

But	the	Read	Function(“text”)	part	is	a	bit	mysterious.	This	is	actually	how	you	specify	what	
Run	Program()	returns.	PuUng	Read	Function(“text”)	as	we’ve	done	here	causes	Run	
Program()	to	return	the	output	of	the	executable	as	a	string .	When	you	run	the	JSL	snippet	2

above,	JMP	waits	for	ping	to	complete,	then	returns	all	of	the	output	as	a	string	that	is	
displayed	in	the	JMP	Log.	

You	can	also	specify	Read	Function(“blob”),	which	is	very	similar	but	returns	a	blob	(binary	
large	object)	instead	of	a	string.	This	is	handy	if	your	executable	produces	binary	output,	but	it	is	
beyond	the	scope	of	this	paper.	

If	you	don’t	specify	Read	Function()	at	all,	or	you	specify	it	as	a	JSL	func+on,	then	Run	
Program()	returns	a	special	Run	Program	Object.	This	is	a	special	JSL	object	that	lets	you	
communicate	with	the	executable.	You	can’t	really	do	much	with	a	Run	Program	Object	except	

 In Unix parlance, both stdout and stderr are returned.2

�2

http://www.jmp.com
http://www.jmp.com

send	it	messages	and	assign	it	from	one	JSL	variable	to	another.	When	you	assign	it	to	another	
variable,	both	variables	just	hold	a	reference	to	it.	(This	is	the	same	way	that	references	to	a	
data	table	work	in	JSL.)	But	when	the	last	reference	to	a	Run	Program	Object	goes	away,	JMP	
immediately	terminates	the	executable.	

When	you	specify	Read	Function()	as	“text”	or	“blob”,	JMP	waits	un+l	the	executable	
completes	before	returning	from	Run	Program().	But	when	you	specify	Read	Function()	so	
that	Run	Program()	returns	a	Run	Program	Object,	JMP	does	not	wait	for	the	executable	to	
finish	but	instead	starts	execu+ng	the	next	statement	in	your	script	immediately.	

Using	a	Run	Program	Object	
Run	Program()	with	a	Run	Program	Object	is	very	powerful	because	your	script	can	con+nue	to	
run	simultaneously	with	the	Run	Program()	executable.	Let’s	extend	our	ping	example	to	use	a	
Run	Program	Object.	That	way,	we	can	print	the	output	from	ping	while	its	running,	rather	than	
wai+ng	un+l	it	completes.	

host = "www.jmp.com";
count = 4;

// Define a function that will receive output from the ping
// executable
ping reader = Function({ping},
 Write("\!N");
 Write(Trim(ping << Read));
);

// Launch the ping executable, using ping reader as our
// Read Function()
ping = Run Program(
 Executable("/sbin/ping"),
 Options({ Eval Insert("-c ^count^"), host }),
 Read Function(ping reader)
);

// All done!
Write("\!NDone!");

When	we	run	this	JSL,	we	see	the	output	from	ping	appear	on	the	JMP	Log	as	it	is	produced	by	
the	ping	executable	and	received	by	JMP.	Let’s	break	this	down.	

• We	parameterized	the	host	and	the	ping	count.	We	combined	the	-c	and	the	count	into	a	
single	op+on	value	(Run	Program()	doesn’t	seem	to	be	too	picky	about	this),	and	used	the	
handy	Eval	Insert()	func+on	to	build	it.	

• For	our	Read	Function()	we	specified	a	func+on	we	created	and	named	ping	reader.	JMP	
will	automa+cally	call	this	func+on	when	the	ping	executable	has	output	to	send	us.	And	
because	we	specified	the	Read	Function()	this	way,	we	also	caused	Run	Program()	to	return	
a	Run	Program	Object.	

�3

• We	assigned	what	Run	Program()	returned	—	the	Run	Program	Object	—	to	a	variable,	which	
we	can	think	of	as	represen+ng	the	executable.	To	help	make	that	mental	connec+on,	I	find	it	
handy	to	name	the	variable	aIer	the	executable,	like	we	did	here.	If	we	hadn’t	assigned	the	
Run	Program	Object	to	a	variable,	there	would	be	no	reference	to	it	and	JMP	would	terminate	
the	ping	executable	immediately	aIer	crea+ng	it.	

As	we	step	through	the	execu+on	of	this	JSL	a	bit	more	closely,	we	see	that	the	call	to	Run	
Program()	launches	the	ping	executable	and	then	immediately	returns.	Then	the	next	line	of	
our	script	is	executed,	and	“Done!”	is	wriQen	to	the	JMP	Log.	At	this	point,	our	script	has	
finished.	

However,	the	Run	Program	Object	lives	on	in	our	global	JSL	variable	named	ping.	So	the	
executable	keeps	running	simultaneously	with	JMP.	When	it	produces	some	output,	JMP	calls	
our	ping	reader	func+on,	passing	it	another	reference	to	the	same	Run	Program	Object	as	a	
func+on	argument,	which	we	also	named	ping	because	we	really	like	that	name.	

Since	ping	reader	is	only	called	when	the	executable	has	output	ready	for	us	to	read,	we	can	
send	the	<<	Read	message	to	the	Run	Program	Object	to	retrieve	that	output.	In	this	example,	
we	just	write	the	output	to	the	JMP	Log.	It	looks	like	this:	

JMP	Log:	

Done!
PING www.jmp.com (149.173.156.116): 56 data bytes
64 bytes from 149.173.156.116: icmp_seq=0 ttl=253 time=0.656 ms
64 bytes from 149.173.156.116: icmp_seq=1 ttl=253 time=1.072 ms
64 bytes from 149.173.156.116: icmp_seq=2 ttl=253 time=0.613 ms
64 bytes from 149.173.156.116: icmp_seq=3 ttl=253 time=0.680 ms

--- www.jmp.com ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.613/0.755/1.072/0.184 ms

Doing	More	With	The	Output	
Let’s	con+nue	to	build	on	this	example,	and	see	what	else	we	can	do	with	the	output	from	the	
ping	executable.	

host = "www.jmp.com";
count = 20;

// Create a data table to receive our data
dt = New Table("ping",
 New Table Variable("Host", host),
 New Column("icmp_seq"),
 New Column("ttl"),
 New Column("time", Set Property("Units", "ms"))
);

// Run ping and collect results
ping = Run Program(
 Executable("/sbin/ping"),

�4

 Options({ Eval Insert("-c ^count^"), host }),
 Parameter(dt),
 Read Function(
 Function({ping, dt},
 // Break read data into lines and process each
 l = Words(ping << Read, "\!n");
 For(i = 1, i <= N Items(l), i++,

 // Break line into words
 w = Words(l[i]);

 // Attempt to parse
 Try(
 v1 = Num(Words(w[5], "=")[2]);
 v2 = Num(Words(w[6], "=")[2]);
 v3 = Num(Words(w[7], "=")[2]);

 // Add one row of data
 dt << Add Row({
 :icmp_seq = v1;
 :ttl = v2;
 :time = v3; });
 ,
 // Log and skip lines that don't parse
 Write(Eval Insert("\!N^l[i]^"));
);
);
)
)
);

// Wait for ping to finish
While(!(ping << Is Read EOF), Wait(0.1));

// Create a distribution of the ping times
dt << Distribution(Continuous Distribution(Column(:time),
 Horizontal Layout(1),
 Vertical(0)));

This	script	obviously	does	a	lot	more.	

• For	starters,	it	creates	a	new	data	table.	We	will	collect	the	output	of	the	ping	executable	into	
this	data	table.	

• Our	Run	Program()	JSL	func+on	is	now	using	the	Parameter()	op+on;	and	our	Read	
Function(),	which	we	wrote	in-line	this	+me,	has	a	second	argument.	These	two	changes	are	
related.	When	you	call	Run	Program()	with	the	Parameter()	op+on,	you	specify	a	single	JSL	
variable	that	will	later	be	passed	to	your	Read	Function().	In	this	case,	we	pass	the	reference	
to	our	data	table.	

• In	our	Read	Function(),	we	read	output	from	the	ping	executable	and	then	aQempt	to	parse	
it.	We	are	looking	for	the	lines	that	have	the	icmp_seq,	Ql	(+me	to	live)	and	+me	values.	If	we	
successfully	parse	these	values	from	a	line	of	output,	we	add	them	as	a	new	row	in	our	data	
table.	

�5

• For	the	rest	of	the	output,	we	just	echo	it	to	the	JMP	Log.	

• AIer	we	call	Run	Program()	and	launch	the	ping	executable,	we	must	wait	for	it	to	finish.	We	
do	this	with	a	While	loop	that	con+nuously	sends	our	ping	Run	Program	Object	the	<<	Is	
Read	EOF	message.	As	long	as	this	message	returns	false,	we	wait	briefly	and	try	again.	

• Once	the	ping	executable	has	finished,	we	perform	a	Distribu+on	analysis	on	our	collected	
+mes.	

When	I	run	this	script	on	my	machine	with	my	network	connec+on,	I	see	results	like	this.	

� 	

JMP	Log:	

PING www.jmp.com (149.173.156.116): 56 data bytes
--- www.jmp.com ping statistics ---
20 packets transmitted, 20 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.562/1.030/3.112/0.537 ms
Distribution[]

Sending	Data	To	An	Executable	
Run	Program()	also	lets	us	send	data	from	JMP	to	our	executable’s	standard	input	(stdin).	But	
to	demonstrate	this,	we	need	to	use	an	executable	other	than	ping,	because	ping	doesn’t	read	
data	from	its	stdin.	Instead,	we	will	use	the	Unix	word	coun+ng	program	wc.	The	wc	executable	
reads	data	from	its	stdin;	then	it	writes	the	counts	for	the	number	of	characters,	words,	and	
lines	it	received	to	its	stdout.	

In	this	example,	we	will	first	launch	the	wc	executable.	Then	we	will	construct	some	text	to	send,	
line-by-line,	through	its	Run	Program	Object.	AIer	wai+ng	for	wc	to	complete,	we	can	read	the	
final	counts	and	display	them.	

// Run the word count program, writing data to its stdin
// and reading the results from its stdout
wc = Run Program(Executable("/usr/bin/wc"));

Distributions
time

0.5 1 1.5 2 2.5 3 3.5
ms

Quantiles
100.0%
99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

maximum

quartile
median
quartile

minimum

3.112
3.112
3.112

1.5433
1.04

0.898
0.73175

0.6244
0.562
0.562
0.562

Summary Statistics
Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N

1.0296
0.550775
0.123157

1.2873706
0.7718294

20

�6

// Get the script of Big Class as an array of lines
dt = Open("$SAMPLE_DATA/Big Class.jmp", Invisible);
sb = Script Box(Char(dt << Get Script));
Close(dt);
sb << Reformat;
text = Words(sb << Get Text, "\!r");

// Write the text to our program, then signal that we're done
For(i = 1, i <= N Items(text), i++,
 wc << Write(Eval Insert("^text[i]^\!n"));
);
wc << Write EOF;

// Read the output from our program into a string
result str = "";
While(!(wc << Is Read EOF),
 If(wc << Can Read,
 result str ||= Trim(wc << Read)
 ,
 Wait(0.1)
)
);

// Show the result
{lines, words, bytes} = Words(result str);
Show(lines, words, bytes);

Here’s	the	breakdown.	

• The	very	first	thing	we	do	is	call	Run	Program()	to	create	a	Run	Program	Object	for	our	wc	
executable.	The	whereis	command	tells	us	that	the	full	path	to	wc	is	/usr/bin/wc.	There	are	
no	op+ons	to	specify,	and	we	want	the	Run	Program	Object	to	be	returned.	So	this	is	all	we	
need.	

• Now	we	need	some	text	to	send	to	wc.	We	will	use	the	table	script	for	the	Big	Class	sample	
data	table.	This	is	a	script	JMP	can	generate	that	fully	describes	the	data	table.	We	use	a	
Script	Box	to	format	it	into	mul+ple	lines	with	nice	indenta+on.	Then	we	use	the	Words()	
func+on	to	break	it	up	into	an	array	of	text,	with	each	array	element	containing	a	single	line.	

• Next,	we	send	our	text	to	the	wc	executable	using	the	<<	Write	message.	That’s	easy	enough,	
but	we	have	to	be	sure	to	put	a	Mac	newline	at	the	end	of	each	line	of	text;	otherwise,	wc	
won’t	recognize	our	line	endings.	

• When	we’ve	sent	all	the	text,	we	tell	wc	we’re	done	by	sending	the	<<	Write	EOF	message.	
This	closes	wc’s	stdin	and	allows	it	to	start	tallying	up	its	counts.	

• We	need	to	wait	for	wc	to	finish	its	work	and	write	its	answers	to	stdout.	But	instead	of	
embedding	this	within	a	Read	Function(),	we	do	it	in	the	main	body	of	our	script	to	beQer	
control	the	sequence	of	events.	We	use	the	same	style	of	While	loop	as	before.	But	inside,	we	
first	ask	if	wc	has	any	data	for	us	by	sending	the	<<	Can	Read	message.	If	it	returns	true,	we	<<	
Read	what’s	available;	otherwise,	we	wait	a	bit	as	before.  
 

�7

Calling	<<	Can	Read	isn’t	strictly	necessary	in	this	case,	since	<<	Read	will	wait	un+l	data	is	
available	anyway.	But	it	serves	to	demonstrate	how	this	message	can	be	used.	

• Once	we’ve	goQen	wc’s	result,	we	parse	it	out	and	display	it	in	the	JMP	Log.	

JMP	Log:	

lines = "1188";
words = “1925";
bytes = “18537";

Conclusion	
JMP’s	Run	Program()	feature	extends	your	reach	with	JSL	to	any	executable	available	on	your	
system.	By	using	a	Run	Program	Object,	you	can	send	and	receive	data	from	executables	you	
launch	in	a	controlled	and	efficient	manner,	while	the	rest	of	your	script	con+nues	to	do	useful	
work.	

Now	your	scrip+ng	is	not	limited	to	only	the	capabili+es	of	JSL.	Anything	your	computer	can	do	
—	image	processing,	audio	conversion,	process	management,	you	name	it	—	can	be	performed	
by	JMP.	

Contact	informaAon	
Your	comments	and	ques+ons	are	valued	and	encouraged.	Contact	the	author	at:	

Michael	Hecht	
michael.hecht@jmp.com	

SAS	and	all	other	SAS	Ins+tute	Inc.	product	or	service	names	are	registered	trademarks	or	
trademarks	of	SAS	Ins+tute	Inc.	in	the	USA	and	other	countries.	®	indicates	USA	registra+on.	

Other	brand	and	product	names	are	trademarks	of	their	respec+ve	companies.

�8

mailto:michael.hecht@jmp.com

