**BASF** We create chemistry

-

Discovering hidden relationships in production data Elie Maricau - BASF Antwerp

#### **Context: the BASF Antwerpen production site**



The BASF Antwerpen site is the **second largest production site of the BASF Group**. It's 55 production plants mainly consist of large scale continuous processes and produce commodity chemicals.

It's size provides sufficient critical mass for sustaining site-central expertise teams related to manufacuring and it's directly supporting functions. The highly integrated site (product streams, utilities, logistics) in combination with the presence of third parties provides a unique set of challenges

#### **Context: the problem**

#### **Project context**

- Continuous production process
- High raw material cost
- Production of unwanted byproducts reduces process efficiency
- Process efficiency varies over time





Illustrative picture of continuous production plant in BASF Antwerp



#### What data do we have?

- PIMS system: sensor data, stored in a big database with time series (vectors)
- LIMS system: lab data, stored in a separate database with sample times and lab values
- Operator logbook: manual text entries logging specific actions with a timestamp

#### **Context: the problem in numbers**

#### **Project goal**

Distributions

Improve average production yield – improvement potential unknown at start of the project

| Yield                                |                                              |
|--------------------------------------|----------------------------------------------|
|                                      | Summary                                      |
|                                      | Mean<br>Std Dev<br>Std Err Mean<br>Upper 95% |
|                                      | Lower 95%<br>N                               |
| 55.00% 75.00% 90.00% 110.00% 130.00% |                                              |

| Summary Statistics |           |  |  |
|--------------------|-----------|--|--|
| Mean               | 0.8272471 |  |  |
| Std Dev            | 0.0731346 |  |  |
| Std Err Mean       | 0.000312  |  |  |
| Upper 95% Mean     | 0.8278586 |  |  |
| Lower 95% Mean     | 0.8266355 |  |  |
| N                  | 54943     |  |  |



#### Let's solve the problem – attempt 1

- Lots of data available
  - 5 years data (hour values)
  - 250+ sensors
- Use statistical algorithms and data analytics techniques to identify key variables for the yield

Yield = f(X1, X2, X3, ...)

Select X1, X2, X3,... from a set of 250+ variables





# Discovering key process variables Attempt 1 – data crunching

- Collect 5 years data for all measurements related to that part of the production process (online sensor + offline lab data)
   → over 250 variables
- Exclude irrelevant data: no or very low production output, yield<0% or yield>100%
- Find root causes for yield variation: try various statistical models
  - 1. Stepwize OLS
  - 2. Partial Least Squares
  - 3. Generalized regression Enet (JMP pro)
  - 4. Bootstrap forest (JMP pro)



## Discovering key process variables Attempt 1 – data crunching



Then PI S to

# Discovering key process variables Attempt 1 – data crunching

💤 180131\_dataset\_HOUR\_2018\_JMP\_disc\_summit - Model Comparison -... 💻

Δ

| - | Sineaci compa     |                                      |             |         |        |        |       |
|---|-------------------|--------------------------------------|-------------|---------|--------|--------|-------|
| Þ | Predictors        |                                      |             |         |        |        |       |
| 4 | Measures of Fit   | t for Yield                          |             |         |        |        |       |
|   | Predictor         | Creator                              | .2 .4 .6 .8 | RSquare | RASE   | AAE    | Freq  |
|   | OLS Yield         | Fit Least Squares                    |             | 0.4516  | 0.0318 | 0.0176 | 47561 |
|   | PLS Yield         | Partial Least Squares                |             | 0.2762  | 0.0348 | 0.0239 | 2648  |
|   | BF Yield          | Bootstrap Forest                     |             | 0.6853  | 0.0241 | 0.0137 | 47562 |
|   | GenReg ENET Yield | Fit Generalized Adaptive Elastic Net |             | 0.3101  | 0.0357 | 0.0222 | 47561 |

| OLS          | PLS              | GenReg       | RF               |
|--------------|------------------|--------------|------------------|
| Conversion 2 | Conversion 2     | Conversion 2 | Conversion 2     |
| Production 2 | Total production | Conversion 1 | Total production |
| Flow_1       | Conversion 1     | Production 2 | Ratio 1/2        |
| Level_1      | Level_1          | Feed 2       | Conversion 1     |
| Pressure_1   | Temp_1           | Quality_1    | Level_2          |

None of the models performs great (especially the RASE/RMSE is too large compared to the target) – note in the actual study training/validation and test data has been used

- Key process variables in each model are different (expect for "conversion 2")
- Some of the parameters cannot be explained from a expert point of view (creates skeptism)
- Although there is some predictive power, none of the models is good enough to optimize the process (what are the ideal process settings?)

#### Let's solve the problem – attempt 2

Ask the subject matter expert: what do they think X1, X2, etc. is?

Yield = f(X1, X2, X3, ...)

Select X1, X2, X3,... from a set of preselected (SME input) variables





#### Discovering key process variables Attempt 2 – ask the process expert

- Extensive interviews with plant management, plant operators and technology experts
  - Shortlist of suspected key process variables
  - Three categories
    - Measurement noise
    - Production (production planning, hard to change)
    - Other process settings

| Dynamic effects                      |                                                                    |
|--------------------------------------|--------------------------------------------------------------------|
| Light from Charges                   | Eq. 1 defeto cluros, otrose aura; 7 consentation                   |
| Reacting package in which interpret  |                                                                    |
| internet product New proc. 12        | Concertation not mass-and                                          |
| Large Hand Nilling                   | appellished inperfect to odo i fange apparts ander                 |
| Production                           |                                                                    |
| Of spin and or rank                  | Conservation outcome                                               |
| Part task utilities and              |                                                                    |
| Reference 12                         |                                                                    |
| Reaction section (HP)                |                                                                    |
| Fast- 'scatting' that can had        | Respective sector sectors                                          |
| Temperature cross matters            | Long to produce a table " use one collector                        |
| Passon our sectors                   | Consider sensity is of generation # report or sensitive residence? |
| A1 1986                              | Restoric and policity-definite offer and array sector.             |
| The concernation in an               |                                                                    |
| Collinament                          | - interaction with gration in fault                                |
| Temperature in second clarity        | 81887                                                              |
| Destilution section (LP)             |                                                                    |
| Nation and B                         | <ul> <li>(2) A relicion progenitive degli</li> </ul>               |
| Record, and a fast                   | E-10- case of on least                                             |
| Analysis also - conservation for the |                                                                    |

#### Discovering key process variables Attempt 2 – ask the process expert

- In an OLS model, a subset of expert defined parameters are relevant.
- Performance of the model is on par with the data crunching OLS model, which is still not good enough
- Parameters suspected to have the biggest impact (total production) is not as relevant as suspected





Source

Convers

Product

Feed 2

Feed 1

Product Convers

Ratio 1/

|      | LogWorth | PValue  |
|------|----------|---------|
| on 2 | 5253.518 | 0.00000 |
| on 2 | 2134.664 | 0.00000 |
|      | 1835.876 | 0.00000 |
|      | 27.497   | 0.00000 |
| on 1 | 8.943    | 0.00000 |
| on 1 | 2.827    | 0.00149 |
| 2    | 2.771    | 0.00169 |



#### Let's solve the problem – attempt 3

Improve the data quality.

Yield = f(X1, X2, X3, ...)

Select X1, X2, X3,... from a set of preselected (SME input) variables





Step 1: only look at periods with "normal" operating regimes (untill know, our data cleaning was limited to this)



Step 2: measurement noise

- Measurement system analysis: 1% variation (stddev – 15% of overall variation) in yield measurement due to variations in flow measurement
- ➔ Solution: look at daily (24H) averages (or medians) instead of hourly values (reducing the measurement error by approximately 5)





Ve create chemistry

- -

- Step 3: dynamic effects
  - Dynamic effects: after changing the process, it takes up to 48hours to get to a new steady stade condition (and often another change is made within that time → seldom at steady state)
  - ➔ Solution: formula column to identify moments where the process is stable for at least 48H (look at overall 48H stddev of all major production flows)





We create chemistry

- Step4: offspec intake
  - Intake of offspec product affects yield calculations (artificial increase of output wrt what is expected from amount of input product)
  - Note: offspec composition unknown → impact on yield cannot be quantified





Where((Median(Offspec round) = 0, 1) and (Name("Median(Total production)") >= 45 & Name("Median(Total production)") <= 55)...)











- OLS model on high quality data
- Key process variables can be explained by process expert
- Impact of key process variables can be accurately estimated (including an interaction and a non linear effect)
- Result
  - Optimal settings for yield (at a certain load)
  - Prediction of expected yield (an detection of deviations)

#### Response Median(Yield)

#### Actual by Predicted Plot







#### **Knowledge based action**

Now we converted data into knowledge 
→ let's act on that knowledge





#### **Knowledge based action**

- Implementation of a dashboard in the control room
- Targets show where the process should be (for maximal yield)
- The actual yield WITH indication of reliability of that value is displayed
- A corrected yield value based on other process parameters (model)



#### Its not only about technology...

- To be succesful, the analytics part (doing the datamining and modeling) is only 25% of the work!
- Communication (in all directions) and change are major succes factors
- A project lead (in our case the data scientist) must oversee the project from end to end (clear problem definition  $\rightarrow$  sustainable benefits)
- A LSS DMAIC project workflow (with a good amount of advanced analytics sauce in the measure and analyze phase) is a best practice



CONTROL

- -

We create chemistry

#### Key take aways

- Succes (creating value) =
  - technology (JMP) +
  - data science +
  - expert input +
  - thorough data cleaning +
  - project based approach



Handling time series data (which is typical for process industry) requires some specific approaches

- Data preprocessing: measurement noise, dynamic effects, …
- Modeling: colinearity, autocorrelation between consecutive data points, ...

# **We create chemistry**