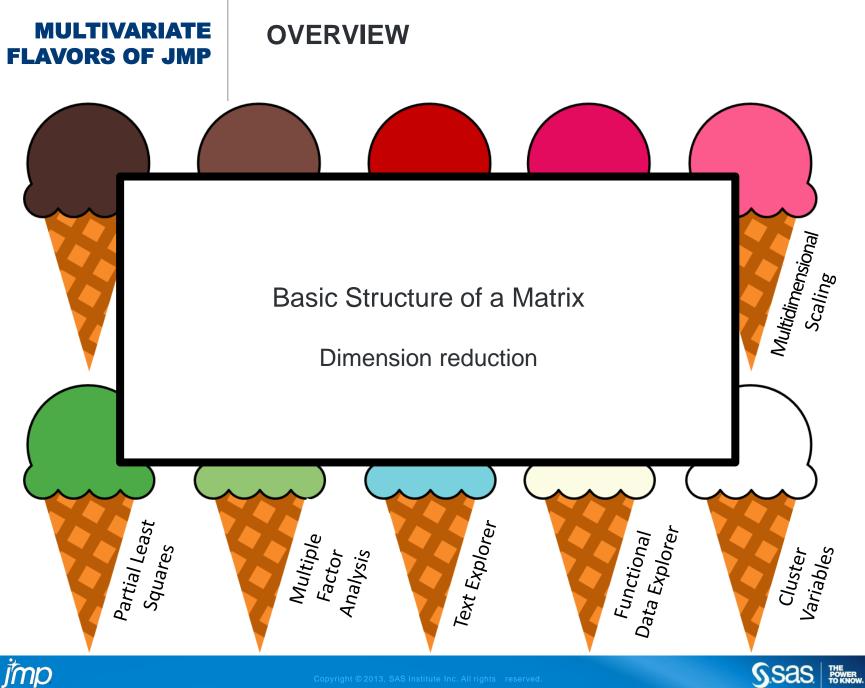
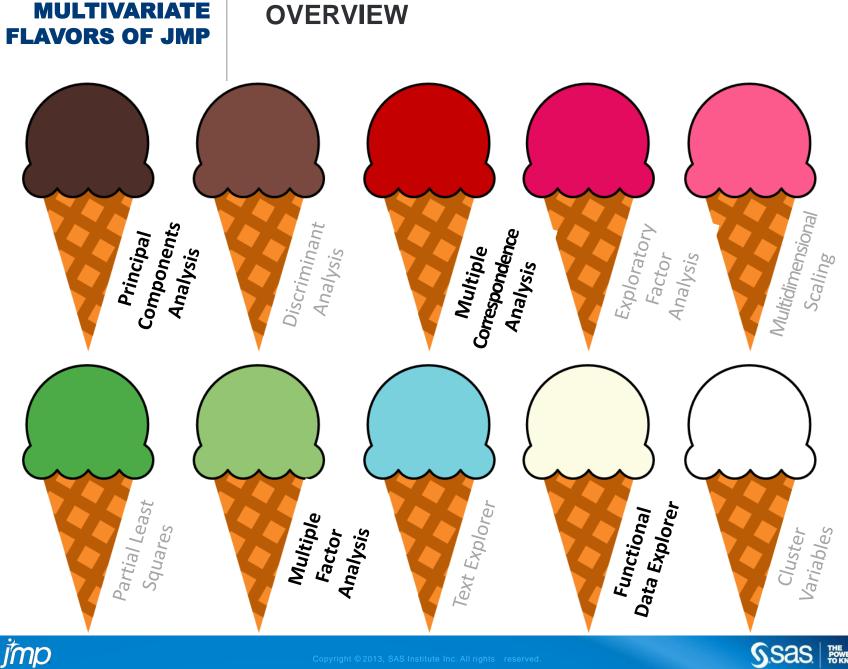


The Multivariate Flavors of JMP: From Continuous to Categorical to Discrete to Functional




Laura Castro-Schilo, Research Statistician Tester Chris Gotwalt, Director of JMP Statistical R&D JMP Division, SAS Institute

Copyright © 2013, SAS Institute Inc. All rights reserved.

SSAS. THE POWER TO KNOW.

SSAS. THE POWER TO KNOW.

BASIC STRUCTURE OF A MATRIX

- Decomposition of matrix into its characteristic components
 - Singular value decomposition (SVD)
 - Represent data as product of 3 matrices

$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

BASIC STRUCTURE OF A MATRIX

jmp

SINGULAR VALUE DECOMPOSITION

Dim1

21.305092

0

 $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$ $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}$

If no redundancies in data, **U**, **S**, and **V** have as many columns as the minimum number of rows/columns of **X**

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

Dim1	Dim2	Dim3
0.1989212	0.3202258	-0.126323
0.2208073	0.453361	-0.226535
0.1705592	0.3085778	-0.172721
0.3112392	0.3111744	0.3299106
0.2027492	0.4074437	-0.194208
0.2594041	0.1130174	0.4615508
0.2724333	-0.146537	0.0175289
0.1675449	-0.031407	0.5650599
0.1930972	-0.091533	0.2783023
0.1247567	0.1256511	0.018387
0.444887	-0.336456	-0.159485
0.4166369	-0.307906	-0.075486
0.3881544	-0.257781	-0.338794

L	J	

Data

Χ

Left Singular Vectors Dimensions of row variables Singular Values Importance of dimensions (ordered)

Dim2

0 17.023785

S

0

Dim3

0 7.6370028

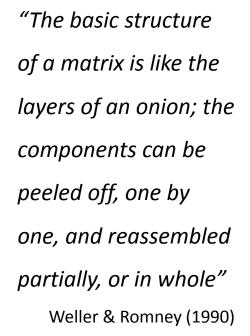
0

0

WoodyFruitySpicy0.57006690.49081940.6588779-0.1535950.8514739-0.5013990.8071136-0.184631-0.560784

VT

Right Singular Vectors Dimensions of column variables



SINGULAR VALUE DECOMPOSITION

 $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

*î*mp

DIMENSION REDUCTION

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

Х

=

Dim2	Dim3
0.3202258	-0.126323
0.453361	-0.226535
0.3085778	-0.172721
0.3111744	0.3299106
0.4074437	-0.194208
0.1130174	0.4615508
-0.146537	0.0175289
-0.031407	0.5650599
-0.091533	0.2783023
0.1256511	0.018387
-0.336456	-0.159485
-0.307906	-0.075486
-0.257781	-0.338794
	0.3202258 0.453361 0.3085778 0.3111744 0.4074437 0.1130174 -0.146537 -0.031407 -0.091533 0.1256511 -0.336456 -0.307906

U

Dim1	Dim2	Dim3
21.305092	0	0
0	17.023785	0
0	0	7.6370028

Woody	Fruity	Spicy
0.5700669	0.4908194	0.6588779
-0.153595	0.8514739	-0.501399
0.8071136	-0.184631	-0.560784

VT

S

One-dimensional

estimate of **X**

Woody	Fruity	Spicy
2.42	2.08	2.79
2.68	2.31	3.1
2.07	1.78	2.39
3.78	3.25	4.37
2.46	2.12	2.85
3.15	2.71	3.64
3.31	2.85	3.82
2.03	1.75	2.35
2.35	2.02	2.71
1.52	1.3	1.75
5.4	4.65	6.25
5.06	4.36	5.85
4.71	4.06	5.45

Ϊmp

DIMENSION REDUCTION

Woody	Fruity	Spicy
0.8	6.9	0.6
0.1	9.2	0.2
0.2	6.5	0.5
5	7.3	0.3
0.2	8.3	0.2
5.7	3.7	0.7
3.8	0.7	5
5.6	0.5	0.2
4.3	0.3	2.3
1.3	3.1	0.6
5.3	0	9.8
5.4	0	8.8
3.3	0.8	9.1

Х

=

Dim1	Dim2	Dim3
0.1989212	0.3202258	-0.126323
0.2208073	0.453361	-0.226535
0.1705592	0.3085778	-0.172721
0.3112392	0.3111744	0.3299106
0.2027492	0.4074437	-0.194208
0.2594041	0.1130174	0.4615508
0.2724333	-0.146537	0.0175289
0.1675449	-0.031407	0.5650599
0.1930972	-0.091533	0.2783023
0.1247567	0.1256511	0.018387
0.444887	-0.336456	-0.159485
0.4166369	-0.307906	-0.075486
0.3881544	-0.257781	-0.338794

ι	J	

Dim1	Dim2	Dim3
21.305092	0	0
0	17.023785	0
0	0	7.6370028

Woody	Fruity	Spicy
0.5700669	0.4908194	0.6588779
-0.153595	0.8514739	-0.501399
0.8071136	-0.184631	-0.560784

VT

S

Two-dimensional

estimate of **X**

	Woody	Fruity	Spicy		
	1.58	6.72	0.06		
	1.5	8.88	-0.77		
	1.26	6.26	-0.24		
	2.97	7.77	1.71		
	1.4	8.03	-0.63		
	2.86	4.35	2.68		
	3.69	0.72	5.08		
	2.12	1.3	2.62		
	2.58	0.69	3.49		
	1.19	3.13	0.68		
	6.28	-0.22	9.12		
	5.87	-0.11	8.48		
	5.39	0.32	7.65		

SINGULAR VALUE DECOMPOSITION

 Singular vectors (U, V) are orthogonal to each other and have unit length (orthonormal).

• Singular values, **S**, can be used to stretch out the vectors in **U** and **V** so they're no longer normalized but reflect the importance of each dimension.

SINGULAR VALUE DECOMPOSITION

- Redundancies in the original data are also reflected in the basic structure matrices.
 - The maximum number of meaningful dimensions in X is the rank of X
 - Nonzero elements in S
- If **X** is symmetric, the singular vectors **U** and **V** will be identical.
 - Because pre- or post-multiplying a matrix by its transpose makes it symmetric, the basic structure matrices of X, X^TX, and XX^T, reveal the same basic structure.
 - Eigenvalue decomposition can also reveal the basic structure of X

 $\begin{aligned} X^T X &= V S U^T U S V^T = V S^2 V^T \\ X X^T &= U S V^T V S U^T = U S^2 U^T \end{aligned}$

WHY THE LONG INTRO?

- All multivariate techniques in this session are based on:
 - Decompositions of transformed matrices:
 - Center, normalize, proportion, double-center, etc.*
 - Dimension reduction
- The techniques only differ in:
 - Pre-decomposition transformations of **X**
 - Post-decomposition transformations of **U** and **V**
- * Note: transformations are sometimes implied (e.g., correlation matrices)

PRINCIPAL COMPONENTS ANALYSIS

- Used with continuous data
- Goals of Analysis:
 - Identify underlying structure of data
 - Study inter-association of variables
 - Reduce dimensionality of data
 - Simplify ensuing analyses
 - Study inter-individual variability
 - Extract dimensions that distinguish individuals
 - Identify multivariate outliers
 - Measure latent variables (but Factor Analysis can be better for this)

PRINCIPAL COMPONENTS ANALYSIS

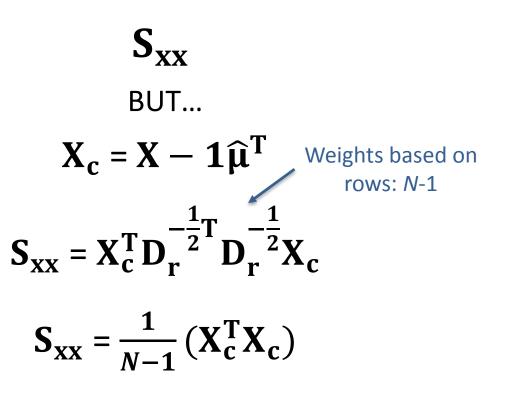
- Most often known as the result of eigenvalue decomposition on a correlation (or covariance) matrix
- Key output:
 - Eigenvalues (aka squared singular values)
 - Eigenvectors
 - Loadings
 - Percent of variance explained by each dimension
 - Principal component scores

PRINCIPAL COMPONENTS ANALYSIS

Unit length eigenvectors indicating main directions in data

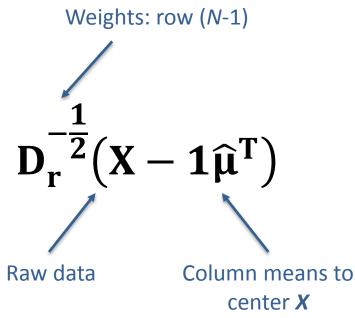
Magnitude of each dimension from most to least important

Rescaled eigenvectors



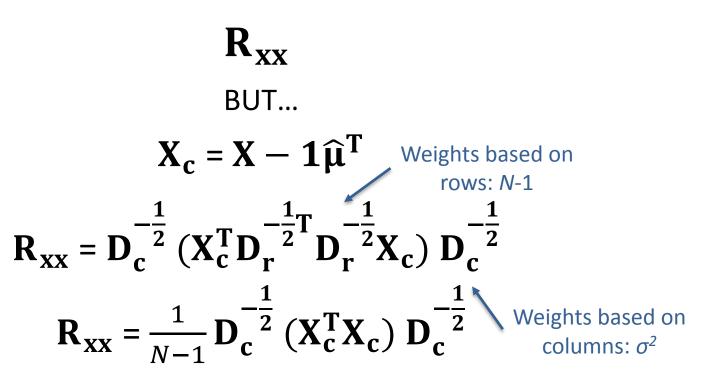
3-D Cloud for illustration

Eigenvalue decomposition of the covariance matrix of X:

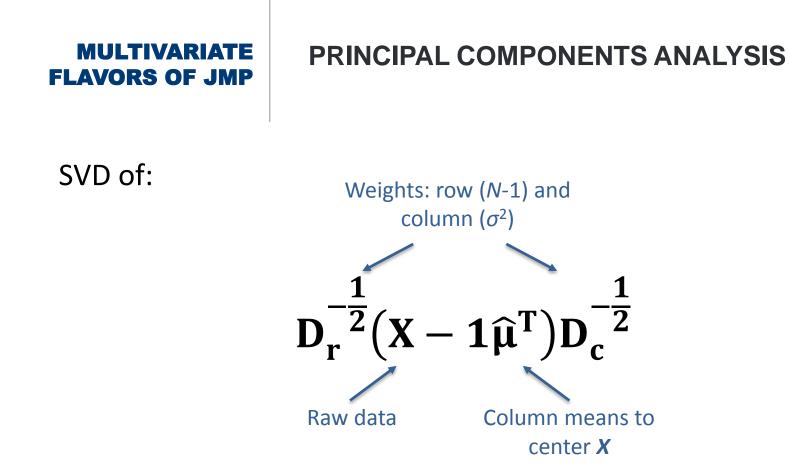

- Center X
- Sum of squares of centered X
- Divide all entries by *N*-1

PRINCIPAL COMPONENTS ANALYSIS

Alternatively, SVD of:



- Center X
- Multiply each row by $\frac{1}{\sqrt{N-1}}$
- Multiply each column by the inverse of its corresponding standard deviation


Eigenvalue decomposition of the correlation matrix of X:

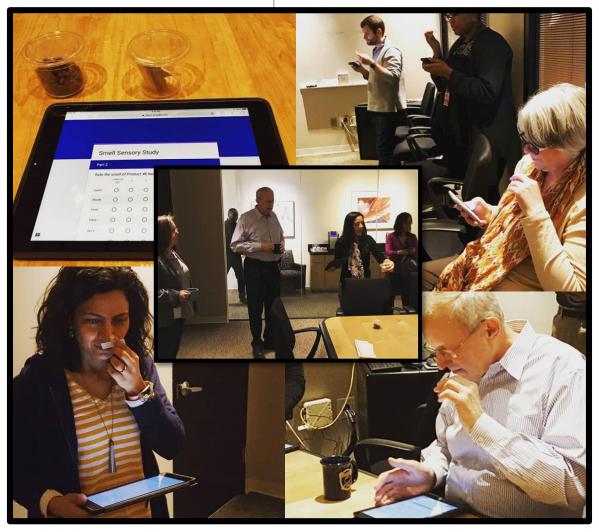
- Center X
- Sum of squares of centered X
- Multiply each row and column by the inverse of the corresponding standard deviation
- Divide all entries by N-1

- Center X
- Multiply each row by $\frac{1}{\sqrt{N-1}}$
- Multiply each column by the inverse of its corresponding standard deviation

PRINCIPAL COMPONENTS ANALYSIS

SVD of:

$\boldsymbol{D}_r^{-\frac{1}{2}} \big(\boldsymbol{X} - \boldsymbol{1} \widehat{\boldsymbol{\mu}}^T \big) \boldsymbol{D}_c^{-\frac{1}{2}} = \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^T$


Eigenvalues:	S ²
Eigenvectors:	V
Loadings:	VS
Scores:	US

				Woody	Fruity	Spicy						
				0.8	6.9	0.6						
				0.1	9.2	0.2						
				0.2	6.5	0.5						
				5	7.3	0.3						
				0.2	8.3	0.2						
				5.7	3.7	0.7						
۹ 🔍 💌				3.8	0.7	5						
-	Label	1	2	5.6	0.5	0.2	1	9	10	11	12	13
1	Woody	0.8	0.1	4.3	0.3	2.3		4.3	1.3	5.3	5.4	3.3
2	Fruity	6.9	9.2	1.3	3.1	0.6	.5	0.3	3.1	0	0	0.8
3	Spicy	0.6	0.2	5.3	0	9.8	2	2.3	0.6	9.8	8.8	9.1
				5.4	0	8.8						J
				3.3	0.8	9.1						

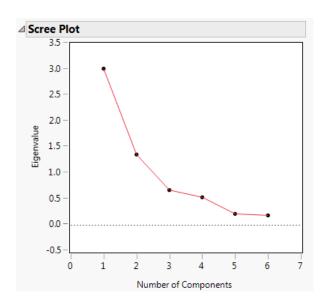
S.Sas. THE POWER TO KNOW.

MOTIVATING EXAMPLE

Smell Study at SAS Headquarters

Rated 8 Scents:

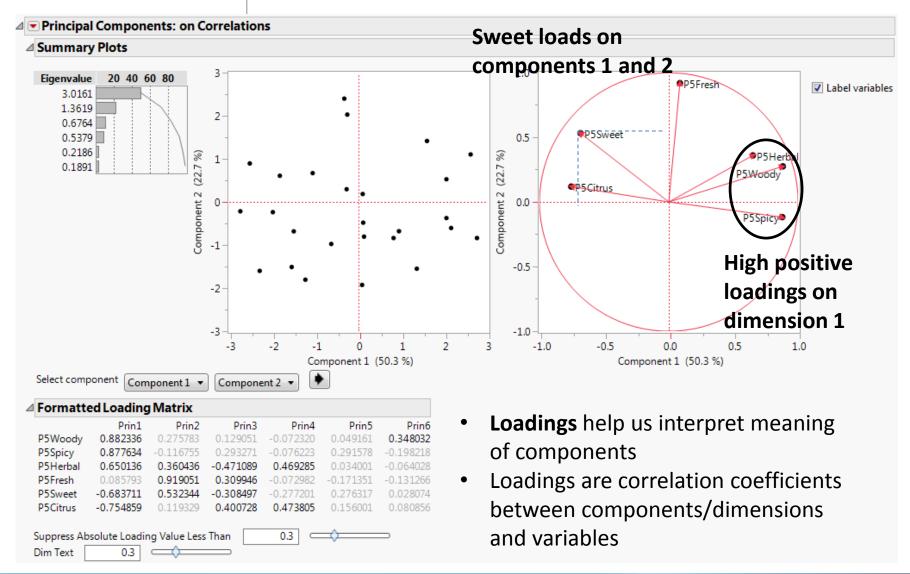
Sweet Orange, Lavender
 Peppermint, Lemon, Lavender
 Tea Tree
 Eucalyptus, Rosemary
 Tea Tree, Eucalyptus, Lemon
 Peppermint, Sweet Orange
 Rosemary, Frankincense
 ALL


PRINCIPAL COMPONENTS ANALYSIS

🔄 All_Smell_Stu	🖾 All_Smell_Study - JMP Pro [2]															
File Edit Tab	oles Rows Co	ols DOE	Analyz	e Grapł	h Tools	Add-Ins	View Win	ndow Help	ρ							F
1 🖼 🔁 📓																
▼All_Smell ▷			· · · · ·													
Source		ID	Age	Sex	UsePerf	UseOils	SR_Smell	P1Sweet	P1Woody	P1Fresh	P1Citrus	P1Spicy	P1Herbal	P1Like	P1Comment	
	1	ID12	30-41	Male	4	4	3	6	-	4	7	3	-	3	1	4
Columns (75		ID13		Female	1	1	4	6	-	6		2	-	3 '	7	
🔥 Source 🕷 🔺	-	ID14	30-41	Female	5	-	3	4	1	. 3	7	1	1		Smells like oranges	
💼 Time 📾 📄	4	ID20	30-41	Female	5	4		6	1	. 7		_		5	I really like this scent —	
ul ID ul Age	5	ID24	18-29	Male	1	1	2	6	2	5	7	1	4	5	Smells like lysol or wood	
sex	6	ID01	42-53	Female	5	3	4	7	1	. 5	7	1	1	4		=
Con,Sex]6	7	ID02	53-64	Female	5	1	5	4	2	6	6	2	3	4	Citrusy bit not too flowe	
🔥 Region 📾	8	ID22	42-53	Female	3	1	3	3	1	. 7	7	1	2	4	Refreshing	
🔥 Name 📾	9	ID08	30-41	Female	5	1	3	7	1	. 5	7	1	1	2	/	
UsePerf	10	ID15	53-64	Male	1	1	3	4	1	. 3	4	5	5	3		
UseOils SR_Smell	11	ID11	65+	Male	1	1	2	1	2	5	5	1	3	4	Citrus more than others	
D1 Swoot	12	ID25	30-41	Female	5	5	5	5	1	. 6	7	5	5	4		
Rows	13	ID06	30-41	Male	3	1	1	4	2	5	5	2	2	2	I can barely smell this or	
All rows 27	14	ID10	53-64	Male	2	1	3	5	3	7	2	2	6	3		
Selected 0	10	ID09	42-53	Female	4	1	3	7	2	. 7	6	1	3	5		
Excluded 0 Hidden 0	10	ID16	42-53	Male	1	1	1	3	2	4	5	1	2	3		
Labelled 0	17	ID17	30-41	Male	5	1	4	2	1	. 4	5	1	1	4	· · · · · · · · · · · · · · · · · · ·	-
Laberrea		۰.													•	
															☆ 🗖 🔻 🛛	All
2																

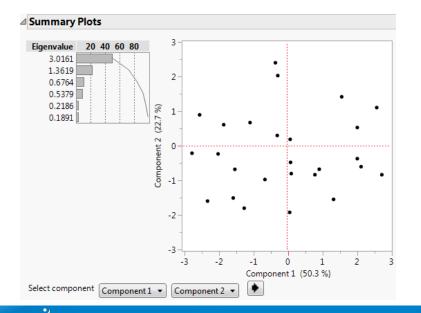
Data

⊿ Eigenvalues											
Number	Eigenvalue	Percent	20 40 60 80	Cum Percent							
1	3.0161	50.268		50.268							
2	1.3619	22.698		72.966							
3	0.6764	11.273		84.239							
4	0.5379	8.965		93.205							
5	0.2186	3.644		96.849							
6	0.1891	3.151		100.000							


- Determine ideal number of dimensions (most popular):
 - Scree plot: Number of eigenvalues before the elbow
 - Number of eigenvalues larger than 1

- Dimensions that sum up to ~80% of variance
- All dimensions with coherent substantive meaning

PRINCIPAL COMPONENTS ANALYSIS



Sas

THE POWER TO KNOW

PRINCIPAL COMPONENTS ANALYSIS

\land -83/2 Cols 💌									
	P5Sweet	P5Woody	P5Fresh	P5Citrus	P5Herbal	P5Spicy	Prin1	Prin2	
1	3	4	3	4	4	7	0.1271634586	-0.803718291	*
2	1	5	4	3	5	5	0.9373510535	-0.677519483	=
3	3	1	4	7	4	1	-2.744656595	-0.215015613	1
4	2	1	2	4	5	1	-1.551618211	-1.508841984	-
5	5	3	4	4	5	1	-1.826963841	0.6089708875	
6	1	7	7	2	7	7	2.5998245145	1.1043223099	
7	4	3	5	4	5	3	-1.06571194	0.6704409028	
8	5	6	7	3	6	2	-0.331369201	2.3996353047	
9	4	1	2	2	1	1	-2.29510529	-1.598492863	-
	*							Þ	

- **Component Scores** characterize the degree of endorsement of each dimension for every observation
- PCA Scores can be used in a variety of subsequent analyses (e.g., predictive models)
- Score plot facilitates identification of observations with very high/low scores and those close to the centroid

T² Contribution Plots for Selected Samples

PSHerbal

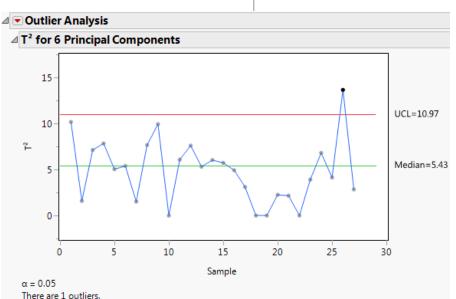
psspicy

PSCIIIUS

Variable

Sample=26

2

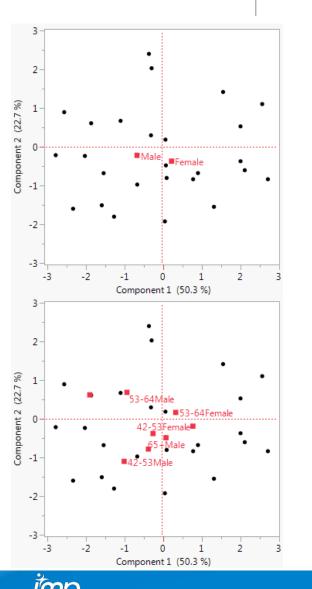

1

-2

-3 -

Contribution

PRINCIPAL COMPONENTS ANALYSIS



- New to JMP 14: **Outlier Analysis**
- Enables identification of out-of-control points (multivariate outliers) through the T² statistic

• **Contribution plots** indicate exactly which variables are contributing most to the extreme observations

PRINCIPAL COMPONENTS ANALYSIS

- **Supplementary variables** can be included to enrich interpretation of components
- Supplementary points are displayed at the averages of the scores of the corresponding respondents
 - E.g., Average of component scores for males and females results in coordinates for points in each dimension/component
- Creating "interaction" variables enables more nuanced interpretation of the plots

MULTIPLE CORRESPONDENCE ANALYSIS

- Used with categorical data (ordinal or nominal)
- Goals of Analysis:
 - Goals are similar to PCA but there is much more emphasis on graphical displays
 - Identify underlying structure of data
 - Study inter-association of variable *categories*
 - Study inter-individual variability
 - Extract dimensions that distinguish individuals
 - Identify multivariate outliers

MULTIPLE CORRESPONDENCE ANALYSIS

- Key output:
 - MCA Map
 - Principal inertias (eigenvalues): adjusted values
 - Principal coordinates (loadings)
 - Dimension contributions to column inertia (variance overlap between point and dimension)
 - Column contributions to total inertia
 - Column contributions to individual dimensions
 - Dimension contributions to total inertia (explained variance of each dimension)

MULTIPLE CORRESPONDENCE ANALYSIS

• Known as the decomposition of an Indicator matrix or a Burt matrix

Indicator	VS	Burt
Ζ		$\mathbf{C} = \mathbf{Z}^{T}\mathbf{Z}$

- The choice makes a difference in the overall "inertia" (eigenvalues, variance) of the solution, but not on the substantive interpretations
 - Use adjusted inertia

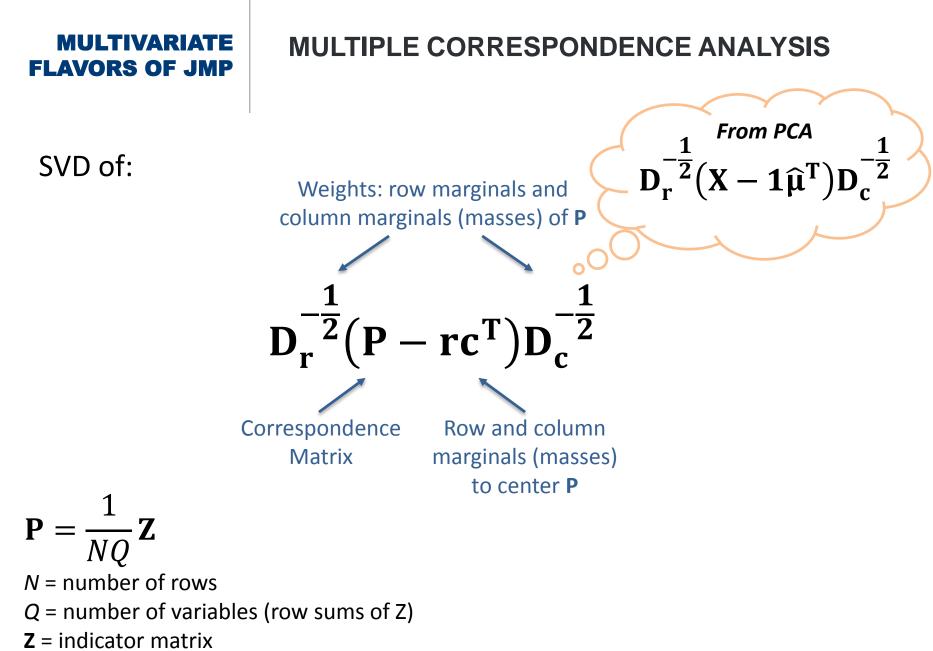
MULTIPLE CORRESPONDENCE ANALYSIS

The Data:

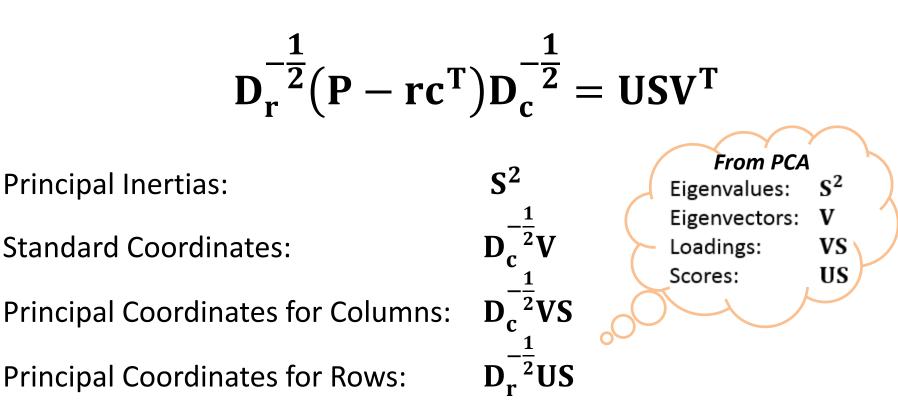
< /			
	P5Woody	P5Fresh	P5Citrus
1	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
2	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
3	Not Woody	Somewhat Fresh	Very Citrus
4	Not Woody	Not Fresh	Somewhat Citrus
5	Somewhat Woody	Somewhat Fresh	Somewhat Citrus
6	Very Woody	Very Fresh	Not Citrus

Raw Table Categorical Variables

	Not Woody	Somewhat Woody	Very Woody	Not Fresh	Somewhat Fresh	Very Fresh	Not Citrus	Somewhat Citrus	Very Citrus
1	0	1	0	0	1	0	0	1	0
2	0	1	0	0	1	0	0	1	0
3	1	0	0	0	1	0	0	0	1
4	1	0	0	1	0	0	0	1	0
5	0	1	0	0	1	0	0	1	0
6	0	0	1	0	0	1	1	0	0


	Not Woody	Somewhat Woody	Very Woody	Not Fresh	Somewhat Fresh	Very Fresh	Not Citrus	Somewhat Citrus	Very Citrus
1	2	0	0	1	1	0	0	1	1
2	0	3	0	0	3	0	0	3	0
3	0	0	1	0	0	1	1	0	0
4	1	0	0	1	0	0	0	1	0
5	1	3	0	0	4	0	0	3	1
6	0	0	1	0	0	1	1	0	0
7	0	0	1	0	0	1	1	0	0
8	1	3	0	1	3	0	0	4	0
9	1	0	0	0	1	0	0	0	1

Indicator Table Concatenated Categories


7.

MULTIPLE CORRESPONDENCE ANALYSIS

SVD of:

Sas THE POWER TO KNOW

MULTIPLE CORRESPONDENCE ANALYSIS

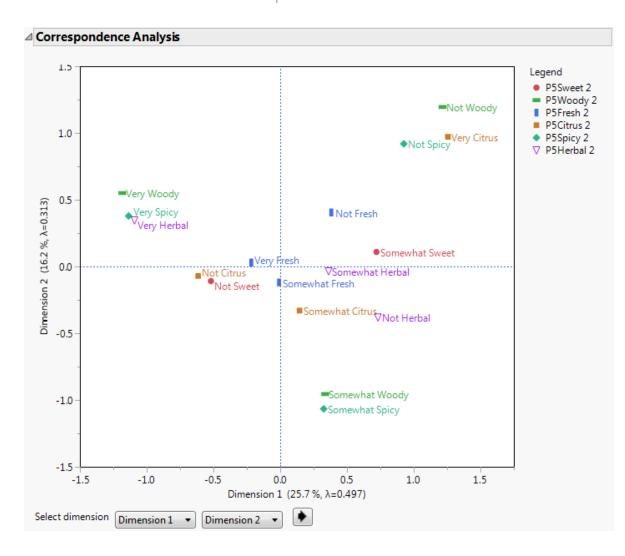
All_Smell_Study-prez - JMP Pro											
File Edit Tables Rows	Cols	DOE Analyz	ze Graph Tools	Add-Ins View	Window Help						
🖼 🦫 💕 🖬 🐰 🗈 🕯											
All_Smell_Study-prez	⊳	🗸 -81/0 Cols 💌									
Source			P5Sweet 2	P5Woody 2	P5Fresh 2	P5Citrus 2	P5Spicy 2	P5Herbal 2			
		1	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Very Spicy	Somewhat Herbal			
	_	2	Not Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal			
Columns (88/0)	_	3	Somewhat Sweet	Not Woody	Somewhat Fresh	Very Citrus	Not Spicy	Somewhat Herbal			
P5Sweet 2	*	4	Not Sweet	Not Woody	Not Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal			
P5Woody 2 P5Fresh 2		5	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal			
P5Citrus 2		6	Not Sweet	Very Woody	Very Fresh	Not Citrus	Very Spicy	Very Herbal			
P5Spicy 2 *		7	Somewhat Sweet	Somewhat Woody	Somewhat Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal			
P5Herbal 2		8	Somewhat Sweet	Very Woody	Very Fresh	Somewhat Citrus	Not Spicy	Very Herbal			
SupRow		9	Somewhat Sweet	Not Woody	Not Fresh	Not Citrus	Not Spicy	Not Herbal			
A P5Like	Ŧ	10		Not Woody	Very Fresh	Very Citrus	Somewhat Spicy	Not Herbal			
Rows		11	Not Sweet	Somewhat Woody	Somewhat Fresh	Not Citrus	Somewhat Spicy	Somewhat Herbal			
	27 🔺	12	Not Sweet	Somewhat Woody	Somewhat Fresh	Not Citrus	Somewhat Spicy	Very Herbal			
	0 0 ≡	13	Somewhat Sweet	Not Woody	Somewhat Fresh	Very Citrus	Not Spicy	Somewhat Herbal			
Hidden	0	14	Somewhat Sweet	Somewhat Woody	Very Fresh	Not Citrus	Somewhat Spicy	Somewhat Herbal			
	0 Ŧ		4					•			
evaluations done								☆ 🔳 🔻			

Data can be ordinal or categorical

MULTIPLE CORRESPONDENCE ANALYSIS

Benzec	ri Adjust	ed Inert	ia				
	Adjusted		Cumulative				
Inertia	Inertia	Percent	Percent	20	40	60	80
0.49657	0.15672	77.78	77.78				
0.31287	0.03078	15.28	93.06				
0.23913	0.00756	3.75	96.81				
0.22491	0.00488	2.42	99.24				
0.19936	0.00154	0.76	100.00				
Greena	cre Adjus	sted Ine	rtia				
	Adjusted		Cumulative				
Inertia	Inertia	Percent	Percent	20	40	60	80
0.49657	0.15672	58.78	58.78				
0.31287	0.03078	11.54	70.32				
0.23913	0.00756	2.84	73.16				
0.22491	0.00488	1.83	74.99				
0.19936	0.00154	0.58	75.57				
	Inertia 0.49657 0.31287 0.23913 0.22491 0.19936 Greena Inertia 0.49657 0.31287 0.23913 0.22491	Adjusted Inertia Inertia 0.49657 0.15672 0.31287 0.03078 0.23913 0.00756 0.22491 0.00488 0.19936 0.00154 Greena:re Adjusted Adjusted Inertia 0.49657 0.31287 0.15672 0.31287 0.00154 Greena:re Adjusted Inertia 0.49657 0.15672 0.31287 0.03078 0.23913 0.00756 0.23913 0.00756	Adjusted Percent 0.49657 0.15672 77.78 0.31287 0.03078 15.28 0.23913 0.00756 3.75 0.22491 0.00488 2.42 0.19936 0.00154 0.76 Greenatria Percent Adjusted 1 0.49657 0.22491 0.00488 2.42 0.19936 0.00154 0.76 Greenatrie Adjusted Inertia Inertia Percent 0.49657 0.15672 58.78 0.31287 0.03078 11.54 0.23913 0.00756 2.84 0.22491 0.00488 1.83	Inertia Inertia Percent Percent 0.49657 0.15672 77.78 77.78 0.31287 0.03078 15.28 93.06 0.23913 0.00756 3.75 96.81 0.22491 0.00488 2.42 99.24 0.19936 0.00154 0.76 100.00 Green-texted Inertia Adjusted Percent Percent 0.49657 0.15672 58.78 58.78 0.31287 0.03078 11.54 70.32 0.31287 0.03078 11.54 70.32 0.31287 0.03078 11.54 70.32 0.23913 0.00756 2.84 73.16 0.22491 0.00488 1.83 74.99	Adjusted Inertia Cumulative Percent 20 0.49657 0.15672 77.78 Percent 20 0.31287 0.03078 15.28 93.06 1 0.23913 0.00756 3.75 96.81 1 0.22491 0.00488 2.42 99.24 1 0.19936 0.00154 0.76 100.00 1 Greenacre Adjusted Inertia Adjusted Percent Percent 20 0.49657 0.15672 58.78 58.78 20 0.49657 0.15672 58.78 58.78 20 0.49657 0.15672 58.78 58.78 20 0.31287 0.03078 11.54 70.32 20 0.23913 0.00756 2.84 73.16 1 0.22491 0.00488 1.83 74.99 1	Adjusted Inertia Percent Cumulative Percent 20 40 0.49657 0.15672 77.78 77	Adjusted Inertia Percent Cumulative Percent 20 40 60 0.49657 0.15672 77.78 77.78 77.78 77.78 0.31287 0.03078 15.28 93.06 0.23913 0.00756 3.75 96.81 0.22491 0.00488 2.42 99.24 0.19936 0.00154 0.76 100.00

- Determine ideal number of dimensions:
 - Pareto plot: Use as scree plot. Number of eigenvalues before the elbow
 - Dimensions that sum up to ~80% of adjusted percent of inertia
 - All dimensions with coherent substantive meaning
- Adjusted inertias give a more accurate idea of the percentage of explained variance


•

- Benzécri adjusted inertias are computed as percentages of the sum of eigenvalues that are greater or equal to 1/number of column variables
 - Inertias tend to be overestimated
- Greenacre adjusted inertias are less optimistic than Benzécri's

MULTIPLE CORRESPONDENCE ANALYSIS

- MCA Map is the key feature and contains huge amounts of information
- Points are plotted according to the column coordinates
- Project points onto each dimension to help interpret dimension's meaning
- Points close to each other are more strongly associated

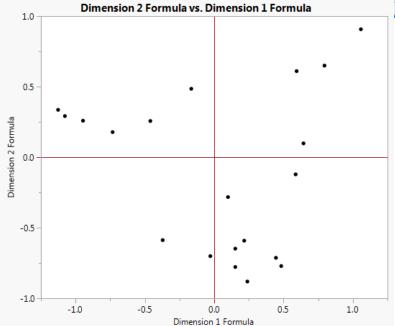
POWER

MULTIPLE CORRESPONDENCE ANALYSIS

Column Coordinates

Y	Category	Dimension 1	Dimension 2	Dimension 3
P5Sweet 2	Not Sweet	-0.520	-0.109	0.184
P5Sweet 2	Somewhat Sweet	0.720	0.110	-0.477
P5Woody 2	Not Woody	1.216	1.196	0.422
P5Woody 2	Somewhat Woody	0.337	-0.955	-0.124
P5Woody 2	Very Woody	-1.183	0.551	-0.052
P5Fresh 2	Not Fresh	0.382	0.405	0.833
P5Fresh 2	Somewhat Fresh	-0.009	-0.119	-0.438
P5Fresh 2	Very Fresh	-0.217	0.030	0.536
P5Citrus 2	Not Citrus	-0.615	-0.071	0.393
P5Citrus 2	Somewhat Citrus	0.145	-0.330	-0.482
P5Citrus 2	Very Citrus	1.256	0.972	0.303
P5Spicy 2	Not Spicy	0.925	0.920	-0.178
P5Spicy 2	Somewhat Spicy	0.325	-1.065	0.376
P5Spicy 2	Very Spicy	-1.136	0.379	-0.228
P5Herbal 2	Not Herbal	0.731	-0.379	1.291
P5Herbal 2	Somewhat Herbal	0.362	-0.034	-0.740
P5Herbal 2	Very Herbal	-1.092	0.347	0.179

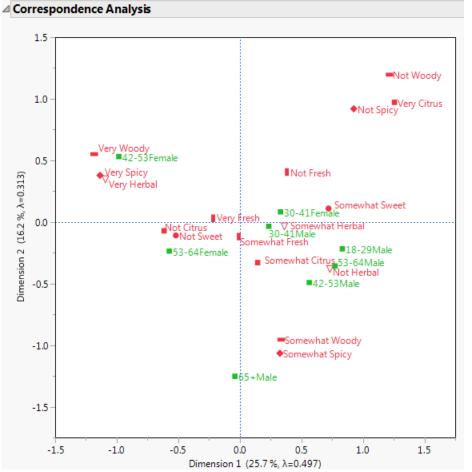
- Column (principal) Coordinates are like PCA loadings. They help us interpret meaning of components
- Column Coordinates are particularly helpful when MCA map is too crowded: we can sort them to identify which categories are at the extremes



MULTIPLE CORRESPONDENCE ANALYSIS

All_Smell_Study-prez	Þ							
Source			sh 2	P5Citrus 2	P5Spicy 2	P5Herbal 2	Dimension 1 Formula	Dimension 2 Formula
Columns (90/2)		1	t Fresh	Somewhat Citrus	Very Spicy	Somewhat Herbal	0.0992037727	-0.282448245
P4Comment		2	t Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal	0.1515280545	-0.777985938
P5Sweet		3	t Fresh	Very Citrus	Not Spicy	Somewhat Herbal	1.0575176597	0.907097286
P5Woody		4		Somewhat Citrus	Not Spicy	Somewhat Herbal	0.5939469238	0.6103198495
P5Fresh	-	5	t Fresh	Somewhat Citrus	Not Spicy	Somewhat Herbal	0.5867142157	-0.121433998
Rows		6	1 I	Not Citrus	Very Spicy	Very Herbal	-1.126286364	0.3361452069
All rows	27 🔺	7	t Fresh	Somewhat Citrus	Somewhat Spicy	Somewhat Herbal	0.444826077	-0.712884979
Selected	0	8	ı	Somewhat Citrus	Not Spicy	Very Herbal	-0.165804449	0.4851710004
xcluded	0 ≡	9		Not Citrus	Not Spicy	Not Herbal	0.794809028	0.6496003189
Hidden .abelled	0 -		4				III	Þ

🖉 💌 Graph Builder



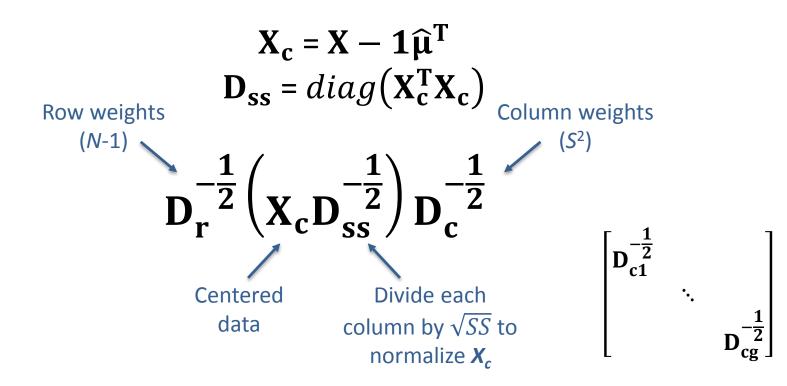
- Save Coordinate Formula saves Principal Row Coordinates to the data table, which characterize the degree of endorsement of each dimension for every observation
- As with PCA Scores, these can be used in a variety of subsequent analyses (e.g., predictive models)
- We can plot row coordinates to identify observations with very high/low scores and those close to the centroid

MULTIPLE CORRESPONDENCE ANALYSIS

- As with PCA, **Supplementary variables** can be included to enrich interpretation of dimensions
- Supplementary points are displayed at the averages of the principal row coordinates of the corresponding respondents
 - E.g., Average for males and females results in coordinates for points in each dimension
- Creating "interaction" variables enables more nuanced interpretation of the plots

- Used with continuous data
- Goals of Analysis:
 - Identify underlying structure of data from **multiple sources**
 - Study inter-association of variables across sources of data
 - Compare information from multiple data tables
 - Reduce dimensionality of data accounting for multiple-source structure (analogous to PCA on Corr vs Cov)
 - Study inter-association of observations (**products** in CR)
 - Extract dimensions that distinguish observations
 - Identify multivariate outliers within and across sources of data
- Graphical displays are also emphasized

MULTIVARIATE FLAVORS OF JMP				MULTIPLE FACTOR ANALYSIS										
Data:		So		ource 1	Source 2		2			Source <i>g</i>		g		
File Edit Tables Rows (Col			yze Graph Tools Ad	dd-Ins Vi	ew Windo	w Help							
 Smell_Study_MFA 	Þ	176/0												
	۲			Product			Woody_M	Fresh_M		Woody_F		Sweet_Exp	Woody_Exp	Fresh_Exp
Columns (182/0) Sweet ID27 etc. (6/0)		0	1	~		3.8	2.3	4.8		1.35714	5.3125	1	0	0.5
Product		<i>e</i>	2	Peppermint, Lemon, and	Lavender	3.4	3.6	4.4		3.64285	5.1875		0.3333333	1
⊿ Male Attributes (6/0)		0	-	Tea Tree		2.9	4	4.8		4	4	0	1	0
Sweet_M P		<i>e</i>	4	Eucalyptus and Roseman	•	2.8	4.2		3.28571		4.875	0.5	0	1
Woody_M 🖶	-	<i>.</i>		Tea Tree, Eucalyptus, and		3	3.6	4.5		4.57142	4.5625		0.3333333	
Rows		0	6	Peppermint and Sweet O	-	3.8	2.8	4.2			4.875	0.5	0	0.5
	8	0	7	Rosemary and Frankince	nse	3	4	3.8		4.14285	4.0625	1	0.5	0.5
ource ced	0	<i>e</i>	8	All		3.1	3.2	4.5	4.28571	2.6	4.3125	0.625	0.25	0.625
	0													
	8													
				4										III +
evaluations done													1	😭 🔲 🔻 🔐


- Key output:
 - Consensus Map
 - Eigenvalues (aka squared singular values)
 - Eigenvectors
 - Loadings
 - Percent of variance explained by each dimension
 - Individual component scores
 - RV Correlations
 - Block Partial Contributions
 - Block Partial Scores

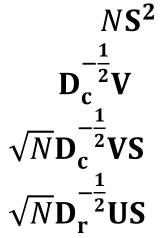
MULTIPLE FACTOR ANALYSIS

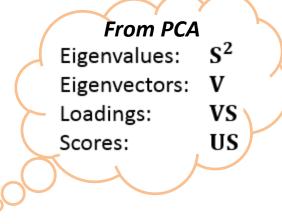
SVD of:

Sas. THE POWER TO KNOW.

MULTIPLE FACTOR ANALYSIS

SVD of:


$$D_{r}^{-\frac{1}{2}} \left(X_{c} D_{ss}^{-\frac{1}{2}} \right) D_{c}^{-\frac{1}{2}} = USV^{T}$$


MFA Eigenvalues:

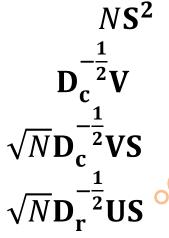
MFA Eigenvectors:

MFA Loadings:

MFA Component Scores:

MULTIPLE FACTOR ANALYSIS

SVD of:


$$D_{r}^{-\frac{1}{2}} \left(X_{c} D_{ss}^{-\frac{1}{2}} \right) D_{c}^{-\frac{1}{2}} = USV^{T}$$

MFA Eigenvalues:

MFA Eigenvectors:

MFA Loadings:

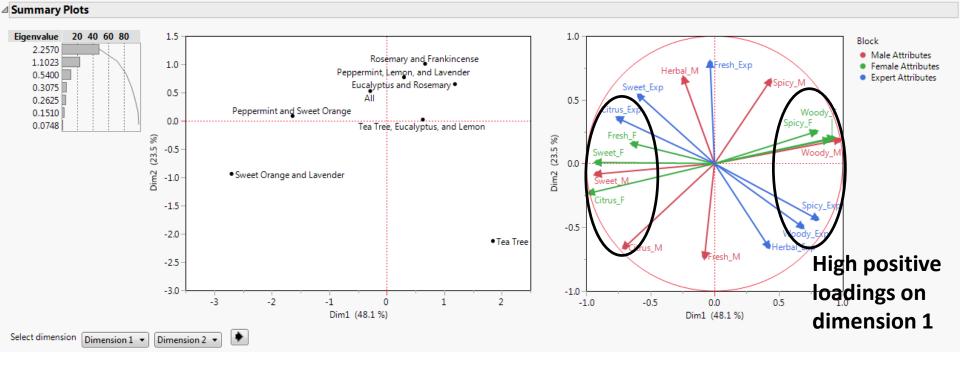
MFA Component Scores:

From MCA _{s²} Principal Inertias: Standard Coordinates: Principal Coordinates for Columns:

Principal Coordinates for Rows:

 $D_c^{-\frac{1}{2}}V$

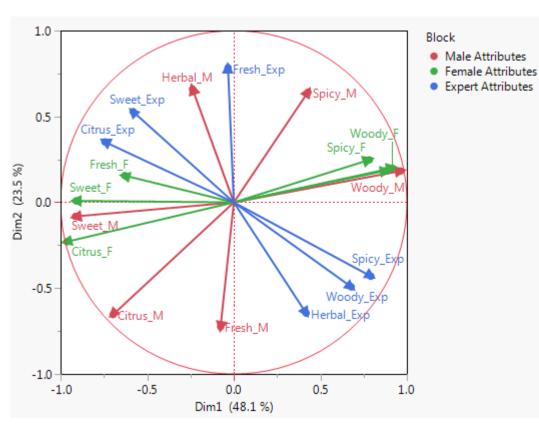
 $D_c^{-\frac{1}{2}}VS$


 $D_r^{-\frac{1}{2}}US$

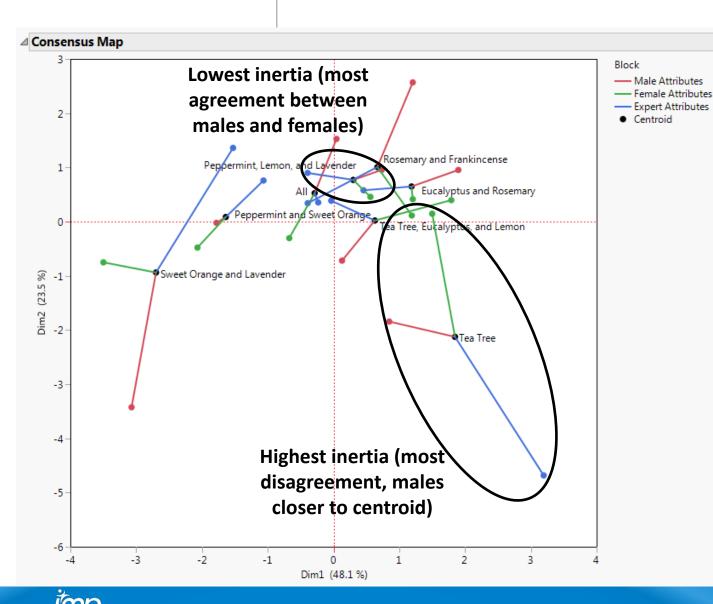
Eigenva	lues			
Number	Eigenvalue	Percent	20 40 60 80	Cum Percent
1	2.2570	48.072		48.072
2	1.1023	23.478		71.550
3	0.5400	11.501		83.052
4	0.3075	6.548		89.600
5	0.2625	5.592		95.192
6	0.1510	3.216		98.407
7	0.0748	1.593		100.000

- Determine ideal number of dimensions (most popular):
 - Scree plot: Number of eigenvalues
 before the elbow
 - Can use Pareto plot or plot eigenvalues in GraphBuilder
 - Number of eigenvalues larger than 1
 - Doesn't apply anymore in MFA
 - Dimensions that sum up to ~80% of variance
 - All dimensions with coherent substantive meaning

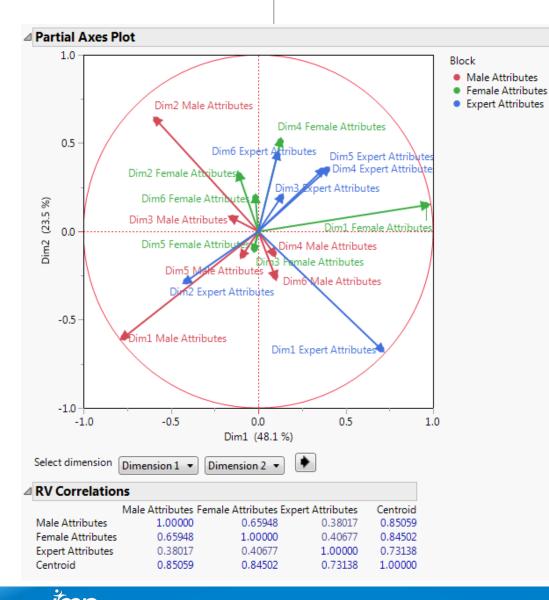
- Use Score Plot to identify how products "score" in each dimension
- E.g., Eucalyptus and Rosemary together with Tea Tree were rated as highly woody and spicy, whereas Sweet Orange and Lavender is correctly identified as high in sweet and citrus.
- Use Loading Plot to interpret meaning of consensus components
- Loadings are correlation coefficients between components/dimensions and variables



mn

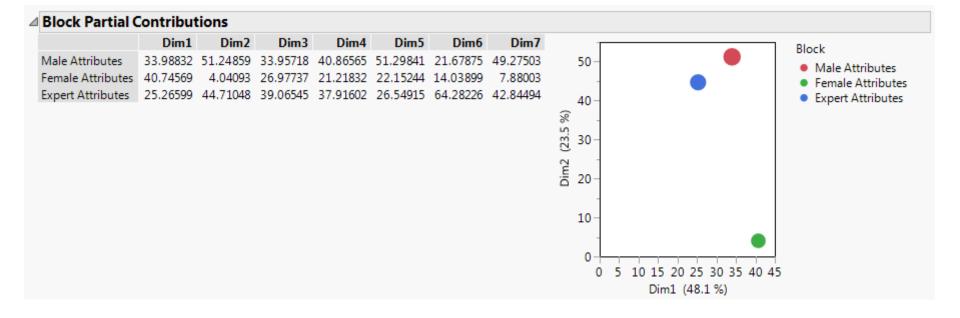

MULTIPLE FACTOR ANALYSIS

- Use Loading Plot to compare structure across sources
 - E.g., Males have higher dimensionality than females
- Vectors close to each other are more highly correlated
 - E.g., All sources mostly agree on perceptions of sweet and citrus
- Opposing vectors have opposite meaning
 - E.g., experts and males have opposite interpretation of freshness



POWER TO KNOW

- Use Consensus Map to identify agreement or disagreement between sources.
 - "Highlight Product" slider facilitates this task by highlighting low/high inertia products
- Tea tree was experienced most differently across all
- Peppermint, lemon, and lavender was experienced most similarly across all
- Combination of "All" scents is closest to the origin

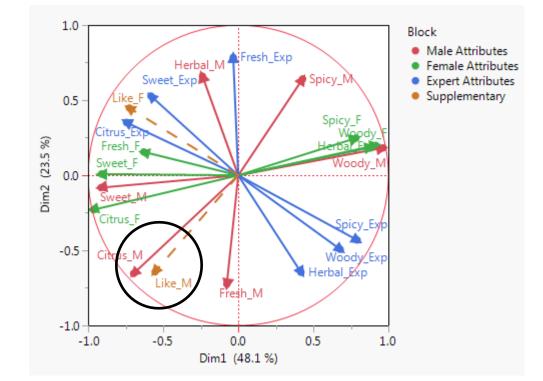


- Partial Axes Plot displays correlations between separate PCA dimensions across sources with MFA (consensus) dimensions
 - 1st MFA dimension is very much like females' 1st dimension from their own separate PCA
 - 2nd MFA dimension is most like males' own 2nd PCA dimension

- RV Correlations quantify the level of shared variance across sources (squared correlation coefficient between matrices)
 - Experts have the least in common with males and females

- Block Partial Contributions quantify the percentage of contribution to each MFA dimension from each block (i.e., source)
 - E.g., 1st MFA dimension is mostly influenced by females' responses and least by experts' responses

Block Partial Score	Rows Cols I	_MFA - JMP Pro DOE Analyze Gra IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		d-Ins View	Windov	v Help	0		Save	Block	٦
 Block Partial S Columns (9/0) Product Block Dim1 Dim2 		Produ Sweet Orange and L Sweet Orange and L Sweet Orange and L Peppermint, Lemon	avender avender avender	Block Male Attribute Female Attribu Expert Attribu	es utes	-3.499	505304 323209	Dim2 -3.424678434 -0.750129276 1.3612736995	Partia	I Scores	
Rows All rows 24 Selected 0 Excluded 0 Hidden 0	8	Peppermint, Lemon Peppermint, Lemon Tea Tree Tea Tree Tea Tree	Smell_Study_l File Edit Tak Barrow Ba	oles Rows C						Help	
Labelled 0		•	Columns (192) Like_F Like_M Product @		 <td>1 2 3 4</td><td>Pepperr Tea Tree</td><td>Product Drange and Lavender mint, Lemon, and Lavender tus and Rosemary</td><td>Score Dim1 -2.69967565 0.2993782061 1.8465900667 1.1855330196</td><td>Score Dim2 -0.93784467 0.770895243 -2.125635276 0.6493060314</td><td>Sc</td>	1 2 3 4	Pepperr Tea Tree	Product Drange and Lavender mint, Lemon, and Lavender tus and Rosemary	Score Dim1 -2.69967565 0.2993782061 1.8465900667 1.1855330196	Score Dim2 -0.93784467 0.770895243 -2.125635276 0.6493060314	Sc
Component Scores can be estimated for individuals (here products) or for			Rows All rows Selected Excluded	8 A 0 0	9 9 9 9 9 9 9 9 9	5 6 7 8	Pepperr	e, Eucalyptus, and Lemon nint and Sweet Orange ry and Frankincense	-1.638519359 0.666568776	0.0217341348 0.0864775937 1.0085044559 0.5265624876	
blocks		dividual pres	Hidden				•			•	
jmp									<u>S</u> .Sa		

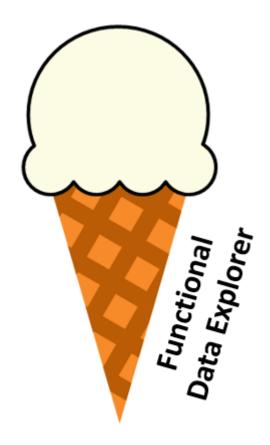


MULTIPLE FACTOR ANALYSIS

Supplementary variables

enrich the interpretation of our findings

Product	Like_F	Like_M
Sweet Orange and Lavender	3.8235294	3.4
Peppermint, Lemon, and Lavender	3.5882353	2.5
Tea Tree	2.6470588	3.1
Eucalyptus and Rosemary	3.4705882	2.9
Tea Tree, Eucalyptus, and Lemon	2.9411765	2.9
Peppermint and Sweet Orange	3.4705882	3.1
Rosemary and Frankincense	3.2941176	2.8
All	3.291176	3



Males liked best the scents they perceived as citrus and somewhat sweet and fresh, and didn't like those scents they perceived as spicy.

