Science-driven software solutions

Andrew Macpherson and Paul Nelson, Prism Training & Consultancy Ltd

- Why augment a Definitive Screening Design?
 - What do you get from Scoping Designs?
- <u>Do you routinely perform Stability Analyses?</u>
- How do you analyse complex plate-based assay data?

Why augment a Definitive Screening Design?

Background

- DSDs are extremely efficient and effective, but rely on sparsity – e.g. for a 6-factor design, a full RSM model can be fitted if up to 3 factors are active!
- However, what happens if you suspect or discover that 4 factors are active?

Approach

- Method identified to augment DSDs – proactively or reactively – to fit the full 4-factor RSM model
- Method maintains desirable DSD properties, but addresses common real-world problem of many active factors
- Attend Paul Nelson & Phil Kay's talk to learn more!

Solution

- DSD structure lends itself to a sequential strategy, in cases where DSDs are unable to resolve all ambiguity
- New add-in available upon request

What do you get from Scoping Designs?

Background

- Prior to performing a screening study, why not check:
 - Have you chosen appropriate factor ranges?
 - 2. Are your response goals achievable?
 - 3. Are your effects likely to be greater than the background noise?

Example: Improve yield of a Heck reaction

Approach

- Identify Mild and Forcing conditions around your ideal setting for each factor
- Perform:
 - Run(s) with all factors at Mild conditions
 - Run(s) with all at Forcing
 - Replicated Centre Points

Solution

New version of add-in available <u>upon request</u>

- Nonlinear trend => optimal factor ranges
- 2. Specification achievable!
- 3. Signal appears > Noise

Do you routinely perform Stability Analyses?

Background

- Stability and Shelf Life Prediction is available using JMP's *Degradation* platform. However, it only applies to straight line model fits & single factor analysis, and doesn't always correctly apply the ICH guidance
- Fit Model and Nonlinear platforms can perform required analysis, but are not straightforward!

Approach

- Create workflow add-in to guide user through ICH-compliant analysis
- Extend poolability tests (recommended by ICH) to nonlinear models
- Use existing JMP functionality wherever possible
- Allow drill-down from add-in to native JMP platforms to explore results further

Solution

 Bespoke add-in developed for clients requiring both linear & nonlinear stability analysis in line with ICH guidance

How do you analyse complex plate-based assay data?

Background

 Using a complex, multistep process, a client generates a large amount of plate-based data to evaluate, qualify & develop a vital potency assay

Approach

- Manage, import & process raw plate data
- Subset & analyse available Control data to establish LoD/LoQ and endpoint titre
- Fit multiple curves accounting for complex data structure
- Extract and compare curve parameters to discriminate between treatment groups

Solution

 Bespoke add-in developed to easily guide user through the process steps. This reduces user error, and provides additional options & flags

