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Introduction

Mixture experiments have a history dating back well over 200 years;
e.g., George Pearson, 1784, Observations and Experiments for
Investigating the chymical history.

Greg F. Piepel: Student
of John and prolific
researcher and author
on mixture designs.

John A. Cornell (1941-2016): Mr. Henri Scheffe (1907-1977):
Pioneered modern mixture designs

Mixtures (published key paper 1958)
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Introduction

Mixture experiments consist of experiments where the experimental
factors are components of a formulation or recipe.

The components can be either a liquid, a gas, or even a solid.

The impact of the mixture components on the responses of interest
depends only on the proportions of the components and not on
the amounts.

If there Is a dependency on the amount of the components present,
then classical mixture designs are inappropriate — more on this
later.

Because the experimental factors are components of a formulation,
there are inherent constraints on the settings of these factors.
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Introduction

Factorial experimental designs allow independent settings for each of
the experimental factors - no explicit constraints exist on the
mutual factor settings.

Mixture experimental designs impose constraints on the possible
settings for each factor since they are components of a formulation.

Mixture factors can not be independently manipulated.

Mixture experimental designs, with g factors, impose the constraints

X, +X,+...+X,=10 and for 0<X,<1.0 I=1,...,0



Introduction

A type of important effect in mixture experiments is referred to as
Nonlinear Blending, or NLB .

NLB effects represent the departure of the observed response from
what one would predict the response to be as a linear, additive
combination of pure component blends.

NLB is common, e.g., mixtures of water and alcohol vs boiling point
of the mixture.

NLB typically has two forms: Synergistic where the response is
higher than expected and Antagonistic where the response is lower
than expected from the pure component blend responses.

Large NLB effects of second and third order are commonly
encountered in mixture experiments.



Introduction

Example of synergistic NLB for a two component mixture experiment
on blends of sweeteners glucose and fructose.
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Introduction

Additional constraints on mixture factor settings are common.
Regional or inequality constraints (upper and lower bounds)
Lower, < X; <Upper,, L, >0,U; <1.0, > X; =10, i=1...,q

Example, one would not have cake mixes with 100% eggs or 100%
flour, etc., a proportion of some or all ingredients must be present in
every mixture trial performed.

Another type of constraint often exists in which bounds are placed on a
linear combination of some of the components in the mixture.

Typically, linear constraints involve 2 and sometimes 3 components
of the mixture and have the general form.

Xi+X.<a, 1#], a<l.0



Introduction

When regional constraints exist, it is common to rescale the mixture
components to help mitigate the multicollinearity issues.

Basically, the component settings are stretched to better fit the
encompassing simplex region and reduce multicollinearity.

A common rescaling method is referred to as L-pseudocomponent
scaling (can be used with both upper and lower constraints)

X, -

| :1—ZLi

i=1

X, -,

q
or X, =X;@1-> L)+L,
i=1

Note, the scaling method of Cornell and Gorman (JQT, 2002) is
more effective but Is not implemented in JMP.



Analyzing Mixture Experiments
Mixture designs are really a type of response surface design and as
such the primary goal of a mixture experiment is to develop a model
that satisfactorily predicts future performance of the response(s).

The model is subsequently used to characterize the behavior of the
response(s) over the constrained mixture space — the models are
commonly used for optimization and sensitivity analysis.

Selecting satisfactory predictive models require that we divide the data
Into a training set to fit the model and a validation set, not used to
fit the model, that assesses the prediction capability.

Predictive models are selected that have smallest prediction error on
the validation set — should predict future performance the best.

Unfortunately, in designed experiments rarely is there sufficient data
to form a training and validation set.

So how does one select a best predictive model in DOE?



Analyzing Mixture Experiments

The model selection problem is particularly difficult in mixtures.

The existence of constraints results in a great deal of
multicollinearity.

The multicollinearity results in correlations among the
estimated effects, especially NLB effects; standard errors of the
estimates are generally quite large.

Traditional model selection techniques using p-values are not
useful for mixtures; p-values are distorted by even small
amounts of multicollinearity and are misleading.

The pure component terms must be forced into all models.
Mixture models have 0 intercept — sometimes a problem.

The designs are typically very efficient and even supersaturated
depending upon the mixture model of interest.



Analyzing Mixture Experiments
Today’s powerful computers, with double precision, and modern
statistical software such as JMP provide us with better capabilities to
analyze and build predictive models for mixtures.

We will investigate and illustrate a couple methods (many more are
possible, users should try an array of methods).

= Traditional Forward selection using the pseudo factor method
of Miller (1992) — interesting and unappreciated approach.

= Traditional Forward selection and Pruned Forward using
fractionally weighted bootstrapping and auto-validation
(Gotwalt and Ramsey, 2018).

The Generalized Regression platform in JMP Pro makes it
straightforward to implement these methods for mixtures.

Note, | do not recommend All Possible Models for mixtures in part
due to the need to force the pure component terms in every model



Miller’s Pseudo Factor Method

Calculate the largest possible number of effects p that could occur in a
mixture model; includes cross products, polynomials, etc.

Create an additional set of p random factors or pseudo factors — Miller
used random uniformly distributed factors.

Define the largest possible model in the mixture factors and then add
the additional set of pseudo factors.

Under the assumption that all effects are 0, the probability of a mixture
effect or pseudo factor entering the model is the same, hence the use
of p pseudo factors — Miller never explained his rationale.

Use Forward Selection with say AICc or BIC as the objective function
and stop the selection process when either the first pseudo factor
enters the model or the fitting criterion is minimized.

For large mixture problems, this approach can become unwieldy.



Miller’s Pseudo Factor Method

Example (due to Montgomery): In semiconductor manufacture,
silicon wafers are acid etched prior to a metalization step in the
process.

An experiment has been performed by research scientists to find the
optimum composition of etchant — the composition yielding the

highest etching rate. T P Ao s conoin e ompors
The etchant is composed of three acids: \ f
A = nitric, P \\{'}_5
B = hydrochloric, and : \\\
C = Phosphoric. KFA A

chid A 03 08

A simplex centroid design was used and the IargeSt 'p(')sSibI'e model
contains 7 effects: 3 pure component terms, 3 two-way NLB terms,
and 1 three-way NLB term.



Miller’s Pseudo Factor Method

Below is the design with pseudo factors added and the response.

| -
- Acid A Acd B Acid C Etch Rate Pseudo1 Pseudo?2 Pseudo3 Pseudo4 Pseudo5 |Pseudo & Pseudo 7
1 1 o o 540 07773 03166 0.3299 212159 0.5320 0.6059 0.5861
2 1 H o 560 04977 0.5328 0.6055 0.2501 L5196 0.6367 04053
3 o 1 o 330 04336 0.5084 0.5460 04851 05114 0.2204 0.8571
4 o 1 o 350 04850 0.6520 0.2410 2.5191 02306 07201 0.0553
5 o o 1 2585 0.7730 0.5340 0.2090 0.2676 0.1940 02137 07248
& o H 1 260 04501 0.8901 03114 0.8635 0.9332 0.2655 0,0081
7 0.5 0.5 o 610 01218 0.3392 0.2024 0.5710 0.6999 04234 0.9175
a 0.5 H 0.5 425 0.7579 04e42 0.8531 0.8342 0.53%0 0.5561 0.2514
9 o 0.5 0.5 330 04038 04675 0.6753 0.5720 05669 0.3338 0.8574
10 33333 0.33333 33333 300 0,6325 03021 0.8554 0.5710 07260 04933 06600
11 33333 0.33333 33333 350 0.5378 0.5762 0.0210 0.6334 080594 05212 0.9652
12 0L.eERET 016667 16667 710 0.2096 0.59733 0.8266 0.3638 0.5245 05714 0.8331
13 16667 0.66667 16667 G40 0.3233 0.83%96 0.5685 04570 3524 0.3550 0.5530
14 0 166ET 016667 OEERET 450 07737 0.5607 01269 09727 e522 0.2195 002590

In Fit Model define a mixture response surface model and add the
three-way NLB term, then add the 7 pseudo factors.

We will use the Generalized Regression platform to do the forward
selection analysis; if you do not have JMP Pro use the Stepwise
platform.
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Below is a screenshot of the Fit Model launch dialog for the analysis.
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Miller’s Pseudo Factor Method

4 Fit Model - JMP Pro

£ = Model Specification
Select Columns

* 11 Columns

A Acid A

4 Acid B

A Acid C

A Etch Rate
4 Pseudo 1
A Pseudo 2
A Pseudo 3
A Pseudo 4
4 Pseudo 5
A Pseudo &
A Pseudo T

optional numeric
Malidation || cotiona
Construct Model Effects
Add Acid A & RS & Mixture
Acid B & RS & Mixture
Acid C 8RS & Mixture
Acid B*Acid A
Acid C*Acid B
Acid A*Acid B*Aad C
Degree Pseudo 1
Attributes | Pseudo 2
Transfom |« Pseudo 3
Mo Intercept Pseudo 4
Pseudo 5
Pseudo &
Pseudo 7

— O
Personality | Generalized Regression
Distributiont | w0 rmal
[EnEDF[DdE':| |v
| Hep | | Run |

[] Keep dialog open

Remove

x

L¥

15



Miller’s Pseudo Factor Method

To the right is a screenshot of the Gen
Reg Model Launch configuration.

3 SiliconEtch_PseudoFactors - Gene.., —

£ = Generalized Regression for Etch Rate
£ Model Launch

Of course other options are possible.

Forward Selection

£ Advanced Controls

Important to force in the pure Ao Contrls_
com ponent tel"msl Initial Displayed Solfion | gest Fit

£ Force Terms

Farced terms are not included inthe penalty.

| do not recommend enforcing 7 raannme
heredity in predictive model
building whether a mixture model or

not; can lead to over fitting.

Acid A*Acid C

Acid B*Acid C

Acid A*Acid B*Add C
Pseudo 1

Pseudo 2

Pseudo 3

Pseudo 4

Pseudo 5

Pseudo &

Pseudo 7

This 1s controversial.

HOOOOOOOOOOO R R

Validation Method

Here we use AlCc as the objective
function for model selection; again i
;
you can use other options.
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Miller’s Pseudo Factor Method

The algorithm stops after two steps, the three pure component effects
the A*B NLB term and the A*B*C NLB terms define the model.

| Solution Path
12000 * 500 *
10000 — 430
400
g 8000
'ET 350
L d 300
& =3
w
£ 4000 350
&
2000 200 \
£ — R 150
o ! —_—
100
0 2 4 B 3 10 0 2 4 & 3 0
Step Mumber Step Number
£ Parameter Estimates for Original Predictors
‘Wald Prob =
Term Estimate Std Emror ChiSquar  ChiSquare  Lower95% Upper95%
Acid AMixture) Forced in 54910103 7.0280392 61043041 < 00017* 53532632 562.87573
Acid BiMixture) Forced in 34810103 9300977 1400.7269 < D001 * 329.87145 36633061
Acid C{Mixturs) Forced in  270.75231  15.048573 323.70822 <.0001* 241.25765 30024697
Acid A*Acid B 6847655 54.012093 160.73196 < 00017* 57890414 790.62766
Acid A=Acid C 0 0 0 1.0000 0 ]
Acid B*Acid C 0 0 0 1.0000 0 0
Acid A*Acid BEAgd C 93727367 562.10762 27303142 < 0001* 3271.026 10474447
Pseudo 1 0 0 0 1.0000 0 ]
Pseudo 2 0 0 0 1.0000 0 ]
Pseudo 3 0 0 0 1.0000 0 0
Pseudo 4 0 0 0 1.0000 0 ]
Pseudo 5 0 0 0 1.0000 0 ]
Pseudo & 0 0 0 1.0000 0 0
Pseudo 7 0 0 0 1.0000 0 ]
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Miller’s Pseudo Factor Method

Using the model selection slider (red vertical line) we manually force a
third selection step. Notice a pseudo factor enters the model, so we
stop at two steps.

£ Solution Path
12000 * 500 *
10000 — CEL
400
w8000
E 350
& 6000 5
5 = 300
o
£ 4000 350 :
&m L]
L]
0 N \i_.
. 150
o : —
100
0 2 4 & ] 10 0 2 4 & ] 10|
Step Mumiber Step Mumber
£ Parameter Estimates for Original Predictors
‘Wald Prob =
Term Estimate Std Emor ChiSquar  ChiSquare Lower95%  Upper95%
Acid AlMixture) Forced in 528.517 14.053573 1413.3036 < 0001* 500.96271 5560713
Acid B{Mixture) Forced in  322.06008 21.395304 21634755 < 000 1* 279.14509 36497506
Acid C{Mixture) Forced in 25597727 14.274523 321.57303 < 00 1* 227.99972 233.954382
Acid A*Acid B 59441526 53.9905 121.21188 < 0001* 438.59582 700.234658
Acid A*Acid C ] 0 0 1.0000 ] 0
Acid B*Acid C o o ] 1.0000 o o
Acid A*Acid BAdd C 9273389 41457749 50034034 < 0001* 8460.832 10085.946
Pseudao 1 ] 0 0 1.0000 ] 0
Pseudo 2 o o H 1.0000 o o
Pseudo 3 ] 0 0 1.0000 o 0
Pseudo 4 ] 0 0 1.0000 ] 0
Pseudo 5 o o H 1.0000 o o
Pseudo & o o ] 1.0000 o o
Pseudo 7 44,141 86_6 21431905 42420857 0.0394* é‘l 361051 86.1 4?6@
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Miller’s Pseudo Factor Method

For reference below is a screenshot of the same analysis performed in
the Stepwise platform; the results are identical to Gen Reg.

£ |=|Stepwise Fit for Etch Rate

£ Stepwise Regression Control

Stopping Rule: [ gy ice v |E| [Enter All | [Make Model]
Directiore Fonward. “ [remove all] | Run Model |
Rules Mo Rules ¥
Go || Stop || Step |
SSE DFE EMSE RSquare RSquare Adj Cp p AlCc BIC
56036824 8 2646621 . : . B 1562867 142.0034
£ Current Estimates
Lode Entered Parameter Estimate nDF 55 “F Ratio”™ "Prob=F"
Acid A{Mixture) 528517002 1 467677 667671 5429
Acid B{Mixture) 322060075 1 1475776 210687 4977
Acid C{Mixture) 255977274 1 1405253 200619  601e7
™ Acid A*Acid B 504415257 1 1502084 22729  0.00141
O O Acid A*Acid C 0 1 6582464 0023 073136
1 Acid B=Acid C 0 1 4509962 0057 081846
1 Acid A*Acid B*Add C 9273389 1 1715602 2443833 277e7
1 [ Pseudo 1 0 1 8932285 0113 074619
1 [ Pseudo 2 0 1 406578 0051 082752
O O Pseudo 3 0 1 1300878 0002 096836
O O Pseudo 4 0 1 1049805 0134 072548
O O Pseudo 5 0 1 1475592 2502 01577
O O Pseudo & 0 1 890447 1322 028792
[l Pseuda 7 441418663 1 2410203 3441 010071
£ Step History
Step Parameter Action “Sig Prob™ Seq S5 RSquare Cp p AlCc BIC
1 Acid AMixture) Entered 0.0000 2475234 1 208432 208619 O
2 Acid B{Mixture) Enterad 00000 931734 2 200263 19373 CJ
3 Acid C(Mixturs) Enterad 00000 388512 3 193749 191.861 )
4 Acid A*Acid B*Add C Entered 0.0000 3121223 4 165921 161616 )
5 Acid A*Acid B Entered 0.0005 2493334 5 152629 144463 ()
6 Pseudo7 Entered 01007 2410203 6 156287 142.003 (@)
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FWB and Autovalidation

Gotwalt and Ramsey (2018 Discovery Frankfurt, Cary) propose a new
method of model selection based upon fractionally weighted
bootstrapping and autovalidation; slides on JIMP Communities.

The method also makes use of a pseudo or null factor.

Recall, a problem in building predictive models in DOE is the lack of a
validation set to assess prediction capability.

Autovalidation uses a copy of the original data as a validation set;
sounds crazy but give it a chance.

The key Is that the observations in the original or training set and
validation set (copy) are differentially weighted such that the
original or training set is anticorrelated with the validation copy set.

Thousands of bootstrap repetitions of model selection are performed
and on each bootstrap trial new weights are generated randomly.



FWB and Autovalidation

The method is straightforward.

In the Fit Model launch dialog define the largest model of
Interest and then add a null or pseudo factor to the model.

Use Generalized Regression, pick the desired model selection
algorithm, force the pure components into the model, do not
enforce heredity (same as Miller’s method).

Perform the model selection, then use the Simulate function in
JMP Pro to perform thousands of fractionally weighted
bootstrap repetitions of the model selection.

Gen Reg keeps track of which effects enter the model on each
repetition.

All effects entering the model with higher frequency then the
null factor are considered potential model terms.



Case Study: The Waste Glass Experiment

Redgate, Piepel, et. al., 1992, discuss a 10 component (oxides), highly
constrained mixture experiment to study a vitrification process to
transform high level radioactive waste to a borosilicate glass form
for subsequent permanent sequester.

The response of interest for this case study is Viscosity @1150°C.

The design consisted of 81 trials (68 unique settings and 13 replicate
trials). The authors do not discuss how the design was generated;
most likely an early form of D optimal design.

Both regional and linear (multicomponent) constraints exist.

The design was created to estimate pure component effects and two-
way NLB effects, however assuming some amount of effect
sparsity, higher order effects could be considered.

For g = 10 components the full 2" order Scheffe model has 55 terms.



Case Study: The Waste Glass Experiment

The oxide components and regional constraints are given in the table
below.

Oxide Lower Bound Upper Bound
SiO, 0.42 0.57
B,O, 0.05 0.20
Na,O 0.05 0.20
Li,O 0.01 0.07
CaO 0.00 0.10
MgO 0.00 0.08
Fe,O, 0.02 0.15

Al O, 0.00 0.15
ZrO, 0.00 0.13

Remainder 0.01 0.10
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Case Study: The Waste Glass Experiment

The linear constraints involving the oxides are as follows:

Si10, —3Al,0, >0.0

MgO +Ca0 <0.08

Fe,O, + Al,O, + ZrO, + Remainder <0.21
AlLO, +Zr0O, <£0.14

MgO +Ca0O + Zr0O, <0.18

The response limits for Viscosity are [1.5, 12].

We begin by analyzing the full second order Scheffe model using
autovalidation and the Generalized Regression platform.

In the original paper the authors used Miller’s method (55 pseudo
factors added to the model) as well as traditional Stepwise selection
without pseudo factors.



Case Study: The Waste Glass Experiment
The traditonal 2" order Scheffe model (Scheffe, 1958) has the form

q
Yijk = Zizlﬂixi +Zzlgijxixj
I<]j
Notice, that no pure quadratic terms are included. It can be shown
(Smith, 2005) that a pure quadratic mixture term can be re-expressed
as combination of a linear term and string of cross product terms.

Therefore, if we add all of the pure quadratics to the mixture model,
the model matrix is singular; Scheffe elected to drop the quadratics.

However, a valid mixture model can contain a combination of cross
product terms and pure quadratic terms, just not all of them, and
actually fit better.

Redgate and Piepel included cross products and pure quadratics in
their model selection strategy in order to improve the fit.



Case Study: The Waste Glass Experiment

The quadratic Scheffe model had considerable lack of fit, as did the
models selected by Redgate and Piepel, so we next tried fitting
Scheffe special cubic models.

Yijk :Ziqzllgixi +ZZIBinin + y: yyﬂijkxixjxk +gijk

I<]j i<j<k

The original design was not generated to fit special cubic terms,
however using a forward selection strategy and assuming some
effect sparsity it is possible to fit special cubic models.

The special cubic model in 10 components has n = 166 terms apart
from the pure component terms. Obvioiusly the design is
supersatured for this model.

The autovalidation method was repeated, but this time using a special
cubic model in the ten components.



Case Study: The Waste Glass Experiment

Quick diversion: How might we display the results of the simulation?

One nice approach is odds ratios. If p; is the proportion of times the it"

effect entered the model during the simulation, then pi/(1-p;) Is the
estimated odds of entering the model.

Under a null hypothesis that all effects are independent and inactive p,
IS the probability of entering the model purely at random and
Po/(1-p,) Is the odds of randomly entering the model.

The odds ratio for the i effect is then~__ . P

As an alternative the proportion for OR, = ( 5 P)
the null factor could be used in the (1_0 )
denominator. Po

ORs have nice statistical properties that could be exploited for further
Inference.



The Waste Glass Experiment

Case Study

Below is a screenshot of the simulation results ordered descending by

odds ratio of entering the model vs the null hypothesis.

Graph Builder
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Case Study: The Waste Glass Experiment

< = Response Viscosity@1150C

To the right is a screenshot of the final
selected special cubic model. )

i)
=]

Viscosity@1150C Actual
-
(=]

Although some lack of fit still exists,
overall the model fits much better than

]
=]

=]

0 20 40 &0 a0

the quadratic model. e

< Effect Summary

Source LogWorth

It IS common to have some level of lack of & “we

Si02*Ca0r IR 15827 |
T T 0.00000

E

fit in mixture models that cannot be eorsortm Sas
e JRRENEE
Li20*Ca0*ZrCR 2?44;]] :

completely accommodated.

Ma02*MgQ 2093
Fe203*A1203*Remainder 2024

Si02*B203*Fe203 51 5 [ A T A A R

At this point it Is wise to consult with o = Gem
subject matter experts as to whether the = =
amount of LOF is of concern.

and may not be of concern. e

Pure Error 13 39.72737 3.0560 Prob =F
Total Emor 56 66076280 0.002
. Max R5q
Discovery March 2019 09969

PPPPPP
0.00000
0.00000

0.00001

il | aoo111
i 0.00171
i1 |oomso
Fo o 000395 A
Pl | ooomT A
i 0.00808
i1 | 000346

0.01243
0.01466

001644 A
002140 A
004666 ~
005325 A
006405 A
012047 A
BB d 035372 ~
i 42269 A
i 8§ f 047020 A

i1 | 077653 A
BB d 0.36457
b | no18e3 A

Overall, the LOF does not appear large e s Lt ()8
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Case Study: The Waste Glass Experiment

Given there were 13 replicate runs, it is possible that some of them
could be used as a validation set for model selection and the
remainder as the training set.

There were also some extra degrees of freedom in the experiment that
could also be used for validation — this Is not the usual case.

To investigate the approach, a randomly selected subset of 10 runs
were used as a validation set (mostly from the replicate runs) and the
remainder for training.

The special cubic model was defined and Generalized Regression
platform used for model selection.

As before pure component terms are forced into the model and
Forward selection was used as the model selection algorithm.
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Case Study: The Waste Glass Experiment

4|~ |Response Viscosity@1150C
Validation: Validation

To the right is a screenshot of the
final fitted model.

Overall this model has the best fit B
with no significant LOF. ”

60

ty@1150C Actual

Vi

] 20 40 &0 30
Viscosity@1150C Predicted RMSE=2782 RSq=057
Pyalue<.0001

However, the autovalidation
models had 13 df for the LOF sorazovterse  Bom — ozoo0

Al203/047 12596 DN ¢ ¢ | 000000 A
- - (Li20-0.01)/047 1505 T 0.00000
test while this model has 6 due to ~ s=ses i o
(Fe203-0.02)/047 9761 I ¢ i i ¢ | 000000
- Li20* Al203*Remainder 7oro DN ¢ i ¢ i i | 0.00000
th f t I f th Zr02/047 7089 0 0 000000 *
e u Se O SO m e r I a, S O r e Fe203+AI203*Remainder 6340 ] 0.00000
(Na02-0.05)/0.47 c3o [ ;¢ i ¢ | 000000
- - Ma02*Li20* Remainder 5960 ol bt 000000
Val I d atl O n Set AI203*Zr02*Remainder 5711 ] 0.00000
. Si02*Na02*Remainder 5.607 0.00000
Li20*Ca0*Zio2 4,936 [0 bbb bt 000001
B203*CaC*Remainder o ;¢ i ¢ i i |oo;oom
- - Si02*Na02*Mg0 242 0.00370
The autovalidation model and true ol o
(B203-0.05)/0A47 2012 i b i bbb | 000973 A
MgO*Fe203*Z102 R EE T I S A A A TR 13
. : B203*Na02Z*Zr02 1923 ¢ 0.01194
validation model are actually Fowees  owm| o
Ca0/047 0956 1] Pobon bbbt 1011064 A
- - [Remainder-0.01)/047 0015 oo b b 096630
SI m I Iar Remove Add Edit D FDR (" danotas affacts with containing affacts abova thari
[ ]
A Lack Of Fit
Sum of
Source DF Squares Mean Square F Ratio
Lack OfFit 42 33240753 791446 12148
Pure Errar & 39.09112 651519 Prob =F
Total Emor 43 37149365 04416
Max R5g
0.9969
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Case Study: The Waste Glass Experiment

Below is a comparison of the two models, they are not identical but
similar and both fit the data quite well.

4 Actual by Predicted Plot
4 Actual by Predicted Plot
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Mixture Process Factor Experiments

A much underutilized class of experimental designs for process
development and improvement are designs with combinations of
mixture and process (factorial) factors.

In general, formulations developed under very controlled process
conditions (often only one setting) do not work well in practice.

The reason is that the blending behavior of the mixture factors changes
as a function of the settings of the process factors.

In order to develop robust and optimal processes it is important to
simultaneously experiment with both the mixture and process

factors.

Such experimental designs are commonly called mixture process
factor designs.



Mixture Process Factor Experiments

Mixture process factor designs have a long history, however the
classical designs were often infeasibly large.

With modern optimal designs (Custom Design) mixture process factor
experiments can be generated that are reasonable In size.

The most common type of mixture process factor experiment is the
mixture amount experiment, where the total amount of the mixture
used iIs a process factor.

We will illustrate with a case study.

Mixture process factors still cannot have an intercept and are a bit
tricky to create in JMP, but not so hard with a little practice.

Historically, mixture process factor experiments have been very
difficult to analyze for reasons given earlier and often badly over fit
models were selected.



Mixture-Process Factor Designs

A special notation is often used to write MPV models in a compact
form. Each coefficient has a subscript defining the mixture factors
and a superscript defining the process factors that are associated

with that coefficient.

Here is a full MPV model for three mixture factors X; and two process
factors Z. Note the 2" order terms in Z; are often necessary.

Y= BOX, + BOX, + Xy + BOX, X, + BOX X+ B X, Xy + B2 X, X, X+

BIXy B+ BIXG+ BLX XK+ BEX X+ B XX+ B X X X, |2+
BIXy+ BEX,+ BEX+ BEX X, + BEX X+ BEX XK+ B2 X, X, X, |2, +
BEX X, X+ BEX X, + BEX K+ BEX, X+ BEX X, X, |2y, +
BUX+ BEK X XX+ XX+ XX+ BEX XX, |2+
:,Blzle +ﬂ222X2 +ﬂ322X3 +ﬂ1222X1X2 +18122X1X3 +182232X2X3 +ﬂ22X1X2X3}222
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Mixture-Process Factor Case Study

Chardon (1989) discusses the development of a finishing material for
cotton-polyester fabrics. We will use this example (file
MixtureProcessFabric.JMP) to demonstrate the analysis of a MPV
experiment.

The finisher is comprised of three fabric softeners and a catalyzed
resin.

We will designate the three mixture components as A, B, and C (the
softeners).

There are two process factors. D is the level of the catalyzed resin
used in the finisher, and E is the total amount of softener in the
finisher.

Note factor E is a total amount factor for the three mixture factors.



Mixture-Process Factor Case Study

The response is hydrophobicity of the fabric (water repellent
measure), which the researchers would like to maximize.

Due to heteroscedasticity the authors recommended analyzing the log
of hydrophobicity.

The researchers ran a simplex centroid mixture design at each of 7
settings of the process factors.

The process factor design is known as an equiradial (Doelhert)
response surface design, which is hexagonal in shape.

There are a total of 49 runs in the MPV and the full MPV model has
42 potential terms to estimate — similar to our example given
earlier.



Mixture-Process Factor Case Study

We will use autovalidation and Gen Reg to analyze the experiment.

Below is the full model, with 42 terms:

Y. =pB°A+ B+ B°C+p AB+ B AC+ 3 BC+ ) ABC+
B°A+ B°B+ B°C+ B°AB+ S°AC + BOBC + B° ABC | D +

| BEA+ BB+ BC+ BEAB+ BEAC + BEBC + BE ABC |E +
:ﬁlDEA+ BPEB+ BP°C + BPEAB + BPEAC + B2EBC + ﬁjjABc] DE +

B A+ BB+ BYC+ B AB+ B AC + B2 BC + B2 ABC | D’ +

BT A+ BEB+ BEC+ BT AB+ BT AC + 5 BC + A7 ABC |E?
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Mixture-Process Factor Case Study

Below is a plot of the effects by Odds Ratio for the autovalidation
results. We will fit a model containing the pure components and the
effects > null factor.
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OR vs. Effect
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To the right Is a screenshot of fitted
model based on the autovalidation

results.

The fit appears quite good.

The published model is much larger and does
not fit as well; see below.

Discovery March 2019

Mixture-Process Factor Case Study

£ Effect Summary
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Mixture-Process Factor Case Study

The goal of the experiment was to find settings of the factors that
maximizes hydrophobicity. Using the autovalidation model and the
Prediction Profiler we find the optimized settings — quite different
from the original published recommendation.

A |=|Profiler
A = |Prediction Profiler

obicity
N e ]

=

Pred Formula
L
h
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J

3
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Hydrop

1:

= !
&= 075 :
o :
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= :
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0
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Pred Formula Log
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Summary and Conclusions

Traditionally building predictive models from mixture and mixture
process DOE data has been limited by the lack of validation trials to
control over fitting.

Typically a DOE budget and time does not make it feasible to perform a
separate set of validation trials.

Autovalidation and Fractionally Weighted Bootstrapping are two new
viable techniques that enable predictive modeling from DOE data
without running a set of validation trials.

The techniques use the original training data and bootstrapping concepts
to form validation sets.

Autovalidation and FWB should be considered a part of mixture DOE
analysis where the goal is to build predictive models.
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