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Introduction
Mixture experiments have a history dating back well over 200 years; 

e.g., George Pearson, 1784, Observations and Experiments for 
investigating the chymical history.

A small sub-discipline of experimental design: a few key researchers. 
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John A. Cornell (1941–2016): Mr. 
Mixtures

Henri Scheffe (1907–1977): 
Pioneered modern mixture designs 
(published key paper 1958)

Greg F. Piepel: Student 
of John and prolific 
researcher and author 
on mixture designs.



Introduction
Mixture experiments consist of experiments where the experimental 

factors are components of a formulation or recipe.

The components can be either a liquid, a gas, or even a solid.

The impact of the mixture components on the responses of interest 
depends only on the proportions of the components and not on 
the amounts.

If there is a dependency on the amount of the components present, 
then classical mixture designs are inappropriate – more on this 
later.

Because the experimental factors are components of a formulation, 
there are inherent constraints on the settings of these factors.
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Introduction

Factorial experimental designs allow independent settings for each of 
the experimental factors - no explicit constraints exist on the 
mutual factor settings.

Mixture experimental designs impose constraints on the possible 
settings for each factor since they are components of a formulation.  

Mixture factors can not be independently manipulated.

Mixture experimental designs, with q factors, impose the constraints

and  for                        i=1,…,q1 2 1.0qX X X+ + + = 0 1.0iX≤ ≤
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Introduction
A type of important effect in mixture experiments is referred to as 

Nonlinear Blending, or NLB .

NLB effects represent the departure of the observed response from 
what one would predict the response to be as a linear, additive 
combination of pure component blends.

NLB is common, e.g., mixtures of water and alcohol vs boiling point 
of the mixture.

NLB typically has two forms: Synergistic where the response is 
higher than expected and Antagonistic where the response is lower 
than expected from the pure component blend responses.

Large NLB effects of second and third order are commonly 
encountered in mixture experiments.
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Introduction

Example of synergistic NLB for a two component mixture experiment 
on blends of sweeteners glucose and fructose.

Linear Blending 
Response Line.

Observed 
Response Nonlinear 

Blending Effect
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Introduction

Additional constraints on mixture factor settings are common.

Regional or inequality constraints (upper and lower bounds)

Example, one would not have cake mixes with 100% eggs or 100% 
flour, etc., a proportion of some or all ingredients must be present in 
every mixture trial performed.

Another type of constraint often exists in which bounds are placed on a 
linear combination of some of the components in the mixture.

Typically, linear constraints involve 2 and sometimes 3 components 
of the mixture and have the general form.

,  ,  1.0i jX X a i j a+ ≤ ≠ <

i
i

,  0, 1.0,  X 1.0,    1, ,i i ii iLower X pper iL qU U< < > < = =∑ 
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Introduction

When regional constraints exist, it is common to rescale the mixture 
components to help mitigate the multicollinearity issues.

Basically, the component settings are stretched to better fit the 
encompassing simplex region and reduce multicollinearity.

A common rescaling method is referred to as L-pseudocomponent
scaling (can be used with both upper and lower constraints)

Note, the scaling method of Cornell and Gorman (JQT, 2002) is 
more effective but is not implemented in JMP.
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Analyzing Mixture Experiments
Mixture designs are really a type of response surface design and as 

such the primary goal of a mixture experiment is to develop a model 
that satisfactorily predicts future performance of the response(s).

The model is subsequently used to characterize the behavior of the 
response(s) over the constrained mixture space – the models are 
commonly used for optimization and sensitivity analysis.

Selecting satisfactory predictive models require that we divide the data 
into a training set to fit the model and a validation set, not used to 
fit the model, that assesses the prediction capability.

Predictive models are selected that have smallest prediction error on 
the validation set – should predict future performance the best.

Unfortunately, in designed experiments rarely is there sufficient data 
to form a training and validation set.

So how does one select a best predictive model in DOE?
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Analyzing Mixture Experiments
The model selection problem is particularly difficult in mixtures.

 The existence of constraints results in a great deal of 
multicollinearity.

 The multicollinearity results in correlations among the 
estimated effects, especially NLB effects; standard errors of the 
estimates are generally quite large.

 Traditional model selection techniques using p-values are not 
useful for mixtures; p-values are distorted by even small 
amounts of multicollinearity and are misleading.

 The pure component terms must be forced into all models.

 Mixture models have 0 intercept – sometimes a problem.

 The designs are typically very efficient and even supersaturated 
depending upon the mixture model of interest.
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Analyzing Mixture Experiments
Today’s powerful computers, with double precision, and modern 

statistical software such as JMP provide us with better capabilities to 
analyze and build predictive models for mixtures.

We will investigate and illustrate a couple methods (many more are 
possible, users should try an array of methods).

 Traditional Forward selection using the pseudo factor method 
of Miller (1992) – interesting and unappreciated approach.

 Traditional Forward selection and Pruned Forward using 
fractionally weighted bootstrapping and auto-validation 
(Gotwalt and Ramsey, 2018).

The Generalized Regression platform in JMP Pro makes it 
straightforward to implement these methods for mixtures.

Note, I do not recommend All Possible Models for mixtures in part 
due to the need to force the pure component terms in every model
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Miller’s Pseudo Factor Method
Calculate the largest possible number of effects p that could occur in a 

mixture model; includes cross products, polynomials, etc.

Create an additional set of p random factors or pseudo factors – Miller 
used random uniformly distributed factors.

Define the largest possible model in the mixture factors and then add 
the additional set of pseudo factors.

Under the assumption that all effects are 0, the probability of a mixture 
effect or pseudo factor entering the model is the same, hence the use 
of p pseudo factors – Miller never explained his rationale.

Use Forward Selection with say AICc or BIC as the objective function 
and stop the selection process when either the first pseudo factor 
enters the model or the fitting criterion is minimized.

For large mixture problems, this approach can become unwieldy.
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Miller’s Pseudo Factor Method
Example (due to Montgomery): In semiconductor manufacture, 

silicon wafers are acid etched prior to a metalization step in the 
process.  

An experiment has been performed by research scientists to find the 
optimum composition of etchant – the composition yielding the 
highest etching rate.  

The etchant is composed of three acids:  

A = nitric, 

B = hydrochloric, and 

C = Phosphoric.  

A simplex centroid design was used and the largest possible model 
contains 7 effects: 3 pure component terms, 3 two-way NLB terms, 
and 1 three-way NLB term.
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Miller’s Pseudo Factor Method
Below is the design with pseudo factors added and the response.

In Fit Model define a mixture response surface model and add the 
three-way NLB term, then add the 7 pseudo factors.

We will use the  Generalized Regression platform to do the forward 
selection analysis; if you do not have JMP Pro use the Stepwise 
platform.
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Miller’s Pseudo Factor Method
Below is a screenshot of the Fit Model launch dialog for the analysis.
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Miller’s Pseudo Factor Method
To the right is a screenshot of the Gen 

Reg Model Launch configuration.

Of course other options are possible.

Important to force in the pure 
component terms!

I do not recommend enforcing 
heredity in predictive model 
building whether a mixture model or 
not; can lead to over fitting.

This is controversial.

Here we use AICc as the objective 
function for model selection; again 
you can use other options.
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Miller’s Pseudo Factor Method
The algorithm stops after two steps, the three pure component effects 

the A*B NLB term and the A*B*C NLB terms define the model.
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Miller’s Pseudo Factor Method
Using the model selection slider (red vertical line) we manually force a 

third selection step. Notice a pseudo factor enters the model, so we 
stop at two steps.
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Miller’s Pseudo Factor Method
For reference below is a screenshot of the same analysis performed in 

the Stepwise platform; the results are identical to Gen Reg.
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FWB and Autovalidation
Gotwalt and Ramsey (2018 Discovery Frankfurt, Cary) propose a new 

method of model selection based upon fractionally weighted 
bootstrapping and autovalidation; slides on JMP Communities.

The method also makes use of a pseudo or null factor.

Recall, a problem in building predictive models in DOE is the lack of a 
validation set to assess prediction capability.

Autovalidation uses a copy of the original data as a validation set; 
sounds crazy but give it a chance.

The key is that the observations in the original or training set and 
validation set (copy) are differentially weighted such that the 
original or training set is anticorrelated with the validation copy set.

Thousands of bootstrap repetitions of model selection are performed 
and on each bootstrap trial new weights are generated randomly.
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FWB and Autovalidation
The method is straightforward.

 In the Fit Model launch dialog define the largest model of 
interest and then add a null or pseudo factor to the model.

 Use Generalized Regression, pick the desired model selection 
algorithm, force the pure components into the model, do not 
enforce heredity (same as Miller’s method).

 Perform the model selection, then use the Simulate function in 
JMP Pro to perform thousands of fractionally weighted 
bootstrap repetitions of the model selection.

 Gen Reg keeps track of which effects enter the model on each 
repetition.

 All effects entering the model with higher frequency then the 
null factor are considered potential model terms.
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Case Study: The Waste Glass Experiment
Redgate, Piepel, et. al., 1992, discuss a 10 component (oxides), highly 

constrained mixture experiment to study a vitrification process to 
transform high level radioactive waste to a borosilicate glass form 
for subsequent permanent sequester. 

The response of interest for this case study is Viscosity @1150oC. 

The design consisted of 81 trials (68 unique settings and 13 replicate 
trials). The authors do not discuss how the design was generated; 
most likely an early form of D optimal design.

Both regional and linear (multicomponent) constraints exist. 

The design was created to estimate pure component effects and two-
way NLB effects, however assuming some amount of effect 
sparsity, higher order effects could be considered.

For q = 10 components the full 2nd order Scheffe model has 55 terms.
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Case Study: The Waste Glass Experiment
The oxide components and regional constraints are given in the table 

below.
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Oxide Lower Bound Upper Bound
SiO2 0.42 0.57
B2O3 0.05 0.20
Na2O 0.05 0.20
Li2O 0.01 0.07
CaO 0.00 0.10
MgO 0.00 0.08
Fe2O3 0.02 0.15
Al2O3 0.00 0.15
ZrO2 0.00 0.13

Remainder 0.01 0.10



Case Study: The Waste Glass Experiment
The linear constraints involving the oxides are as follows:

The response limits for Viscosity are [1.5, 12].

We begin by analyzing the full second order Scheffe model using 
autovalidation and the Generalized Regression platform.

In the original paper the authors used Miller’s method (55 pseudo 
factors added to the model) as well as traditional Stepwise selection 
without pseudo factors.
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Case Study: The Waste Glass Experiment
The traditonal 2nd order Scheffe model (Scheffe, 1958) has the form

Notice, that no pure quadratic terms are included. It can be shown 
(Smith, 2005) that a pure quadratic mixture term can be re-expressed 
as combination of a linear term and string of cross product terms.

Therefore, if we add all of the pure quadratics to the mixture model, 
the model matrix is singular; Scheffe elected to drop the quadratics.

However, a valid mixture model can contain a combination of cross 
product terms and pure quadratic terms, just not all of them, and 
actually fit better.

Redgate and Piepel included cross products and pure quadratics in 
their model selection strategy in order to improve the fit.
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Case Study: The Waste Glass Experiment
The quadratic Scheffe model had considerable lack of fit, as did the 

models selected by Redgate and Piepel, so we next tried fitting 
Scheffe special cubic models.

The original design was not generated to fit special cubic terms, 
however using a forward selection strategy and assuming some 
effect sparsity it is possible to fit special cubic models.

The special cubic model in 10 components has n = 166 terms apart 
from the pure component terms. Obvioiusly the design is 
supersatured for this model.

The autovalidation method was repeated, but this time using a special 
cubic model in the ten components.

Discovery March 2019 32

1

q
ijk i i ij i j ijk i j k ijki

i j i j k
Y X X X X X Xβ β β ε

=
< < <

= + + +∑ ∑∑ ∑ ∑∑



Case Study: The Waste Glass Experiment
Quick diversion: How might we display the results of the simulation?

One nice approach is odds ratios. If pi is the proportion of times the ith

effect entered the model during the simulation, then pi/(1-pi) is the 
estimated odds of entering the model.

Under a null hypothesis that all effects are independent and inactive p0
is the probability of entering the model purely at random and     
p0/(1-p0) is the odds of randomly entering the model.

The odds ratio for the ith effect is then

As an alternative the proportion for
the null factor could be used in the
denominator.

ORs have nice statistical properties that could be exploited for further 
inference.
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Case Study: The Waste Glass Experiment
Below is a screenshot of the simulation results ordered descending by 

odds ratio of entering the model vs the null hypothesis.
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Case Study: The Waste Glass Experiment
To the right is a screenshot of the final 

selected special cubic model.

Although some lack of fit still exists, 
overall the model fits much better than 
the quadratic model.

It is common to have some level of lack of 
fit in mixture models that cannot be 
completely accommodated.

At this point it is wise to consult with 
subject matter experts as to whether the 
amount of LOF is of concern.

Overall, the LOF does not appear large 
and may not be of concern.
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Case Study: The Waste Glass Experiment
Given there were 13 replicate runs, it is possible that some of them 

could be used as a validation set for model selection and the 
remainder as the training set.

There were also some extra degrees of freedom in the experiment that 
could also be used for validation – this is not the usual case.

To investigate the approach, a randomly selected subset of 10 runs 
were used as a validation set (mostly from the replicate runs) and the 
remainder for training.

The special cubic model was defined and Generalized Regression 
platform used for model selection.

As before pure component terms are forced into the model and 
Forward selection was used as the model selection algorithm.
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Case Study: The Waste Glass Experiment
To the right is a screenshot of the 

final fitted model.

Overall this model has the best fit 
with no significant LOF.

However, the autovalidation 
models had 13 df for the LOF 
test while this model has 6 due to 
the use of some trials for the 
validation set.

The autovalidation model and true 
validation model are actually 
similar.
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Case Study: The Waste Glass Experiment
Below is a comparison of the two models, they are not identical but 

similar and both fit the data quite well.
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Mixture Process Factor Experiments
A much underutilized class of experimental designs for process 

development and improvement are designs with combinations of 
mixture and process (factorial) factors.

In general, formulations developed under very controlled process 
conditions (often only one setting) do not work well in practice.

The reason is that the blending behavior of the mixture factors changes 
as a function of the settings of the process factors.

In order to develop robust and optimal processes it is important to 
simultaneously experiment with both the mixture and process 
factors.

Such experimental designs are commonly called mixture process 
factor designs.
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Mixture Process Factor Experiments
Mixture process factor designs have a long history, however the 

classical designs were often infeasibly large.

With modern optimal designs (Custom Design) mixture process factor 
experiments can be generated that are reasonable in size.

The most common type of mixture process factor experiment is the 
mixture amount experiment, where the total amount of the mixture 
used is a process factor.

We will illustrate with a case study.

Mixture process factors still cannot have an intercept and are a bit 
tricky to create in JMP, but not so hard with a little practice.

Historically, mixture process factor experiments have been very 
difficult to analyze for reasons given earlier and often badly over fit 
models were selected.
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Mixture-Process Factor Designs

A special notation is often used to write MPV models in a compact 
form.  Each coefficient has a subscript defining the mixture factors 
and a superscript defining the process factors that are associated 
with that coefficient. 

Here is a full MPV model for three mixture factors Xi and two process 
factors Z. Note the 2nd order terms in Zj are often necessary.

1 2 3 12 13 23 123

1 2 3 12 13 23 123

1 2 3 12 13 23 123

1 2

0 0 0 0 0 0 0
1 2 3 1 2 1 3 2 3 1 2 3

1 1 1 1 1 1 1
1 2 3 1 2 1 3 2 3 1 2 3 1

2 2 2 2 2 2 2
1 2 3 1 2 1 3 2 3 1 2 3 2

12 12
1 2

iY X X X X X X X X X X X X

X X X X X X X X X X X X Z

X X X X X X X X X X X X Z

X X

β β β β β β β

β β β β β β β

β β β β β β β

β β

= + + + + + + +

 + + + + + + + 
 + + + + + + + 

+ +
3 12 13 23 123

1 2 3 12 13 23 123

1 2 3 12 13 23 123

12 12 12 12 12
3 1 2 1 3 2 3 1 2 3 12

11 11 11 11 11 11 11 2
1 2 3 1 2 1 3 2 3 1 2 3 1

22 22 22 22 22 22 22 2
1 2 3 1 2 1 3 2 3 1 2 3 2

X X X X X X X X X X Z

X X X X X X X X X X X X Z

X X X X X X X X X X X X Z

β β β β β

β β β β β β β

β β β β β β β

 + + + + + 
 + + + + + + + 
 + + + + + + 
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Mixture-Process Factor Case Study

Chardon (1989) discusses the development of a finishing material for 
cotton-polyester fabrics.  We will use this example (file 
MixtureProcessFabric.JMP) to demonstrate the analysis of a MPV 
experiment. 

The finisher is comprised of three fabric softeners and a catalyzed 
resin. 

We will designate the three mixture components as A, B, and C (the 
softeners).  

There are two process factors.  D is the level of the catalyzed resin 
used in the finisher, and E is the total amount of softener in the 
finisher. 

Note factor E is a total amount factor for the three mixture factors. 
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Mixture-Process Factor Case Study
The response is hydrophobicity of the fabric (water repellent 

measure), which the researchers would like to maximize. 

Due to heteroscedasticity the authors recommended analyzing the log 
of hydrophobicity.

The researchers ran a simplex centroid mixture design at each of 7 
settings of the process factors.

The process factor design is known as an equiradial (Doelhert) 
response surface design, which is hexagonal in shape. 

There are a total of 49 runs in the MPV and the full MPV model has 
42 potential terms to estimate – similar to our example given 
earlier. 
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Mixture-Process Factor Case Study

We will use autovalidation and Gen Reg to analyze the experiment.

Below is the full model, with 42 terms:

1 2 3 12 13 23 123

1 2 3 12 13 23 123

1 2 3 12 13 23 123

1 2 3 12 13 23 123

0 0 0 0 0 0 0
i

D D D D D D D

E E E E E E E

DE DE DE DE DE DE DE

Y A B C AB AC BC ABC

A B C AB AC BC ABC D

A B C AB AC BC ABC E

A B C AB AC BC ABC

β β β β β β β

β β β β β β β

β β β β β β β

β β β β β β β

= + + + + + + +

 + + + + + + + 
 + + + + + + + 
 + + + + + +

2 2 2 2 2 2 2

1 2 3 12 13 23 123

2 2 2 2 2 2 2

1 2 3 12 13 23 123

2

2

D D D D D D D

E E E E E E E

DE

A B C AB AC BC ABC D

A B C AB AC BC ABC E

β β β β β β β

β β β β β β β

 + 
 + + + + + + + 
 + + + + + + 
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Mixture-Process Factor Case Study
Below is a plot of the effects by Odds Ratio for the autovalidation

results. We will fit a model containing the pure components and the 
effects > null factor.
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Mixture-Process Factor Case Study

To the right is a screenshot of fitted 
model based on the autovalidation
results.

The fit appears quite good.

The published model is much larger and does 
not fit as well; see below.
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Mixture-Process Factor Case Study

The goal of the experiment was to find settings of the factors that 
maximizes hydrophobicity. Using the autovalidation model and the 
Prediction Profiler we find the optimized settings – quite different 
from the original published recommendation.
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Summary and Conclusions
Traditionally building predictive models from mixture and mixture 

process DOE data has been limited by the lack of validation trials to 
control over fitting.

Typically a DOE budget and time does not make it feasible to perform a 
separate set of validation trials.

Autovalidation and Fractionally Weighted Bootstrapping are two new 
viable techniques that enable predictive modeling from DOE data 
without running a set of validation trials.

The techniques use the original training data and bootstrapping concepts 
to form validation sets.

Autovalidation and FWB should be considered a part of mixture DOE 
analysis where the goal is to build predictive models.
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