
 

Empirical Likelihood 

1 Introduction 

In industry production, tolerance intervals are 

widely used to determine the quality of a 

process.  

The commonly used tolerance Intervals 

however assume normal distribution of the 

data, which is problematic for many processes.  

Nonparametric approaches on the other hand 

need a large sample size to secure sufficient 

coverage. This is especially problematic for 

processes, where evaluating products is costly 

and/or destructive. 

Following a request of a client we came up with 

a possibility to calculate nonparametric 

tolerance intervals by calculating confidence 

Intervals for quantiles using the empirical 

likelihood approach implemented in JMP. As the 

desired sample sizes become very small, the 

traditional nonparametric confidence intervals 

tend to return unstable results. 

In this paper we discuss the performance of the 

existing smoothed empirical likelihood 

approaches and compare different smoothing 

methods (Section 2). Additionally, we 

developed an extension to the existing methods 

in order to make the approach more stable for 

small sample sizes in combination with extreme 

quantiles. E.g. A 1% Quantile is already extreme 

in the situation of small samples (Section 3). 

Furthermore, the performance of the extension 

is evaluated in a simulation study (Section 4). 

Lastly, the Implementation of the method using 

JSL is discussed and demonstrated in an 

example. 

2 Existing Methods 

The subject of empirical likelihood was first 

introduced by Owen (1988), who also showed 

that the Wilks theorem is applicable to 

empirical likelihood, so that asymptotic 

Confidence intervals can be calculated. As the 

empirical likelihood is represented by a step 

function, depending on the empirical 

distribution function of the observed sample, 

several methods of smoothing have been 

proposed.  

Chen and Hall (1993) proposed a method of 

smoothing using a kernel function. JMP uses 

this smoothing approach for its calculations. 

Furthermore Adimari (1998) proposed a linear 

smoothing of the empirical distribution 

function. 

 

Figure 1: Empirical likelihood functions for the median 
(n=11, α=0.05) 

Figure 1 shows the empirical likelihood 

functions for the Median of 11 observations 

from a standard normal distribution. It is visible, 

that all three approaches cover the true median 

in their respective confidence Interval, all in all, 

the confidence intervals do not differ 

substantially from another.  



However, if we look at the 1% quantile of the 

same sample, the problems of the different 

methods become apparent. 

 

Figure 2: Empirical Likelihood functions for the 1% -
Quantile (n=11, α=0.05) 

 Figure 2 shows the problems of empirical 

likelihood confidence intervals when it comes to 

extreme quantiles in combination with small 

sample sizes. The kernel approach goes off to 

infinity way to early, thus missing the true 1% 

quantile. The linear smoothing approach, as 

well as the original empirical likelihood 

function, however, remain constant for values 

smaller than the minimal observation. This 

results in infinite and thus unusable confidence 

intervals. 

 

Figure 3: Coverage rates based on 1000 samples for the 
different methods 

Figure 3 shows the problems observed in Figure 

2 in a more general form. The kernel approach 

by Chen and Hall achieves coverage rates way 

below the desired coverage. The linear 

smoothing approach however returns infinite 

confidence Intervals for small sample sizes, 

which result in coverage rates above the 

desired value. Regardless of the approach, 

sample sizes of about n=330 observations are 

required to receive finite confidence intervals 

with sufficient coverage for a 1% quantile of a 

population. This required sample size has no 

relevant advantage compared to traditional 

nonparametric tolerance intervals. 

3 Extension of the existing methods 

Because of the problems regarding the existing 

methods, discussed in Section2, an extension 

was developed. 

By extending the existing methods, the goal is 

to obtain finite confidence intervals which grant 

sufficient coverage rates, even for small sample 

sizes. To achieve this, the linear smoothing 

approach was chosen. The linear approach uses 

a smoothed variation of the empirical 

distribution function: 

Equation 1: Smoothed empirical distribution function 
(Adimari, 1998) 

 

Where

 

We extended this function by keeping the linear 

smoothing even for values outside of the 

sample, so that every value between 0 and 1 is 

realized.  



Equation 2: Extended empirical distribution function 

Equation 2 shows the extended empirical 

distribution function, two linear segments were 

added, to realize all values between 0 and 1, the 

slope of the two linear segments is defined by 

the scaling parameters 𝑑1 and 𝑑2, which are 

meant to make the method independent from 

the scale of the measurements and the 

extension parameter c. Through a sensible 

setting of this extension parameter, the desired 

coverage can be achieved.  

As the likelihood function resulting from this 

extension still has constant values for 

arguments where 𝐹𝑒𝑥𝑡(𝜃) is 0 or 1 respectively, 

the likelihood function will be extended linearly 

for those values. 

 

Figure 4: Extended likelihood function for the sample in 
Figure 2 

Figure 4 shows how the extension parameter c 

influences the likelihood function and thus the 

width and coverage of the confidence Interval. 

For valid confidence intervals, the right 

selection of a value for the extension parameter 

is essential. Here, the smallest possible value for 

c, which grants the desired coverage rates is 

wanted. To find those values for different 

situations a simulation study was carried out. 

For different combinations of quantile (q), 

sample size (n) and significance level (α), the 

coverage of the confidence intervals was 

evaluated using 5000 samples. The smallest 

natural number for c which grants the desired 

coverage rate was used to model a general 

selection of c based on the 3 mentioned 

parameters.  

 

Figure 5: Training data to model the required value of the 
extension parameter 

Figure 5 shows the simulated values for the 

extension parameter in relation to R, the 

product of quantile and sample size: 

 

A linear model was chosen to predict the 

required value for c was chosen: 𝑐̂ =

12.344 - 7.082√𝑅 - 2.454log(𝛼) −  75.125q - 0.004n

The model achieves a relatively high goodness 

of Fit   (𝑅2
𝑎𝑑𝑗.

= 0.933) reflecting the 

restriction to natural numbers in the training 

data.   



4 Performance  

With the modelling approach discussed in 

Section 3, a rule for the selection of the 

extension parameter c was developed. Using 

this approach, the performance of the 

extension is evaluated by calculating coverage 

rates based on 1000 samples for different 

situations. 

 

Figure 6: Coverage rates based on 1000 samples from a 
normal distribution 

Figure 6 shows a drastic improvement 

compared to the existing methods when 

considering coverage rates. Even for samples as 

small as 10 observations, sufficient coverage is 

achieved, even for extreme quantiles. As the 

training dataset was derived from gaussian 

samples, the extension has a few problems 

when the data heavily differs from a normal 

distribution. 

 

Figure 7: Coverage rates based on 1000 samples from an 
exponential distribution 

For the high end of an exponential distribution, 

a very heavy tailed distribution, the desired 

coverage is not quite reached for small samples. 

However, the method grates good coverage for 

sample sizes of n>100 for the 99%-Quantile 

which is still substantially less than the existing 

methods. 

On top of that, a semi parametric approach to 

the method is feasible, where a model similar to 

Section 3 is developed by using samples from an 

arbitrary, assumed distribution. The semi 

parametric approach was tested by developing 

a model for exponentially distributed data, 

which creates comparable results to the normal 

distribution (Figure 6). 

All in all, the developed extension of the 

smoothed empirical likelihood approach is a 

clear improvement of the existing methods and 

offers the possibility of calculating valid 

confidence intervals, even when considering 

small sample sizes and extreme Quantiles. 

5 Implementation 

To put the developed method to practice, a JMP 

application was developed, which can calculate 

confidence Intervals for quantiles using the 

developed extension in combination with the 

Models for the parameter “c”. 

To motivate the practical application of the 

method, consider the following example: 

A sample of 100 observations of quality 

measurements from a production line is 

observed. The quality measurement has an 

upper specification limit of 85. The customer is 

willing to accept the batch of produced units if 

they’re assured, that at least 99% of the parts 

fulfill the quality requirement.  

For this hypothetical sample, we compare 

different methods you could use for such a 



quality assurance problem. In this case, the data 

is generated from a mixture of 2 normal 

distributions. This is quite often the case, the 

two normal distributions could be generated by 

different shifts, machines or suppliers of raw 

materials. The true 99%-quantile of the 

population lies at 79.6, so indeed, more than 

99% of the population meet the specifications. 

However, in practice it is not known that more 

than one distribution is in place and the 

assumption of two mixed normal distributions is 

quite specific and very rarely used.  

Nevertheless, we want to assure the customer 

that at least 99% of the products meet the 

specifications. Multiple approaches are feasible 

to generate such a statement.  

The first approach would be a one-sided 

tolerance interval for 99% of the population 

with a significance level of α=0.05. If normality 

is assumed, the upper limit calculated by JMP is 

90.48, so that one would not be able to assure 

sufficient quality. The nonparametric tolerance 

interval with the same settings cannot be 

calculated due to lack of sample size. 

The third approach would be to calculate a 

smoothed empirical likelihood confidence 

interval for the 99% -quantile of the population. 

For this approach JMP returns an upper limit of 

78.58, this upper limit lies within the 

specification limits, so that one would feel 

confident to assure sufficient quality. However, 

the true 99%-quantile lies outside of the 

confidence interval due to the low coverage 

rates observed in Section 2. So, the 

implemented empirical likelihood method can 

not be trusted for this combination of quantile 

and sample size. On the other hand, the 

introduced extension of the empirical likelihood 

method returns an upper limit of 80.33, so both 

requirements are met: The confidence interval 

includes the true value and the interval is 

narrow enough to be confident in assuring 

quality for the customer. 

This example represents a realistic application 

of the developed method and shows that the 

method outperforms the implemented 

alternatives in JMP under these circumstances. 

6 Conclusion 

In industry production, it is often of interest to 

give an upper limit for the fraction of low-

quality products. When normal distribution 

cannot be assumed and only small samples are 

available, the existing methods perform very 

poorly.  Therefore, we developed a method that 

extends the empirical likelihood method and 

can generate stable, nonparametric confidence 

intervals for quantiles at the tail end of the 

population even with small samples. 

We showed that the developed method 

outperforms the existing methods when it 

comes to extreme quantiles in combination 

with small sample sizes. This way, using JMP in 

combination with the implemented method, we 

are able to assure quality of processes where 

measuring quality is very costly and/or time 

consuming. 
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