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Abstract 
JMP is a powerful tool for generating statistical reports for evaluation by decision makers. However, 

when it comes to preparing reports, accuracy and comprehensibility are only part of the story. For 

example, Amos Tversky and Daniel Kahneman have suggested that presenting results in terms of a 

potential loss can have about twice the psychological impact as an equivalent gain. In this session, 

we will explore the role perception plays in statistics-based decisions and how knowledge of that 
role should inform JMP users with respect to generating reports for decision makers. 

Introduction 
After you have conducted an exploratory data analysis (EDA) and made discoveries you want to 

share, you need to determine how to communicate your message effectively. Creating an effective 
involves conveying information quickly and without ambiguity [1]. While doing so may seem 

straightforward, there are more twists and turns than one might expect. For example, if you provide 

unambiguous information about the probability of various options, are you quite sure you know 

how your audience will perceive that information? In the book, Thinking, Fast and Slow, Daniel 
Kahneman details how our automatic and unconscious perceptions can influence our decisions. 

Expected Utility Theory 
For a statistician, the value of a risky (probabilistic) prospect is its expected value. Mathematically, 
expected value is the sum of each outcome weighted by its probability. 

𝐸[𝑣(𝑥)] = ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

 

Where,  

• 𝐸[𝑣(𝑥)] is the expected value of outcomes 

• 𝑣(𝑥) is value as a function of 𝑥 

• 𝑥1, 𝑥2,…, 𝑥𝑛 are expected outcomes 

• 𝑝1, 𝑝2,…, 𝑝𝑛 are probabilities for each outcome 

So, for example, a 25% chance to win $500 and 75% chance to win $100 is computed as follows: 

𝐸[𝑣(𝑥)] =  0.25 × $500 + 0.75 × $100 = $200 

Nonetheless, common preferences involving choices between simple gambles often contradict the 
expected value criterion. Take, for example, the following two options. 
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1. 80% chance to win $10M and 20% chance to win $1M dollars 

OR 

2. $8M for sure 

The expected value of the first gamble is $8.2M, while the expected value of the second is $8M. Even 

so, most people prefer the second gamble [2].  

In 1738, a Dutch mathematician and physicist named Daniel Bernoulli developed the expected utility 

hypothesis, which explains people’s general aversion to risk. Bernoulli suggested people attempt to 

optimize a hidden variable named “utility” rather than the expected monetary value of a gamble. He 

explained his formulation of utility by suggesting a small change in utility is inversely proportional 

to a person’s current wealth. From that basis, he showed that utility is a logarithmic function of 

wealth [3]. 

𝑑𝑢(𝑤) = 𝑘
𝑑𝑤

𝑤
 

𝑢(𝑤) = 𝑘 ln 𝑤 + 𝐶 

𝐶 = −𝑘 ln 𝑤0 

𝑢(𝑤) = 𝑘 ln
𝑤

𝑤0
 

Where,  

• 𝑢(𝑤) is utility as a function of wealth 

• 𝑤 is current wealth 

• 𝑤0 is initial wealth 

• 𝑘 and 𝐶 are both constants 

Figure 1 shows the logarithmic relationship between wealth and utility. 



 

So, rather than weighting each outcome’s monetary value, Bernoulli posited that people weight the 
utility of each outcome when assessing the value of a gamble.  

𝐸[𝑢(𝑤)] =  ∑ 𝑝𝑖𝑘 ln
𝑤𝑖

𝑤0

𝑛

𝑖=1

   

Where,  

• 𝐸[𝑢(𝑤)] is expected utility 

• 𝑢(𝑤) is utility as a function of wealth 

• 𝑤1, 𝑤2,…, 𝑤𝑛 are expected wealth outcomes 

• 𝑝1, 𝑝2,…, 𝑝𝑛 are probabilities for each outcome 

• 𝑤0 is initial wealth  

With the above formulation, we can evaluate the expected value of the gamble presented earlier. If 

we assume that k is 38.95 and 𝑤0 = $773K, we have the following: 

𝐸[𝑢(𝑥)] = 0.8 × 100 + 0.2 × 10 = 82 → $6.3𝑒6 
𝐸[𝑢(𝑥)] = 1.0 × 91 = 91 → $8.0𝑒6 

 
Figure 2 shows where these values appear on the graph of utility versus wealth. 
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FIGURE 1. LOGARITHMIC RELATIONSHIP BETWEEN WEALTH AND UTILITY 



  

In this case, expected utility theory correctly predicts the sure thing will be the more popular choice 

even though it has the lower expected value. Because of the concavity of the curve, people are 

expected to be risk averse. Thus, for equal chances for an equivalent gain or loss, utility theory 
predicts the utility associated with the loss will be greater than that of the gain [2]. 

In 1947, John von Neumann, a Hungarian-American mathematician, physicist, and computer 

scientist, and Oskar Morgenstern, a German-born economist, formally proved that a “rational” 

person faced with risky choice will act to maximize the expected value of a function defined over the 

domain of outcomes, such as Bernoulli’s. To be rational, the actor needs only to satisfy four axioms 

of rational behavior as defined below. 

1. Completeness: 𝐴 ≻ 𝐵 𝑜𝑟 𝐴 ∼ 𝐵 𝑜𝑟 𝐵 ≻ 𝐴  

A person has well-defined preferences between any two options. 

2. Transitivity: 𝐼𝑓 𝐴 ≻ 𝐵 𝑎𝑛𝑑 𝐵 ≻ 𝐶, 𝑡ℎ𝑒𝑛 𝐴 ≻ 𝐶  

A person has consistent preferences. 

3. Independence of alternatives: 𝐴 ≻ 𝐵 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴𝑝𝐶 ≻ 𝐵𝑝𝐶  

A person’s preference between two gambles is independent of the presence of a third 
gamble. 

4. Continuity: 𝐼𝑓 𝐴 ≻ 𝐵 ≻ 𝐶 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑠𝑜𝑚𝑒 𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑝𝐶 ≻ 𝐵 ≻ 𝐴(1 − 𝑝)𝐶   

A person that prefers gamble 𝐴 to 𝐵 and 𝐵 to 𝐶 will be equally happy with 𝐵 or a 

combination of 𝐴 and 𝐶 for some unique probability, 𝑝, such that 𝐴 has probability 𝑝 and 

𝐶 has probability 1 − 𝑝.  

Of the four, the first and second are most salient. The third is often relaxed when objections are 

raised about the validity of the axioms. The fourth is introduced mainly for mathematical 

FIGURE 2. EXPECTED UTILITY FOR A RISKY PROSPECT AND A SURE THING 
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tractability. A person that satisfies all four conditions is said to be von Neuman-Morgenstern (vNM) 

rational [4]. 

Richard Thaler, an American economist, distinguishes between theoretical “econs” and “humans”. 

The notion of an econ comes from the economics discipline in which it is assumed that people are 

vNM rational, self-interested and have unchanging preferences. On the contrary, humans have 

bounded rationality (i.e., they have limited cognitive abilities), limited self-interest, and their 

preferences are context dependent [2].  

Prospect Theory 
In 1979, Daniel Kahneman and Amos Tversky, two Israeli psychologists, observed that people are 

risk averse with respect to gains, as Bernoulli suggested; however, they are risk seeking with respect 
to losses. For example, which gamble would you choose in each of the following cases? 

1. Gain $900 for sure  

OR  

98% chance to get $1,000 

2. Lose $900 for sure  

OR  

98% chance to lose $1,000 

Experiments show most people prefer the sure thing in the first case, and the gamble in the second 

case. Bernoulli’s logarithmic function cannot explain why a person would be risk seeking in the case 
of losses [2].  

Frames of Reference 
In addition, Kahneman and Tversky observed being risk averse or risk seeking in the above case is 

independent of wealth. Rather, a loss or gain is with respect to a perceived reference point, which 

often is the person’s status quo or adaption level. The notion of adaption level is taken from 

adaption-level theory which was development in 1947 by Harry Helson, an American psychologist. 
Adaption-level theory suggests that perception of a stimulus depends on the current stimulus state 

relative to a subject’s current adaption level. The current adaption level is based on previous 

experiences with the stimuli [5].  

Helson incorporated adaption level into a reworking of Fechner’s law of perception. Fechner’s law 

was developed in 1860 by Gustav Fechner, a German philosopher and physicist. Interestingly, 

Fechner’s Law was developed in the same way that Bernoulli developed his utility hypothesis over a 
hundred years earlier. First, Fechner formulated Weber’s contrast [6].  

𝑑𝑝 = 𝑘
𝑑𝑆

𝑆
 

Where,  

• 𝑝 is the current level of perception 

• 𝑆 is the current stimulus state 



• 𝑘 is a constant 

Weber’s contrast expresses the inverse relationship between a just noticeable difference and the 
physical output of a stimulus. 

From there, Fechner developed Fechner’s law which shows that perception is a logarithmic function 
of the current state of the stimulus relative to some initial stimulus state. 

𝑝 = 𝑘 ln 𝑆 + 𝐶 

𝐶 = −𝑘 ln 𝑆𝑜 

𝑝 = 𝑘 ln
𝑆

𝑆0
 

Where,  

• 𝑆0 is initial stimulus state 

For Fechner, the initial stimulus state is the state to which the person a person is unable to detect 

the stimulus. Like Kahneman and Tversky, Helson believed the denominator should be a person’s 
current adaption level. 

To get an idea of adaption level, think of three bowls of water as shown in Figure 3. 

 

FIGURE 3. SETUP FOR ADAPTION LEVEL EXPERIMENT 

One bowl is filled with cold water, the middle bowl is filled with water at room temperature, and the 

third is filled with hot water. Now imagine you place your left hand in the bowl with cold water and 

your right hand in the bowl with hot water for a minute. Afterwards, you put both hands in middle 

bowl. As might imagine, the water will feel warm to your left hand and cool to your right hand [2]. 

Likewise, Kahneman and Tversky suggested losses and gains from uncertain or risky prospects are 

perceived relative to a person’s current adaption level or frame of reference. A person’s current 

frame of reference is heavily influenced by what information is readily available. Consequently, a 

person’s reference level can be influenced by the way a question is framed as will be explained later. 

The idea that choice can be affected by presenting the same option in different ways challenges the 

vNM rational axioms of completeness and transitivity [2]. 

Loss Aversion 
Kahneman and Tversky also observed that losses have about twice the psychological impact of an 
equivalent gains. For example, consider the following gamble: 

 

50% chance to lose $100  



AND  

50% chance to win $150 

If you are like most people, you would not accept the gamble although it has a positive expected 

value. You can measure your own aversion to loss by determining the amount of gain you would 

require to offset a loss with equal odds. Experiments show a gain would generally need to be 

between 1.5 and 2.5 times as large as the loss. That said, those who are in a profession that routinely 

trades commodities are generally less loss averse. Kahneman reports that loss aversion can be 
partially overcome by being told to “think like a trader” [2].  

The Three Principles of Prospect Theory 
Putting the ideas of reference frames and loss aversion together with Bernoulli’s idea of diminishing 

sensitivity to changes as values increase, Kahneman and Tversky developed Prospect Theory which 

consists of three principles [2]. 

1. Psychological value is relative to neutral reference point (adaption level) rather than wealth 

2. Decreasing sensitivity to changes as amounts increase 

3. Losses are more aversive than gains are attractive 

These three concepts are illustrated graphically in Figure 4. 

 

FIGURE 4. GRAPHICAL REPRESENTATION OF PROSPECT THEORY 

Decision Weights 
In addition to the three principles of Prospect Theory, Kahneman and Tversky observed that 

decision weights are not proportional to probability.  For example, do you perceive the following 

changes as equal improvements? 

 



• From 0 to 5%  

• From 5% to 10% 

• 60% to 65% 

• 95% to 100% 

If you are like most people, the changes from 0 to 5% and 95 to 100% are more significant than the 

other changes in probability. The change from 0 to 5% tends to create a sense of hope or possibility 

that is weighted disproportionately to the change in odds. This disproportionate weighting of small 

odds is known as the possibility effect. Similarly, a move from 95 to 100% creates a sense of 

certainty that is missing from a 95% chance. In this case, the chance of losing is overweighted. The 

underweighting of highly favorable odds compared to a sure thing is known as the certainty effect. 

Kahneman used experimental results to create a mapping of the psychological weight to probability 

as shown in Figure 5. 

 

FIGURE 5. MAPPING OF DECISION WEIGHTS TO PROBABILITIES 

As can be seen in Figure 5, these decision weights are not linear with probabilities. Kahneman also 

adds that if small probabilities are not overweighted, they are neglected. Von Neumann and 

Morgenstern proved that a weighting function that is not proportional to probability will result in 

decisions that lead “to inconsistencies and other disasters [2].” In other words, if decision weights 

are not a linear function of probability, they do not qualify as vNM rational.  

The Fourfold Pattern 
Put decision weights together with the three principles of prospect theory and you get the following 
fourfold pattern. 



 
GAINS LOSSES 

HIGH PROBABILITY 

Certainty Effect 

95% chance to win $10,000 

Fear of disappointment 

RISK AVERSE 

95% chance to lose $10,000 

Hope to avoid loss 

RISK SEEKING 

LOW PROBABILITY 

Possibility Effect 

5% chance to win $10,000 

Hope of large gain 

RISK SEEKING 

5% chance to lose $10,000 

Fear of large loss 

RISK AVERSE 

 

In the top row, both decreasing sensitivity and underweighting of favorable probabilities 

contributes to risk aversion for gains and risk seeking for losses. Decreasing sensitivity operates in 
the same fashion in the bottom room; however, the overweighting of low probabilities is more 

significant than the curvature of the value function. As such, people become risk seeking for gains 

and risk averse for losses when the probabilities are small [2].  

The upper left cell suggests why people are willing to accepted “structured settlements” that offer 

less than expected value when involved in a lawsuit they are likely to win. The bottom left cell 

explains why lottery tickets are popular. The bottom right cell explains the attraction of insurance. 
The upper right cell explains the sunk cost fallacy where people throw good money after bad in an 

attempt salvage lost causes [2]. 

Endowment Effect 
As mentioned, professional traders show less loss aversion than others and being told to “think like 

a trader” reduces loss aversion. In these cases, the objects of outcomes are for trade rather than use. 

So, when items are held for consumption rather than trade, aversion to loss is more pronounced. 

This effect is called the endowment effect. For example, in one experiment one group of participants, 

called Sellers, were given customized coffee mugs and asked how much money it would take for 

them to sell them. Another group of participants, known as Buyers, were asked how much they 

would be willing to pay for one of the mugs. Finally, a group of participants, called Choosers, had the 

option to receive either a coffee mug or an amount of money they thought would be equal in value. 

The average price that each group placed on the coffee mug is as follows [2]: 

Sellers 

 $7.12 

Choosers 

 $3.12 

Buyers 

 $2.87 



Notice that Sellers asked over twice as much for the coffee mugs as either Choosers or Buyers. Also, 

note that Sellers and Choosers faced the same choice. The only difference was in how the choice was 
framed. For the sellers, they possessed the mug prior to determining its value [2].  

Denominator Neglect 
Decision weights can be further warped by a phenomenon known as denominator neglect. 

Denominator neglect can occur when ratios are treated as fractions rather than percentages. When 

treated as fractions, numerators call out a discrete number of individual items which can be more 

vividly imagined. Thus, the numerator becomes the focus of attention and the denominator is 
neglected. For example, which urn would you select from if a red marble wins a prize?  

• Urn A contains 10 marbles, of which 1 is red.  

• Urn B contains 100 marbles, of which 8 are red. 

Drawing from urn A offers a higher probability of winning a prize and yet 30 to 40% of students 

participating in such an experiment chose the urn with the greater number of red marbles [2].  

Reframing 
As mentioned earlier, the frame of reference can influence a person’s decision. As discussed, people 

are about twice as averse to losses as they are attracted to equal gains. Thus, loss aversion creates 

something like a gravitational field around the status quo. To overcome loss aversion, a gain can be 

framed as a potential loss. Framing an option in this way may involve having the person imagine 

they have already taken the option with the higher expected value and are now viewing the loss that 
would have resulted with sticking with the status quo. For example,  

Frame 1:  You have been given $1,000. Now which option would you choose? 

50% chance to gain $1,000 OR gain $500 for sure 

 

Frame 2: You have been given $2000. Now which option would you choose? 

50% chance to lose $1000 OR lose $500 for sure 

Most people choose the sure thing in Frame 1 and the gamble in Frame 2 [1]. 

Applications 
With Graph Builder, JMP makes it easy to create a variety of chart types to convey what you 

have learned after an Exploratory Data Analysis (EDA). If you are not careful; however, you will 

generate a graph or report that is perfect for econs, but less so for humans. Let’s go through 

some applications of Prospect Theory to reports and graphs. 

Establish a Baseline 
When creating a graph, JMP automatically scales axes so that data is readily visible. Even so, 

remember, if you are showing absolute values, users will have diminishing sensitivity to 
changes as values increase. As mentioned previously, people have a reference point or adaption 

level from which both gains, and losses are assessed. A starting point for evaluating both gains 

and losses is commonly referred to as a baseline. So, rather than showing absolute values, 



consider showing differences relative to a baseline. Otherwise, you leave it up to your audience 

to perform their own mental math.  

Also, be careful not to set your baseline too low. The most obvious thing may be to use current 

performance as a baseline. If you are measuring a system that is underperforming, it may be 

better to use an industry average or a desired goal as the baseline. That way current 

performance will be shown as a loss compared to the baseline. Due to loss aversion, the 

motivation to recover from a loss will be roughly twice as much as if the same difference was 

described as a gain. 

For example, Figure 6 shows a report taken from the EDA module in the free online JMP 

training course named Statistical Thinking for Industrial Problem Solving. 

 

FIGURE 6. GRAPH OF PERCENT YIELD FOR PROCESS 1 AND PROCESS 2 

The graph does a good job showing upward trends in percent yield for both Process 1 and 

Process 2. The graph also shows an apparent positive correlation with an increase in percent 

yield when a new supplier was introduced in in July. However, what if the question is, “Which 
process should we use?” In that case, we are looking at the differences between the two 

processes, which clearly favor Process 1 in this case. Nonetheless, it is difficult to see exactly 

how much of a difference there is between the two processes. The most obvious way to graph 

the differences may be to show the positive differences of Process 1 as compared to Process 2. 

Instead, we can graph the differences between both processes and a baseline. In the absence of 

a baseline, we can use Process 1 as the baseline and show most of the differences as losses as in 

Figure 7. 



 

FIGURE 7. PROCESS 2 DIFFERENCES FROM PROCESS 1 BASELINE 

Now we can more clearly see the values of the differences. In addition, we may be able estimate 

the average loss per month, which is -0.757%. Experiments show people effortlessly generate 

accurate estimates of the average of positive line lengths in a fraction of a second. Nonetheless, 

people do not have same ability to estimate summations. If we think our audience wants to see 

the sum for the entire year and as well as the trend of gain or loss, we may want to show a 

graph that shows a running total as in Figure 8. 

 

 

  



 

FIGURE 8. ACCUMULATION OF DIFFERENCES BETWEEN PROCESS 1 AND 2 

If we conclude we only want to use Process 1, the question may be “should we use the old or 

new supplier?” With the original graph, we would need our audience to mentally transfer 

Process 1 values for the second half of the year over the values from the first half of the year 

and then perform mental subtractions. Instead we can do the work for them as shown in Figure 

9. 

 

FIGURE 9. PROCESS 1 DIFFERENCES BETWEEN OLD AND NEW SUPPLIER 

If instead, we want to show both the monthly trend of losses as well as the accumulation of 

losses for the year we can create a graph like the one shown in Figure 10. 



 

FIGURE 10. ACCUMULATION OF PROCESS 1 DIFFERENCES BETWEEN OLD AND NEW SUPPLIER  

Create an Appropriate Frame 
As described earlier, the way a question is framed can affect the answer. So, we need to be 

careful we do not inadvertently introduce a distorted or a mentally taxing frame. For example, 

consider the following question [2]: 

Assuming both Tom and Kim drive 12K miles per year, who will save more gas by switching 

cars? 

• Tom switches from a 12 mpg car to a 14 mpg car 

• Kim switches from a 30 mpg to a 40 mpg car 

Since gallons is inversely proportional to mpg, a fixed yearly mileage implies gallons of gas used 

becomes increasingly insensitive to improvements in mpg as mpg increases. 

 

FIGURE 11 

As it turns out, Tom would save 119 gallons whereas Kim would save 83 gallons. So, it would be 

better to consider ratios that are linear with the solution like gallons per 100 miles. 



Likewise, if we are considering improving the percent yield of only one of the two processes 

shown earlier, we need to be careful we provide an appropriate ratio. If you can increase the 

yield of Process 1 from 92.402% to 95.066% (a difference of 2.664%) and Process 2 to from 

90.553% to 93.195% (a difference of 2.642%), which process should you choose to improve?  

Consider the definition of percent yield. 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝑌𝑖𝑒𝑙𝑑

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑌𝑖𝑒𝑙𝑑
× 100 

For a fixed output, theoretical yield more closely predicts material cost than does actual yield. It 

makes more sense to compare the differences in the reciprocal of percent yield since theoretical 

yield is inversely proportional to percent yield as shown in Figure X.  

 

FIGURE 12. THEORETICAL YIELD IS INVERSELY PROPORTIONAL TO % YIELD 

The change in the theoretical to actual yield ratio for Process 1 is 3.03% and 3.13% for Process 

2. So, all other things being equal, we should improve Process 2 rather than Process 1.  

Avoid Denominator Neglect 
For graphs that show the values of small ratios, it may seem natural to present numerators with 

a denominator displayed somewhere on the report for context. Remember showing both 

numerator and denominator invites the viewer to focus on the numerator and neglect the 

denominator. In so doing, the viewer may have more concrete and vivid images of individual 

cases that effectively distorts the number of actual occurrences. Conversely, when presenting a 

value as a decimal, the viewer may neglect the values altogether since the numbers may appear 

so small and abstract. For example, the below graph attempts to address whether the measles 

vaccine has been effective across all states. 

 



 

FIGURE 13. GRAPH SHOWING EFFECTIVENESS OF MEASLES VACCINE ACROSS ALL STATES 

This graph uses both numerator and denominator to show the number of occurrences of 

measles. In the “Before Vaccine Program (before 1963)” graph, the average number of 

incidences across all states is shown to be 348.5 per 100,000 people. If this value had been 

shown as a percentage, it would have been show as 0.3485%. Such a value emphasizes the 

infection rate was well under 1% of the population before the vaccine was introduced. As 

discussed, when it comes to small percentages people will either overestimate its decision 

weight or neglect it altogether.  In this case, showing the infection rate as a percentage may 

cause people to question the significance of the original infection rate. Presenting the value as 

348.5 emphasizes a sizable number of cases of the disease for each state, which is likely the 

intent. The “After Vaccine Program (after 1966)” graph shows the average incidence rate to be 

5.7 per 100,000 people. This value would have been shown as 0.0057% of the population, 

which means that, on average, under 1/100th of a percent of the population contracted the 

disease after the vaccine was introduced. The percentage is so small that many people may 

consider it negligible. Showing the value as “5.7” emphasizes the unfortunate individuals that 

still contracted the disease after the vaccine was widely available. That being the case, viewers 

may overestimate the scale of the problem after the vaccine was introduced. So, on one hand we 

want to emphasize the scale of the original problem and on the other we want to emphasize the 

low infection rate after the vaccine was introduced. Showing one value as a fraction and the 

other as percentage would be confusing at best and deceptive at worst. As it is, we can 

emphasize the individual cases in the “Before Vaccine” graph and the low infection rate in the 

“After Vaccine” graph by using 10,000 rather than a 100,000 as the denominator as shown in 

Figure 14. In that case, the average incidence would be shown as 34.9 in the “Before Vaccine” 

graph and 0.6 in the “After Vaccine” case. In this case, it is easier for the viewers to envisage 

individual cases before the vaccine and less so in the “After Vaccine” graph. 



 

FIGURE 14. REVISED GRAPH SHOWING EFFECTIVENESS OF MEASLES VACCINE ACROSS ALL STATES 

In Figure 14, also notice that the “After Vaccine” graph looks whiter than in the original graph. 

In the original graph, the scale was a light shade of blue at 0. Given the gradient was displayed 

against a gray background in the legend, the light blue looked whiter than it does against a 

white background which is a framing effect. Consequently, it would be difficult to distinguish 0 

from 100 using the original gradient. In the latter case, it is easy to see that even the states with 

more cases than usual have, on average, 5 or fewer cases per 10,000 people. 

Conclusion 
JMP makes it easy to create graphs that are relevant, complete, and clear to any econ. The 

problem is we must communicate with humans that have limited processing abilities, biases, 

complex motives, and fickle preferences. Prospect Theory helps us understand how humans 

make decisions under uncertainty. The main takeaways are that people have the following 

characteristics that are relevant to generating reports and graphs. 

1. Diminishing sensitivity to changes as values increase. 

2. Gains and losses assessed from a reference point that can be influenced by the way a 

question is framed. 

3. More aversive to losses than attracted to gains. 

4. Tendency to overweight small probabilities and underweight large probabilities when 

making decisions. 

Keep these characteristics in mind as you develop your reports, unless you are presenting to the 

fabled econs rather than mere mortals. 
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