The Role of Perception in Statistics-Based Decisions

Bryan Fricke

jmp

Creating Effective Graphs

1. What question is being addressed?
2. Who is the intended audience?
3. Does the graph communicate effectively?

Decision Making Under Risk

- Researchers have attempted to understand how people make decisions under uncertainty by examining gambles
- For example, 80\% chance to win $\$ 100$ and 20% chance to win $\$ 10$

Expected Value of Gamble

$$
E[X]=\sum_{i=1}^{n} p_{i} x_{i}
$$

For example, 80% chance to win $\$ 100$
AND
20\% chance to win \$10

$$
E[X]=0.80 \times \$ 100+0.20 \times \$ 10=\$ 82
$$

Expected Utility Hypothesis

- Expected Value

Expected dollar value of a gamble

- Expected Utility

Expected utility (psychological value) of a gamble

Expected Utility Hypothesis

$$
u(w)=k \ln \frac{w}{w_{0}}
$$

D. Bernoulli, Exposition of a New Theory on the Measurement of Risk, 1738

Expected Utility Hypothesis

$$
E[U]=\sum_{i=1}^{n} p_{i} k \ln \frac{w_{i}}{w_{0}}
$$

D. Bernoulli, Exposition of a New Theory on the Measurement of Risk, 1738

Expected Utility Hypothesis

- 80% chance to win $\$ 10 \mathrm{M}$ and 20% chance to win $\$ 1 \mathrm{M}$
- $E[U]=0.8 \times 100+0.2 \times 10=82 \rightarrow \$ 6.3 \mathrm{M}$
- $\$ 8 \mathrm{M}$ for certain
- $E[U]=1.0 \times 91=91 \rightarrow \$ 8 M$

Jimp

G. T. Fechner, Elemente der Psychophysik, 1860

Psychophysics

Adaption Level

- Place one hand in cold water and one hand in warm water for a minute
- Place both hands in middle bowl which has water at room temperature
- How do you perceive the temperature?

H. Helson, Adaptation-Level as Frame of Reference for Prediction of Psychophysical Data, 1947

Psychophysics

jomp

Psychophysics

Jmp

Prospect Theory

Three Principles

1. Decreasing sensitivity to changes as both positive and negative amounts increase
2. Psychological value is relative to reference point (adaption level) rather than absolute wealth
3. Losses are more aversive than gains are attractive

Kahneman and Tversky, Prospect Theory: An Analysis of Decision Under Risk, 1979

Prospect Theory

Prospect Theory

Prospect Theory

 Decision WeightsAssume you have some chance of winning \$1,000. Do you perceive the following changes in your odds as equal improvements?

- 0 to 5\%
- 5\% to 10\%
- 60\% to 65\%
- 95\% to 100\%

Prospect Theory

 Decision WeightsAssume you have some chance of winning \$1,000. Do you perceive the following changes in your odds as equal improvements?

- 0 to 5\%
- Possibility effect
- 5\% to 10\%
- 60\% to 65\%
- 95\% to 100\%

Prospect Theory

 Decision WeightsAssume you have some chance of winning \$1,000. Do you perceive the following changes in your odds as equal improvements?

- 0 to 5\%
- Possibility effect
- 5\% to 10\%
- 60\% to 65\%
- 95\% to 100\%
- Certainty effect

Prospect Theory Decision Weights

Prospect Theory

Fourfold Pattern

	GAINS	LOSSES
HIGH		
PROBABILITY	95\% chance to win \$10,000	95\% chance to lose \$10,000
Certainty Effect	Fear of disappointment	Hope to avoid loss
	RISK AVERSE	RISK SEEKING
LOW	5\% chance to win \$10,000	5% chance to lose \$10,000
PROBABILITY	Hope of large gain	Fear of large loss
Possibility Effect	RISK SEEKING	RISK AVERSE

Prospect Theory
 Endowment Effect

Decision Time

An outbreak of an Asian disease is expected to kill 600 people

- Option 1
- 400 people will die
- Option 2
- 1/3 probability no one dies

AND

- 2/3 probability that 600 people die

Decision Time

An outbreak of an Asian disease is expected to kill 600 people

- Option 1
- 200 people will be saved
- Option 2
- 1/3 probability 600 people will be saved

AND

- 2/3 probability no one will be saved

Prospect Theory
 Framing Effect

- Positive frame
- One-month survival rate for surgery is 90%
- 84% of physicians chose surgery
- Negative frame
- 10% mortality in the first month after surgery
- 50% of physicians chose radiation

Prospect Theory

Framing Effect

USDA only allows labels such as "90\% Lean" if there is another label that displays " 10% fat"

Prospect Theory

Frame of Reference

- Tom trades in a 12 mpg car for a 14 mpg car
- Kim trades in a 30 mpg car for a 40 mpg car
- Assuming both drive 12 K miles per year, who will save more gas by switching to cars?

Prospect Theory

Frame of Reference

- Gallons used is inversely proportional to mpg
- So, given a fixed number of miles driven, gallons becomes increasingly insensitive to changes in mpg as mpg increases

Prospect Theory

Frame of Reference

- Tom, switching from 12 to 14 mpg, saves 119 gallons
- Kim, switching from 30 to 40 mpg , saves 83 gallons

Prospect Theory

Frame of Reference

Prospect Theory

Absolute vs. Relative Frames

- New wonder drug cuts risk of heart disease in half!
- New wonder drug reduces risk of heart disease from 2\% to 1\%

http://clinician.iconarray.com/

Prospect Theory
 Denominator Neglect

- Urn A contains 10 marbles, of which 1 is red
- Urn B contains 100 marbles, of which 8 are red

Applications

Original

Applications

Frames

If we can choose only one process to improve, which should it be?

- Yield of Process 1 can be improved from 92.402% to 95.066% (difference of 2.664\%)
- Yield of Process 2 can be improved from 90.553\% to 93.195\% (difference of 2.642\%)

Applications

Frames

$$
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

Applications

Frames

Applications

Original

Applications
 Question: Should we use Process 2?

Applications
 Question: Should we use Process 2?

Applications

Question: Should we use the old supplier?

Applications

Question: Should we use old supplier?

Applications

Question: Should we use old supplier?

Applications
 Original

jimp

Applications Denominator Neglect

jimp

Prospect Theory
 Loss Aversion

Capuchin monkeys exhibit loss aversion
https://public.jmp.com/packages/DqMjHwNWIKgdpjVN4GI7K

V. R. Lakshminarayanan, M. K. Chen, and L. R. Santos, "The evolution of decision-making under risk: Framing effects in monkey risk preferences," J. Exp. Soc. Psychol., vol. 47, no. 3, pp. 689-693, May 2011.

Summary
 How Perceptions Influence Statistics-Based Decisions

- Value changes have diminishing utility as magnitudes increase
- Gains and losses assessed relative to status quo or expectations
- Losses are more aversive than gains are attractive
- Tendency to over weight small probabilities and under weight large probabilities

