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Analyze Box-Cox Transformed Time Series (Time Series)

Fit State Space Smoothing Models (Time Series)

Analyze Forecasting Performance Using Holdback (Time Series)
Select Models Using Holdback (Time Series Forecast)



Analyze Box-Cox Transformed Time Series

« Time series need to be transformed so that variations remain constant as
series changes. Example: Seriesg.jmp, variation increases as value

INcreases.
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Analyze Box-Cox Transformed Time Series

« Time series need to be transformed so that variations remain constant as
series changes. Example: Seriesg.jmp

- Before JIMP 16, series needs to be manually transformed, followed by
differencing if needed, fitting models, selecting model, making forecasts,
and finally transforming forecasts back to the original scale.

- Starting from JMP 16, one can provide a Box-Cox transformation
parameter value, the software will transform the series before modeling
and inverse transform the forecasts to the original scale.

- The platform also provides “Box-Cox Transformation Plot” for identifying a
desired transformation parameter value.



Analyze Box-Cox Transformed Time Series

Cast Selected Columns into Roles
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State Space Smoothing Models

Workhorse in Time Series Forecast Platform (JMP15).
Fit and forecast a lot of series quickly.

Easy to specify - usually in two to three clicks.
Forecasting performance is comparable to ARIMA..

A S

We were not able to study them individually in JMP 15.



State Space Smoothing Models — Highly Distilled

Independent Errors

Observed Series

Level State [

Trend State b
(Optional)

Seasonal State s
(Optional)
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State Space Smoothing Models in Time Series

Graph 3

« | Autocorrelation .
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State Space Smoothing Models in Time Series

- State Space Smoothing Models are added along the side of ARIMA
models in Time Series platform in JMP 16.
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State Space Smoothing Models in Time Series

- State Space Smoothing Models are added along the side of ARIMA
models in Time Series platform in JMP 16.

Component States

- We can study them more carefully.
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Interpret Forecasts from Models
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Interpret Forecasts from Models
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What have we learned about them?

- Serious contenders to some ARIMA models.
- NOT stationary. None of them (30 MODELS)!

- Component-wised model and interpretation: Level, Trend, Seasonality.
Give these models a try, if you see:

-« Alinear or exponential growth trend

- With or without seasonality

- Non-stationary in general
- Be careful with stationary time series. (Try a simulated AR1.)
- AIC and other criteria are not comparable to those of ARIMA.



Serious Contenders
- ARIMA(0,1,1)(0,1,1)12 No Intercept
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Be Careful with Stationary Series

- AR(1)
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Forecast on Holdback in Time Series




Forecast on Holdback in Time Series
Definition and Setup
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Forecast on Holdback in Time Series
Model Comparison using Holdback

Model Comparison

OoHoooooooooooooddt e

port Graph

I

Model
— MMM12 Constrained
— AAAI2 Constrained
— MAATZ Constrained
MAdATZ2 Constrained
—— MAM12 Constrained
— AAdAT2 Constrained
MADM12 Canstrained
— AMNA12 Constrained
— MMM12 Constrained
WMMdM12 Constrained
— MMM Constrained
— AAN Constrained
—— MAN Constrained
— WIMNA12 Constrained
—— MMdN Constrained
—— MAdN Constrained
— AAdN Constrained
—— ANN Constrained
MMM Constrained

RMSE ~
13.710324
37.626487
441473594
52.518783
54.937136
58.172039
62118775
69.0113295
82306680
84.353128
84.810438
117.48380
118.58666
1232.41372
129.19050
135.75546
13595150
137.33125
137.33127

Holdback Evaluation

MSE
187.97297
1415.7525
1948.9924
2758.2226
3018.0889
3383.9861
3858.7422
4762.5727
6774,3905
7115.4502
¥192.81588
13802.443
14062.796
15230.946
16690.184
18420.545
18482.811
18859.873
18859.878

MAPE
2.428228
7.091265
8.434577

10.044976
10.011957
10.857980
11.252640
132.292534
15.659781
15.720692
12.573460
18.855019
19.129286
22.272453
21.675540
23.213358
23.258402
23.578081
23.578086

MAE
10.796131
33.050731
39.175353
46.515838
47.596804
50.070617
53.485414
61.457064
73.589230
74.340471
62.401343
93.657697
04.911715
106.86659
106.56881
113.58829
113.79428
115.25270
115.25273




What have we learned from holdback?

1. Information criteria describe how well a model fits the training data.

2. Holdback criteria describe how well a model performs over the
holdback data.

3. The criteria are not equivalent to forecasting performance in the
future. But give some degree of assurance.

4. Evaluating forecasting performance is NOT a part of model fitting
process.



Holdback Based Selection in Time Series Forecast

A Select Models
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MAhead==0, Optional. Forecast n-ahead future observations.

Period=0, Optional. Integer or comma delimited integers.

< Model Selection Strategy
Forecasting Performance ~  Metric) RMSE ~ NHDIdbackljl
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