

Tabletability, compactibility and compressibility: a complex relationship easily displayed with JMP.

Diletta Biagi – Università di Firenze Paolo Nencioni – Manufacturing Science and Technology, A.Menarini M.L. & S.

Tabletability, compactibility and compressibility: a complex relationship easily displayed with JMP.

Summary

- Tablets and powder compression
- Compaction studies
- Data modelling
- Data visualization
- Real case studies

Tablets are the most popular drug delivery dosage form

Compression

Applied Force (kN)

Compaction Pressure

Tensile Strength

$$Pressure = \frac{Applied \ Force}{Area}$$

$$Ts = \frac{2 \cdot F}{\pi DT}$$

True Density

The powder density once all voids are removed.

Solid Fraction

Solid Fraction = $\frac{Tablet \ Density}{True \ Density}$

Porosity = 1 - Solid Fraction

Compaction Studies

Compressibility profile

Solid fraction by Compaction pressure

Compactibility profile

Tensile strength by Solid fraction

Tabletability profile

Tensile strength by Compaction pressure

	_												
Nvicel_102 - JMP EA											-	\times	
File Edit Tables Rows Cols [DOE	Analyze	Graph To	ols Add-Ins View	v Wi <mark>n H</mark> elj	р							
📴 🎦 🎽 🗐 🐰 ち 🛍 🗐	â,	i 🖨 🖬	at 📄 🦉	x 🏓 🛛 📮				∇		$\mathbf{\nabla}$			
Avicel_102	٩.			Filling depth	Compaction		Compaction			Crushing		Table	t
Distribution of Weight (mg) ^		्र	Tablet ID	(mm)	Force (kN)	Ejection (kN)	Pressure (MPa)	Weight (mg)	Thickness (mm)	strength (N)	Tensile Strength (MPa)	(0	:n
Distribution ofensity (g/cm3)		1	1	8,005	2,63	0,16	26,3	250	2,610	59	1,2746697674		

True Density be adapted and the		1	1	8,005	2,63	0,16	26,3	250	2,610	59	1,2746697674	\sim
Irue Density beckel equation Solid Eraction akita equation		2	2	8,007	4,30	0,16	43	249	2,290	101	2,4869787387	
Compactibility Rysh		3	3	8,006	6,61	0,16	66,1	249	2,056	164	4,4978702042	
⊿ Plot (7/0)		4	4	8,015	8,50	0,16	85	243	1,886	204	6,0992250747	
Compressibility Plot		5	5	8,013	10,19	0,16	101,9	245	1,839	246	7,5429209949	
Compactibility Plot Tabletability Plot		6	6	8,014	11,47	0,15	114,7	245	1,798	273	8,5616829376	
 Scatterplot 3D 		7	7	8,014	14,56	0,14	145,6	245	1,762	299	9,5686675369	
Scatterplot 3D f(x)		8	8	8,014	16,15	0,18	161,5	256	1,829	331	10,204705348	
Dashboard 2D		9	9	8,013	18,79	0,18	187,9	245	1,716	349	11,468175343	
Dashboard SD	\sim	10	10	8,014	20,57	0,16	205,7	252	1,748	367	11,83888541	
Columns (18/0)		11	11	8,013	22,48	0,16	224,8	252	1,737	405	13,1474457	
		12	12	8,014	24,24	0,17	242,4	248	1,706	384	12,692243008	
Tablet ID @		13	13	8,013	26,63	0,16	266,3	250	1,712	397	13,075940251	
Filling depth (mm) A		14	14	8,015	28,78	0,15	287,8	252	1,731	412	13,421044897	
Compaction Force (kN) 👜		15	15	8,014	29,89	0,18	298,9	247	1,686	405	13,545144235	
🚄 Ejection (kN) 🖀	~	16	16	8,014	32,90	0,18	329	252	1,737	422	13,699313791	
A Commenting December (MADe) JL		17	17	8,013	34,51	0,18	345,1	251	1,708	451	14,889319751	
Rows	20	18	18	8,014	36,37	0,18	363,7	246	1,676	433	14,568004371	
Selected	0	19	19	8,015	38,87	0,17	388,7	250	1,691	435	14,505470842	
Excluded	0	20	20	8,014	40,22	0,18	402,2	252	1,707	434	14,336475255	
Hidden	0											~
Labeled	0		<									>
evaluations done											1 🔒 🔒] •

Flat-face punch \varnothing 11,89 mm – Area 1 cm²

True Density Estimation

C. Sun, A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders, (2013)

Heckel equation

NonlinLib.isl

Analyze>Specialized Modeling>Nonlinear

Non linear model library

where: **C**, **b** and **d** are parameters ρ_{tablet} is the variable **X** ρ_{true} is the parameter **d**

True Density Estimation

C. Sun, A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders, (2013)

Heckel equation

Analyze>Specialized Modeling>Nonlinear

Non linear model library

where: **C**, **b** and **d** are parameters ρ_{tablet} is the variable **X** ρ_{true} is the parameter **d**

Nonlinear Fit

Response: Compaction Pressure (MPa), Predictor: Heckel_Equation

Plot

Compressibility

Kawakita, Tsutsumi, A Comparison of Equations for Powder Compression, (1966) Physical Properties and Compact Analysis of Commonly Used Yeli Zhang, Yuet Law, and Sibu Chakrabarti, Direct Compression Binders, 2003

 V_0 starting vol. V vol. at applied pressure

SF_o starting solid fraction V solid fraction at applied pressure

Kawakita equation

Analyze>Specialized Modeling>Nonlinear

Non linear model library

where: **a** and **b** are parameters **P** is the variable **X** SF is the variable Y

Compressibility

Kawakita, Tsutsumi, A Comparison of Equations for Powder Compression, (1966) Physical Properties and Compact Analysis of Commonly Used Yeli Zhang, Yuet Law, and Sibu Chakrabarti, Direct Compression Binders, 2003

 V_0 starting vol. V vol. at applied pressure

SF_o starting solid fraction V solid fraction at applied pressure

Kawakita equation

Analyze>Specialized Modeling>Nonlinear

Non linear model library

Nonlinear Fit

Response: Solid Fraction, Predictor: Kawakita Equation

Plot

Solution										
SS	SE	DFE		MSE	RMS	E				
0,001158009	92	17	6,8118e-5		0,0082534					
Parameter		Estim	ate	Approx	xStdErr					
Da	0,0	06056034	482	0,1	112878					
а	-1	6,198456	596	31,5	351507					
b	0,0)5388352	229	0,00	980698					
Solved By: Analytic Gauss-Newton										

Compressibility

The ability of a material to reduce in volume as results of an applied pressure

Compactibility

C. K. Tye, C. Sun, G. E. Amidon, Evaluation of the Effects of Tableting Speed on the Relationships between Compaction Pressure, Tablet Tensile Strength, and Tablet Solid Fraction, (2005)

 $TensileStrength = \sigma_0 e^{-b(1-SolidFraction)}$

Ryshkewitch equation

Fit Y by X platform

Simply doing a "Fit special" with Y transformed as logarithm

Compactibility

The ability to produce tablets with sufficient strength, under the effect of densification

Tabletability

The capacity of a powder to be transformed into a tablet of specified strength under the effect of compaction pressure

Dashboard

3D Scatterplot

Compaction studies on cellulose, lactose and placebo formulations

Compaction studies on real tablets formulation, using manufacturing punches (EU standard tooling)

Single punch press Vs Rotary press

Dwell time is defined as the amount of time that the compression force applied when forming the tablet is above 90% of its peak value.

Higher speed, shorter dwell time

Lower speed, longer dwell time

C. K. Tye, C. Sun, G. E. Amidon, Evaluation of the Effects of Tableting Speed on the Relationships between Compaction Pressure, Tablet Tensile Strength, and Tablet Solid Fraction, (2005)

Thank you

References:

- C.Sun, A Novel Method for Deriving True Density of Pharmaceutical Solids Including Hydrates and Water-Containing Powders, Journal of Pharmaceutical Science, (2013)
- Kawakita, Tsutsumi, A Comparison of Equations for Powder Compression, Bulletin of Chemical Society of Japan, (1966)
- Y. Zhang, Y. Law, S. Chakrabarti, Physical Properties and Compact Analysis of Commonly Used Direct Compression Binders, AAPS PharmSciTech, (2003)
- C. K. Tye, C. Sun, G. E. Amidon, Evaluation of the Effects of Tableting Speed on the Relationships between Compaction Pressure, Tablet Tensile Strength, and Tablet Solid Fraction, Journal of Pharmaceutical Science, (2005)
- C. Sun, Decoding Powder Tabletability: Roles of Particle Adhesion and Plasticity, Journal of Adhesion Sicence and Technology, (2011)
- Natoli engineering, Tabletability, Compactibility, and Compressibility: What's the Difference?, (2017)