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Abstract

Data from measurements over time can be analyzed in different ways. In this paper we compare
functional data analysis and nonlinear regression models. As an example, we focus on dissolution
profiles of drug tablets where tablets under test are compared to reference tablets. An initial simple
example is used to introduce functional data analysis and non liner regression models. A more complex
example is then provided where statistical designed mixture experiments are used to optimization
tablet formulation in order to match the target dissolution profile. To evaluate these approaches we
refer to the Information Quality (InfoQ) framework. InfoQ provides a checklist for evaluating the
information quality derived from applying an analytic method such as functional data analysis or
nonlinear regression. The JMP platform (www.jmp.com ) is used to demonstrate the points made in the
paper. A JMP add in enables to score the information quality of a specific study.

1. Introduction

When you collect data from measurements over time it can be analyzed, among other methods, with
functional data analysis (FDA) or non-linear regression (NLR) methods. Examples include
chromatograms from high-performance liquid chromatography (HPLC) systems, dissolution profiles of
drug tablets, and sensor measurements in production systems. Both FDA and NLR can be used in
analyzing such repeated measurements. FDA is non-parametric. In this paper we apply B-splines which
one fits with a finite number of knots. In contrast NLR is parametric. Here we use, three parameter
Gomperz and Weibull functions referring to the asymptote, growth rate and inflection point
parameters. A comprehensive coverage of functional data analysis is provided in Ramsey and Silverman
(2002). See also Woodall et al (2004) and Thakur et al (2021). For nonlinear regression applications, see
Bates and Watts (2007) and Kenett and Zacks (2021).

The paper presents simple and complex applications of FDA and NLR to tablet dissolution profiles. In
conclusion, FDA and NLR are discussed using the information quality (InfoQ) framework introduced in
Kenett and Shmueli (2014). Moreover, the information quality perspective enables a comparison of
analytic methods like FDA and NLR. An ensemble of models can enhance information quality. This was
proposed in the context of customer satisfaction surveys data analysis models (Kenett and Salini, 2011).
The next section is an introduction to information quality.


https://community.jmp.com/t5/Discovery-Summit-Europe-2021/Maximizing-Data-Science-Success-with-Information-Quality-InfoQ/ta-p/349217
http://www.jmp.com/

2. Introduction to Information Quality

Information quality (InfoQ), was introduced in Kenett and Shmueli (2014). InfoQ is a framework for
planning, tracking and assessing information derived from data and data analysis. It is formally defined
as the utility, U, of applying a particular statistical analysis, f, to a particular data set, X, conditioned on
a given goal. Given the 4 components: g, U, f and X, the formal definition is InfoQ = U(f(X| g)).

Besides these 4 components, InfoQ involves 8 dimensions: Data Resolution, Data Structure, Data
Integration, Temporal Relevance, Chronology of Data and Goal, Generalizability, Operationalization,
and Communication. Further developments of InfoQ and application examples are provided in Kenett
and Shmueli (2016), Reis and Kenett (2018) and Kenett and Gotwalt (2020).

The following checklist of questions is used in evaluating the InfoQ dimensions, with reference to g, U, f
and X:

(1) Data Resolution: Is the data granularity adequate for the intended goal? Has measurement
uncertainty been evaluated and found appropriate?

(2) Data Structure: Have you considered using data from different sources reflecting on the problem at
hand?

(3) Data Integration: If relevant, how is the integration from different data sources done? Are there
linkage issues that affect data privacy?

(4) Temporal Relevance: Does the time gap between data collection and analysis cause any concern?
(5) Chronology of Data & Goal: Are the analytic findings communicated to the right persons in a timely
manner?

(6) Generalizability: Can you derive general conclusions based on the study, beyond what was explicitly
studied, for example to other products or processes?

(7) Operationalization: Are the measured variables themselves of relevance to the study goal? Are
stated action items derived from the study?

(8) Communication: Are findings properly communicated to the intended audience?

With this checklist, one can compare methods of analysis by assessing the generated level of
information quality they provide. The last section in this paper provides such a comparison. The next
two sections are introductions to FDA and NLR using tablet dissolution profiles as an example. Section
5 is a complex example where mixture experiments are conducted to match tablet dissolution profiles
with a target profile. Section 6 concludes the paper with a discussion of FDA and NLR implementations
in terms of information quality.

3. Introduction to Functional Data Analysis

Functional data analysis (FDA) is about modeling data profiles with functions. FDA often uses splines. A
spline is a continuous function which coincides with a polynomial on every subinterval of the whole
interval on which it is defined. In other words, splines are functions which are piecewise polynomial.
The coefficients of the polynomials differ from interval to interval, but the order of the polynomial is
fixed. Splines originated in description of soil properties in agricultural plots and in the design of ship
hulls.

A basis spline (or B-spline) is a spline function that has minimal support with respect to a given degree,
smoothness, and domain partition. A spline function of given degree can be expressed as a linear



combination of B-splines of that degree. The term was coined by Shoenberg (1958) who has been
recognized as the “father of splines”. B-splines of order n, are basis functions for spline functions of the
same order defined over the same knots. All possible spline functions can be built from a linear
combination of B-splines, and there is only one unique combination for each spline function (Karlin and
Pinkus, 1976).

A spline of order n is defined as a piecewise polynomial function of degree n-1, in a variable x. The
values of x, where the pieces of polynomial meet, are known as knots. These are denoted as to, t1,t2.. tn
and sorted into nondecreasing order. When the knots are distinct, the first n-2 derivatives of the
polynomial pieces are continuous across each knot. When r knots are coincident, then only the first n-r-
1 derivatives of the spline are continuous across that knot.

For a given sequence of knots, there is, up to a scaling factor, a unique spline B{i,n}(x) satisfying

0 if z<t or z>ti,

nonzero otherwise

Bin(z) = {

If we add the additional constraint Z B;n (z) =1 for all x between the first and last knot, then

i
the scaling factor of Bin(x) becomes fixed. The resulting Bin(x) spline functions are called B-splines. The
higher order B-splines are defined by recursion. The usefulness of B-splines lies in the fact that any
spline function of order n, on a given set of knots, can be expressed as a linear combination of B-
splines.

The term P-spline stands for "penalized B-spline". It refers to using the B-spline representation where
the coefficients are determined partly by the data to be fitted, and partly by an additional penalty
function that imposes smoothness to avoid overfitting.

We present next an example of a quadratic B-spline application. The data used in the case study
consists of 12 test and reference tablets measured under dissolution conditions at 5, 10, 15, 20, 30 and
45 minutes. The level of dissolution recorded at these time instances is the basis for the dissolution
functions to be analysed. The test tablets behaviour is compared to the target reference paths. Ideally
the tested generic product is identical to the target brand reference. Figure 1 shows the reference and
tested paths for the 12 tablets tested in each group, with a superimposed smoother.
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Figure 1: Dissolution paths of reference and tested tablets, with smoother (T5R is highlighted)

Functional data analysis extends the capabilities of traditional statistical techniques by considering
functions tracking change over time, or space, or some other dimension. Because we are observing
curves rather than individual values, the vector-valued observations X, . . . ,Xn are replaced by the
univariate functions Xi(t), . . ., Xa(t), where t is a continuous index varying within a closed interval [0, T].
In functional principal component analysis (FPCA), each sample curve is considered to be an
independent realization of a univariate stochastic process X(t) with smooth mean function E{X(t)} = u(t)
and covariance function cov{X(s),X(t)} = o(s, t). A spectral decomposition of the covariance function
expresses o as an orthogonal expansion (in the L, sense) in terms of its eigenvalues Aj and associated
eigenfunctions Vj(t), so that

where the eigenvalues quickly tend to zero and the first few eigenfunctions are slowly varying. The
covariance function, o, is positive-definite and hence, the eigenvalues are nonnegative and can be
ordered: A1 >A2 2 - - 2 0. The goal is to determine the primary components of functional variation in
o(s, t), where the eigenvalues indicate the amount of total variance attributed to each component. A
random curve can then be expressed as

where the coefficient
& = [ LX) = n(nV; e

is a scalar random variable called the j™ FPC score with E{§j} = 0, var{§j} = A;, Z A; < o, and cov{§j, &} =0,
jzk.



The eigenfunctions {Vj(t)}, called FPC functions, satisfy:

/ Vi(0)Pdt = 1. f Vi(t)Vi(t)dt = 0. # k.

where the integrals are taken over [0, T], which may be periodic. This expansion is known as the
Karhunen—Loeve expansion of X(t). Thus, X(t) - p(t) may be thought of as a finite sum of orthogonal
curves each having uncorrelated random amplitudes.

In analysing functional data, on first smooths each individual sample curve (e.g., using spline methods
or local-linear smoothers), and then apply functional PCA assuming that the smooth curves are the
completely observed curves. This gives a set of eigenvalues {A;} and (smooth) eigenfunctions {V;j(t)}
extracted from the sample covariance matrix of the smoothed data. Typically, the first and second
estimated eigenfunctions exhibit location of individual curve variation. Figure 2 presents outputs from
JMP functional data explorer (FDE) applied to the dissolution data displayed in Figure 1.
(https://www.jmp.com/support/help/en/16.1/#page/imp/model-reports-
2.shtml?o0s=win&source=application&utm source=helpmenu&utm medium=applicationww328146)

Figure 2 is showing the fit of a quadratic B-splines to the dissolution data to the set of reference
tablets. One observes the unusual straight-line path of T5R which was highlighted in Figure 1. In Figure
3, we display a scatterplot of the top two functional principal components of the reference paths. Here
T5R clearly stands out. Could be that the dissolution at 30 minutes was misreported as too low. A
double check of the record indicated this was not the case.
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Figure 2: Functional form of reference tablets dissolution paths


https://www.jmp.com/support/help/en/16.1/#page/jmp/model-reports-2.shtml?os=win&source=application&utm_source=helpmenu&utm_medium=application
https://www.jmp.com/support/help/en/16.1/#page/jmp/model-reports-2.shtml?os=win&source=application&utm_source=helpmenu&utm_medium=application
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Figure 3: Scatter plot of top two functional principal components of reference tablet dissolution paths

FDA can be used to identify anomalies in profiles. A graphical comparison of the mean functional data
of the reference and test tablets dissolution paths is shown in Figure 4. Except for the initial dissolution
phase, they almost fully overlap indicating that, on average, the tablets under test are compatible with
the refence product, in terms of dissolution.
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Figure 4: Mean functional data of reference tablets and tested tablets dissolution paths.

4. Non Linear Regression Models

The general linear regression model is formulated as:
Yi= fo+ X+ LoXip+ - - o+ Lp-1Xip1+ Ei
Linear regression models, include first-order models in p — 1 predictor variables and also more complex

models. For example, a polynomial regression model in one or more predictor variables is linear in the

parameters. Such as a model includes two predictor variables with linear, quadratic, and interaction
terms:

Yi= Bo+ LiXin+ L2X% + LaXia + BuXliz + FsXuXic + &i

Models with transformed variables that are linear in the parameters, also belong to the class
of linear regression models. An example is the following model:

log,, Yi = Bo + B1v Xi1 + Brexp(Xin) + &



In general, a linear regression model has the form:
Yi=f(Xi,B) + &
where X;is the vector of the observations on the predictor variables for the it case:

1
Xr'l

o

B is the vector of the regression coefficients. f(Xi, B) represents the expected value E{Y; }, which for
linear regression models is equal to:

X; =

f(Xi. B) =Xip

Nonlinear regression models (NLR) are of the same form as linear regression models: Y; = f (X;, y) + €.
An observation Yiis the sum of a mean response f (X, y), given by the nonlinear response function f (X,
y) and the error term €;. The error terms are typically assumed to have expectation zero, constant
variance, and to be uncorrelated, just as for linear regression models. Often, a normal error model is
invoked assuming that the error terms are independent normal random variables with constant
variance. The parameter vector in the response function f (X, y) is denoted by y rather than B in the
linear model. This emphasizes that the response function is nonlinear in the parameters. A difference
between linear and nonlinear regression models is that the number of regression parameters is not
necessarily directly related to the number of X variables in the model. In linear regression models, if
there are p — 1, X variables in the model, then there are p regression coefficients in the model. If the
number of X variables in the nonlinear regression model is denoted by g, and we continue to denote
the number of regression parameters in the response function by p. The general form of a nonlinear
regression model is expressed as:

Yi=f(Xi.y) +&

where

X{-] Ya
Xio Vi

Xi = _ Y = :
Ly

P

px1
Like in linear regression models, estimation of parameters of a nonlinear regression model can be
carried out by the method of least squares or the method of maximum likelihood. Like in linear
regression, both methods of estimation yield the same parameter estimates when the error terms are
independent normal with constant variance. Unlike linear regression, it is usually not possible to find
analytical expressions for the least squares and maximum likelihood estimators for nonlinear
regression models. Instead, numerical search procedures are used with both estimation procedures.
For example, The Gauss-Newton method, a.k.a. as the linearization method, uses a Taylor series
expansion to approximate the nonlinear regression model with linear terms and then employs
ordinary least squares to estimate the parameters. Iteration of these steps generally leads to

a solution to the nonlinear regression problem. We fit a Gompertz 3 parameter non linear model to the
data analysed in section 4. The functional form of the model is shown in Figure 5.
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Figure 5: Gompertz 3 parameter non linear model

Figure 6 presents the fitted model to the individual dissolution curves. Comparing Figure 6 to Figure 2,
derived with quadratic B-splines, provides similar qualitative information. The three Gompertz
parameters for the reference tablets are presented in Figure 7. Tablet T5R stands out because of low
growth rate (0.07) and high inflection point (11.5).
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Figure 6: Gompertz 3 parameter non-linear model fit to reference tablets dissolution paths



Label
TR
T2R
T3R
T4R
T5R
TeR
T/R
T8R
T9R
T10R
T11R
T12R

Asymptote
89.072244404
93.480399791
95.117117858
95.393703545
97.047132531
95.886344295
95.608682945
113.26922091
102.16502758
97.965019617
94.032980681
97.966870258

Growth Rate
0.2185624809

1.76758908
0.1732544061
0.1508168903
0.0750862269
0.2282099484
0.1500953986
0.0355126872
0.1201635618
0.1562304451
0.2037771891
0.1439240958

Inflection Point |

-3.625806907
4.0002987548
5.4556204689
4.2794474042
11.579937352
2.8239229453
8.8540204547
-23.11022674
14.766362121
10.087517474
5.8648755174
10.549169714

Figure 7: The 3 Gompertz parameters from fit to reference tablets dissolution paths

Sections 3 and 4 were designed to introduce FDA and NLR in an application to tablet dissolution curves.
In the next section we present a complex case study derived from tablet formulations designed with
mixture experiments to match a target dissolution profile.

5. Optimizing tablet dissolution profiles with mixture experiments

The goal, g, of this case study is to find polymer amounts and compression values leading matching a
target reference dissolution curve. The matching gap is the utility function, U, used in this study. The
data, X, consists of 102 tablets tested over 4 dissolution times. The tablets were produced in 16
formulations involving two polymers (A and B) and a tableting compression force. Six tablets were
produced for each formulation. Dissolution profiles of six tablets of a reference product were used to
set a target profile. The analysis, f, involves FDA and NRL. To conduct an information quality
assessment we first describe the FDA and NLR analysis. The InfoQ assessment is presented in Section 6.

Fitting a quadratic B-spline to the 16 formulation experiments with 6 replicates each produces the fit
shown in Figure 8.
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Figure 8: Quadratic B-spline fit to the 16 formulation tablet dissolution paths



These 16 paths correspond to 16 mixture experiments representing mixtures of Polymer A and Polymer
B, the total amount of polymer and the compression force. The experimental array with the first three
functional principal components (FPC) is shown in Figure 9.

Figure 9: Experimental array and functional principal components of Quadratic B-spline fit to the 16

The mean and three eigenvalues corresponding to FPC1, FPC2 and FPC3 are shown in Figure 10.
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Polymer
Batch A
AO1 0.825
AD2 0.773
AD3 0.723
AD4 0.775
A0S 0.873
ADB 0.773
ADT 0.773
A0S 0.823
AO9 0.825
A10 0.873
Al 0.873
Al2 0.823
Al3 0.725
Ald 0.725
Al5 0.773
Ald 0.823

4 Eigenfunctions

Polymer | Total Compression | Dissolution Dissolution  Dissolution

B Polymer Force FPC 1 FPC 2 FPC 3

0.175 0.16 2500 3T -485 -3.36
0.225 0.14 2500 1316 3275 11.98
0.275 0.14 1500 -204 37.78 -26.7
0.225 0.158 1500 -1.15 17.76 -18.2
0.125 0.16 1500 -151 -61 -3.16
0.225 0.18 2500 4323 11.24 2.479
0.225 0.18 1500 99.93 16.71 -1.11
0.175 0.12 2500 -109 -1186 13.62
0.175 0.12 2500 -1 10.64 19.92
0.125 0.16 2500 2216 -30.2 -1.52
0.125 0.1a 1500 -226 -3786 11.74
0.175 0.12 1500 -331 13.58 2037
0.275 0.14 2500 8216 59.97 -B.43
0.275 0.14 1500 -2090 -17.8 -40.6
0.225 0.18 2500 4212 15.66 5.832
0.175 0.12 1500 -343 10.7 19.15
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Figure 10: Eigenvalues (top) and profiler (bottom) of first three functional principal components of

The first eigenfunction appears as affecting dissolution level and the second eigenfunction being
related to dissolution quadratic shapes. See Section 3 for more details on FPC and eigenfunctions.

Weight

02
0.1

D /
—
-0.1

-0.2

50 130 250 35050 150 250 35050 130 250 3530
Eigenfuncticn 1 Eigenfunction 2 Eigenfuncticn 3

= L]
F &
14

Quadratic B-spline

10



Generalized regression models the

impact of the four experimental factors on the three functional

principal components: FPC1, FPC2 and FPC3. Figure 11 presents the fit of a best subset regression to
FPC1. The interactions of Polymer A and B with Total Polymer and Compression Force are significant on
FPC1 that affects the dissolution level.

< Generalized Regression for FPC Scores
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4 Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate  StdError ChiSquare ChiSquare Lower95% Upper 95%
(PolymerA-0.725)/015 Forcedin  -23.01645 26.485752  0.8153064 0.3665 -75.82757 27904671
(PolymerB-0.125)/0.15 Forcedin 2135432 1516401  1.9320043 0.159 -8.266504 51.075233
Polymer A*Total Polymer 17073706 52.22562  11.844263 0.0006* 77376723 282.00730
Polymer A*Compression Force 18851742 26.823650  40.393171 13594401 241,00082
Polymer B*Total Polymer 27197377 36417342 55774737 200.59700 34335044
Polymer B*Compressicn Force 17045066 15599615  110.30045 <,0001* 130.87508 201.02335
Total Polymer*Compression Force 0 0 0 1.0000 0 0
Normal Distribution Wald Prob >
Parameters Estimate Std Error ChiSquare ChiSquare Lower95% Upper953%
Scale 73066154 18560004 15406372 36.687275  109.44503

[> =/ Generalized Regression
for Dissolution FPC 2

[> =/ Generalized Regression
for Dissolution FPC 3

Figure 11: Best subset regression of first functional principal component versus main effect and

interaction features.

Following the application of FDA we apply NLR to the same data. The Weibull growth non linear model
used is based on domain specific knowledge of dissolution curves, see Langenbucher, F. (1972). Figure
12 presents the Weibull function. Figure 13 is an output is fitting the Weibull model to the 16
formulation experiments and the reference data.

£ = Weibull Growth
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Time
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a = Asymptote
b = Inflection Point
c = Growth Rate

Figure 12: Weibull growth model
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Polymer Polymer | Total | Compression

Batch A B Polymer Force Asymptote
1/ A0 0.825 0.175 0.16 2500 1498
2 AD2 0.775 0.225 0.14 2500 1047
3 AD3 0.725 0.275 0.14 1500 g7.08
41404 0.775 0.225 0.18 1500 7878
5 A0S 0.873 0.125 0.18 1500 01.609
6 ADG 0.775 0.225 0.18 2500 6895
7| ADT 0.775 0.225 0.18 1500 £7.61
8 ADB 0.825 0.173 0.12 2500 1507
o AD9 0.825 0,175 0.12 2500 2576
10 |A10 0.873 0.125 0.16 2500 1904
11 A1 0.873 0.125 0.18 1500 1386
12 |Al12 0.825 0.175 0.12 1500 1358
13 |A13 0.725 0.275 0.14 2500 79.21
14 A14 0.725 0.275 0.14 1500 8617
15 |Al15 0.775 0.225 0.18 2500 7312
16 |Al6 0.825 0.175 0.12 1500 1316
17 |RO1 . . . . 00.65

Inflection
Point

10432
2825
107.5
128.1
1045
2481
1938
5215
2221
1963
3653
2352
158
53.28
2602
2078
1994

Growth
Rate

0.733
0.938
1.311

1.7
0.622
1.454
0.938
0.534
0.493
0.565

0.44
0.553
1.296
1.356
1.438
0.555
114

Figure 13: Fit of formulation experiments data to Weibull growth model

The generalized regression analysis of the 16 formulation experiments for the asymptote, inflection

point and asymptotes is presented in Figure 14.

A = Generalized Regression for Asymptote
4 =+ LogNormal Best Subset with AlCc Validation
£ Solution Path

4 Parameter Estimates for Original Predictors

Wald
Term Estimate  Std Error  ChiSquare
(Polymer A-0.725)/015 Forcedin 3.0876360 0.,0703930  4106.3703
{PolymerB-0.125)/0.15 Forcedin 4.3296224 0.0600676 519541
Polymer A*Total Polymer -0.414667 01144104 13136172
Polymer A"Cormpression Force 0.2397074 00718006 11.145676
Palymer B*Total Polymer a a 0
Polymer B*Compression Force a a a
Total PolymerCompression Force ] 0 0
LogMormal Wald Prob =

Prob >
ChiSquare

1.0000
1.0000
1.0000

Lower 95%
49320277
4.2118921
-0.63 8808
0.0989808

]
0
0

Distribution Parameters  Estimate 5td Error ChiSquare ChiSquare Lower 95% Upper 95%

Scale 01681744 0.0210398 63.890567 <.0001*

[» = Generalized Regression for Inflection Point

[* =/Generalized Regression for Growth Rate

01269372

0.20%4117

Upper 95%
5.2432461
44473527
-0.190427
0,383

0
0
0
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£ |~/ Generalized Regression for Inflection Point

4 ~|LogNormal Best Subset with AlCc Validation
£ Solution Path

< Parameter Estimates for Original Predictors

Wald Prob =
Term Estimate  Std Error ChiSquare ChiSquare Lower 95%  Upper 95%
(Polymer A-0.725)/0.15 Forcedin  6.67114613 0.2234624  §50.89753 <000 6.1695632 7.0533595
(Polymer B-0.125)/0.15 Forcedin  4.7439733 0.1219589  1513.0678 <000 4,5040432 4,9530133
Polymer A*Total Polymer 0 0 0 1.0000 0 0
Polymer A*Compression Force 11778766 0.2041102 33.30195 <000 0.7778279 1.5779254
Palymer B*Total Polymer 0 0 0 1.0000 0 0
Polymer B*Compressicn Force 0 0 0 1.0000 0 0
Total Polymer*Compressicn Force 0 0 0 1.0000 0 0
LogMormal Wald Prob =
Distribution Parameters  Estimate 5td Error ChiSquare ChiSquare Lower95% Upper 93%
Scale 0.3991865 0.0737260 20315666 <0007 02546845  0.5436836
4 =+|Generalized Regression for Growth Rate
4 = LogNormal Best Subset with AlCc Validation
4 Solution Path
4 Parameter Estimates for Original Predictors
Wald Prob =
Term Estimate StdError ChiSquare ChiSquare Lower93% Upper93%
(Polymer A-0.725)/015 Forcedin  -0.716675 0.0561331 163.0071 <.000 -0.826604 -0.606656
(PolymerB-0.125)/0.15 Forced in  0.3420244  0.0434337  62.000733 <.0001* 0.2568955 0.4271529
Polymer &*Total Polymer 04241638 0.0594451 50913822 <,000 0.3076536 0.5406739
Polymer A*Compression Force 0 0 0 1.0000 0 0
Polymer B*Total Polymer 0 0 0 1.0000 0 0
Polymer B*Compression Force 0 0 0 1.0000 0 0
Total Polymer*Compression Force 0.0928903 0.0337311  7.5836617 0.0058* 0.0267785 0.1590021
LogMormal Wald Prob =
Distribution Parameters  Estimate 5td Error ChiSquare ChiSquare Lower 95% Upper95%
Scale 0.1035127 0.01402%4 54.439018 <0001%  0.0760156  0.1310098

Figure 14: Fit of generalized regression the three to Weibull growth model parameters

The asymptote is affected by Polymer A and B and the interaction of Polymer A with the total amount

of polymer and the Compression Force. The Inflection point is determined by Polymer A and B and the
interaction of Polymer A and the Compression Force. The growth rate is set up by Polymer A and B, the
interaction of Polymer A with the total amount of polymer and of Total Polymer with the Compression

Force.

To design the ideal formulation matching the reference tablets s we minimize the distance between the
optimized model and the reference model. The optimized set up using FDA and NRL are listed in Table

1.

Table 1: Optimized formulation with FDA and NLR model

Model | Polymer A | Polymer B Total Polymer | Compression Force
FDA 0.725 0.275 0.17 1700
NLR 0.758 0.242 0.16 2100
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Under these optimized formulations we compare the designed formulation dissolution curve and the
reference dissolution curve. Figure 15 presents these curves. NLR clearly matches the Reference path
better than the FDA path.
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Figure 15: Fit of optimized formulations under FDA and NLR and Reference path

The next section is comparing the models using the information quality framework.

6. Information Quality Assessment and Discussion

In assessing information quality derived from applying the FDA and NLR models we find similar positive
responses to the checklist questions in Section 2 for: Data Resolution, Data Structure, Data Integration,
Temporal Relevance and Chronology of Data ad Goal. These dimensions were determined to be similar
for FDA and NLR. The remaining three dimensions turned out to produce difference responses for FDA
ad NLR. The questions, for these dimensions, also listed in Section 2, with evaluation responses are:

(6) Generalizability: Can you derive general conclusions based on the study, beyond what was explicitly
studied, for example to other products or processes?

FDA: The non-parametric FDA model is focused on functional form.

NLR: The Weibull growth function is based on the work of Langenbucher (1972). The implication being
that the three function parameters are interpretable on mechanistic knowledge.

NLR had better generalizability properties than FDA.

(7) Operationalization: Are the measured variables themselves of relevance to the study goal? Are
stated action items derived from the study?

Computationally NLR is also affected by starting point and convergence properties. FDA also requires
numerical tweaking such as setting the number and position of knots and the type of spline function
used. Overall FDA is easier to operationalize than NLR.

(8) Communication: Are findings properly communicated to the intended audience?

The dissolution curves parametrized version from NLR analysis arrive better communicated than the
functional FDA form. In addition the NLR parameters meet the model based regulatory approach
described in the guidance for dissolution (Food and Drug Administration, 1997).NLR has better
communication properties than FDA.
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This high-level assessment of information quality indicates that NLR generates higher information
quality than FDA. Combining NLR with FDA can handle better operationalization.
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