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Abstract 

Data from measurements over time can be analyzed in different ways. In this paper we compare 

functional data analysis and nonlinear regression models. As an example, we focus on dissolution 

profiles of drug tablets where tablets under test are compared to reference tablets. An initial simple 

example is used to introduce functional data analysis and non liner regression models. A more complex 

example is then provided where statistical designed mixture experiments are used to optimization 

tablet formulation in order to match the target dissolution profile. To evaluate these approaches we 

refer to the Information Quality (InfoQ) framework. InfoQ provides a checklist for evaluating the 

information quality derived from applying an analytic method such as functional data analysis or 

nonlinear regression. The JMP platform (www.jmp.com ) is used to demonstrate the points made in the 

paper. A JMP add in enables to score the information quality of a specific study. 

 

1. Introduction 

When you collect data from measurements over time it can be analyzed, among other methods, with 

functional data analysis (FDA) or non-linear regression (NLR) methods. Examples include 

chromatograms from high-performance liquid chromatography (HPLC) systems, dissolution profiles of 

drug tablets, and sensor measurements in production systems. Both FDA and NLR can be used in 

analyzing such repeated measurements. FDA is non-parametric. In this paper we apply B-splines which 

one fits with a finite number of knots. In contrast NLR is parametric. Here we use, three parameter 

Gomperz and Weibull functions referring to the asymptote, growth rate and inflection point 

parameters. A comprehensive coverage of functional data analysis is provided in Ramsey and Silverman 

(2002). See also Woodall et al (2004) and Thakur et al (2021). For nonlinear regression applications, see 

Bates and Watts (2007) and Kenett and Zacks (2021). 

 

The paper presents simple and complex applications of FDA and NLR to tablet dissolution profiles. In 

conclusion, FDA and NLR are discussed using the information quality (InfoQ) framework introduced in 

Kenett and Shmueli (2014). Moreover, the information quality perspective enables a comparison of 

analytic methods like FDA and NLR. An ensemble of models can enhance information quality. This was 

proposed in the context of customer satisfaction surveys data analysis models (Kenett and Salini, 2011). 

The next section is an introduction to information quality.   

 

 

 

https://community.jmp.com/t5/Discovery-Summit-Europe-2021/Maximizing-Data-Science-Success-with-Information-Quality-InfoQ/ta-p/349217
http://www.jmp.com/
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2. Introduction to Information Quality 

Information quality (InfoQ), was introduced in Kenett and Shmueli (2014). InfoQ is a framework for 

planning, tracking and assessing information derived from data and data analysis. It is formally defined 

as the utility, U, of applying a particular statistical analysis, f, to a particular data set, X, conditioned on 

a given goal.  Given the 4 components: g, U, f and X, the formal definition is InfoQ = U(f(X|g)).  

 

Besides these 4 components, InfoQ involves 8 dimensions:  Data Resolution, Data Structure, Data 

Integration, Temporal Relevance, Chronology of Data and Goal, Generalizability, Operationalization, 

and Communication. Further developments of InfoQ and application examples are provided in Kenett 

and Shmueli (2016), Reis and Kenett (2018) and Kenett and Gotwalt (2020).  

 

The following checklist of questions is used in evaluating the InfoQ dimensions, with reference to g, U, f 

and X: 

(1) Data Resolution: Is the data granularity adequate for the intended goal? Has measurement 

uncertainty been evaluated and found appropriate? 

(2) Data Structure: Have you considered using data from different sources reflecting on the problem at 

hand? 

(3) Data Integration: If relevant, how is the integration from different data sources done? Are there 

linkage issues that affect data privacy? 

(4) Temporal Relevance: Does the time gap between data collection and analysis cause any concern? 

(5) Chronology of Data & Goal: Are the analytic findings communicated to the right persons in a timely 

manner? 

(6) Generalizability: Can you derive general conclusions based on the study, beyond what was explicitly 

studied, for example to other products or processes? 

(7) Operationalization: Are the measured variables themselves of relevance to the study goal? Are 

stated action items derived from the study?  

(8) Communication: Are findings properly communicated to the intended audience? 

 

With this checklist, one can compare methods of analysis by assessing the generated level of 

information quality they provide.  The last section in this paper provides such a comparison. The next 

two sections are introductions to FDA and NLR using tablet dissolution profiles  as an example. Section 

5 is a complex example where mixture experiments are conducted to match tablet dissolution profiles 

with a target profile.  Section 6 concludes the paper with a discussion of FDA and NLR implementations 

in terms of information quality. 

  

3. Introduction to Functional Data Analysis 

Functional data analysis (FDA) is about modeling data profiles with functions. FDA often uses splines. A 

spline is a continuous function which coincides with a polynomial on every subinterval of the whole 

interval on which it is defined. In other words, splines are functions which are piecewise polynomial. 

The coefficients of the polynomials differ from interval to interval, but the order of the polynomial is 

fixed. Splines originated in description of soil properties in agricultural plots and in the design of ship 

hulls.  

 

A basis spline (or B-spline) is a spline function that has minimal support with respect to a given degree, 

smoothness, and domain partition. A spline function of given degree can be expressed as a linear 
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combination of B-splines of that degree. The term was coined by Shoenberg (1958) who has been 

recognized as the “father of splines”. B-splines of order n, are basis functions for spline functions of the 

same order defined over the same knots. All possible spline functions can be built from a linear 

combination of B-splines, and there is only one unique combination for each spline function (Karlin and 

Pinkus, 1976). 

 

A spline of order n is defined as a piecewise polynomial function of degree n-1, in a variable x. The 

values of x, where the pieces of polynomial meet, are known as knots. These are denoted as t0 , t1, t2… tn 

and sorted into nondecreasing order. When the knots are distinct, the first n-2 derivatives of the 

polynomial pieces are continuous across each knot. When r knots are coincident, then only the first n-r-

1 derivatives of the spline are continuous across that knot. 

 

For a given sequence of knots, there is, up to a scaling factor, a unique spline B{i,n}(x) satisfying 

 

 

 

  

If we add the additional constraint                                          for all x between the first and last knot, then  
 
the scaling factor of Bi,n(x) becomes fixed. The resulting Bi,n(x) spline functions are called B-splines. The 
higher order B-splines are defined by recursion. The usefulness of B-splines lies in the fact that any 
spline function of order n, on a given set of knots, can be expressed as a linear combination of B-
splines. 
 

The term P-spline stands for "penalized B-spline". It refers to using the B-spline representation where 

the coefficients are determined partly by the data to be fitted, and partly by an additional penalty 

function that imposes smoothness to avoid overfitting.  

 

We present next an example of a quadratic B-spline application. The data used in the case study 

consists of 12 test and reference tablets measured under dissolution conditions at 5, 10, 15, 20, 30 and 

45 minutes. The level of dissolution recorded at these time instances is the basis for the dissolution 

functions to be analysed. The test tablets behaviour is compared to the target reference paths. Ideally 

the tested generic product is identical to the target brand reference. Figure 1 shows the reference and 

tested paths for the 12 tablets tested in each group, with a superimposed smoother.   
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Figure 1: Dissolution paths of reference and tested tablets, with smoother (T5R is highlighted) 

Functional data analysis extends the capabilities of traditional statistical techniques by considering 

functions tracking change over time, or space, or some other dimension. Because we are observing 

curves rather than individual values, the vector-valued observations X1, . . . ,Xn are replaced by the 

univariate functions X1(t), . . . , Xn(t), where t is a continuous index varying within a closed interval [0, T]. 

In functional principal component analysis (FPCA), each sample curve is considered to be an 

independent realization of a univariate stochastic process X(t) with smooth mean function E{X(t)} = μ(t) 

and covariance function cov{X(s),X(t)} = σ(s, t). A spectral decomposition of the covariance function 

expresses σ as an orthogonal expansion (in the L2 sense) in terms of its eigenvalues λj and associated 

eigenfunctions Vj(t), so that  

 

where the eigenvalues quickly tend to zero and the first few eigenfunctions are slowly varying. The 

covariance function, σ, is positive-definite and hence, the eigenvalues are nonnegative and can be 

ordered: λ1 ≥ λ2 ≥· · · ≥ 0. The goal is to determine the primary components of functional variation in 

σ(s, t), where the eigenvalues indicate the amount of total variance attributed to each component. A 

random curve can then be expressed as 

 

where the coefficient 

 

is a scalar random variable called the jth FPC score with E{ξj} = 0, var{ξj} = λj , Σ λj < ∞, and cov{ξj, ξk} = 0, 

j≠k.  
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The eigenfunctions {Vj(t)}, called FPC functions, satisfy: 

 

 

where the integrals are taken over [0, T], which may be periodic. This expansion is known as the 

Karhunen–Loeve expansion of X(t). Thus, X(t) − μ(t) may be thought of as a finite sum of orthogonal 

curves each having uncorrelated random amplitudes. 

 

In analysing functional data, on first smooths each individual sample curve (e.g., using spline methods 

or local-linear smoothers), and then apply functional PCA assuming that the smooth curves are the 

completely observed curves. This gives a set of eigenvalues {λj} and (smooth) eigenfunctions {Vj(t)} 

extracted from the sample covariance matrix of the smoothed data. Typically, the first and second 

estimated eigenfunctions exhibit location of individual curve variation.  Figure 2 presents outputs from 

JMP functional data explorer (FDE) applied to the dissolution data displayed in Figure 1.   

(https://www.jmp.com/support/help/en/16.1/#page/jmp/model-reports-

2.shtml?os=win&source=application&utm_source=helpmenu&utm_medium=application#ww328146)  

 

Figure 2 is showing the fit of a quadratic B-splines to the dissolution data to the set of reference 

tablets. One observes the unusual straight-line path of T5R which was highlighted in Figure 1. In Figure 

3, we display a scatterplot of the top two functional principal components of the reference paths. Here 

T5R clearly stands out. Could be that the dissolution at 30 minutes was misreported as too low. A 

double check of the record indicated this was not the case. 

 

 

Figure 2: Functional form of reference tablets dissolution paths 

https://www.jmp.com/support/help/en/16.1/#page/jmp/model-reports-2.shtml?os=win&source=application&utm_source=helpmenu&utm_medium=application
https://www.jmp.com/support/help/en/16.1/#page/jmp/model-reports-2.shtml?os=win&source=application&utm_source=helpmenu&utm_medium=application
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Figure 3: Scatter plot of top two functional principal components of reference tablet dissolution paths 

FDA can be used to identify anomalies in profiles. A graphical comparison of the mean functional data 

of the reference and test tablets dissolution paths is shown in Figure 4.  Except for the initial dissolution 

phase, they almost fully overlap indicating that, on average, the tablets under test are compatible with 

the refence product, in terms of dissolution. 

 

Figure 4: Mean functional data of reference tablets and tested tablets dissolution paths. 

 

 

4. Non Linear Regression Models 

The general linear regression model is formulated as: 

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+βp−1Xi,p−1 + εi 

Linear regression models, include first-order models in p – 1 predictor variables and also more complex 

models. For example, a polynomial regression model in one or more predictor variables is linear in the 

parameters. Such as a model includes two predictor variables with linear, quadratic, and interaction 

terms: 

Yi = β0 + β1Xi1 + β2X
2

i1 + β3Xi2 + β4X
2
i2 + β5Xi1Xi2 + εi 

 

Models with transformed variables that are linear in the parameters, also belong to the class 

of linear regression models. An example is the following model: 
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In general, a linear regression model has the form: 

 
where Xi is the vector of the observations on the predictor variables for the ith case: 

 
β is the vector of the regression coefficients. f(Xi , β) represents the expected value E{Yi }, which for 

linear regression models is equal to: 

 
Nonlinear regression models (NLR) are of the same form as linear regression models: Yi = f (Xi, γ) + εi. 

An observation Yi is the sum of a mean response f (Xi , γ), given by the nonlinear response function f (X, 

γ) and the error term εi. The error terms are typically assumed to have expectation zero, constant 

variance, and to be uncorrelated, just as for linear regression models. Often, a normal error model is 

invoked assuming that the error terms are independent normal random variables with constant 

variance. The parameter vector in the response function f (X, γ) is denoted by γ rather than β in the 

linear model. This emphasizes that the response function is nonlinear in the parameters. A difference 

between linear and nonlinear regression models is that the number of regression parameters is not 

necessarily directly related to the number of X variables in the model. In linear regression models, if 

there are p – 1, X variables in the model, then there are p regression coefficients in the model.  If the 

number of X variables in the nonlinear regression model is denoted by q, and we continue to denote 

the number of regression parameters in the response function by p.  The general form of a nonlinear 

regression model is expressed as: 

 
where 

 
Like in linear regression models, estimation of parameters of a nonlinear regression model can be 

carried out by the method of least squares or the method of maximum likelihood. Like in linear 

regression, both methods of estimation yield the same parameter estimates when the error terms are 

independent normal with constant variance. Unlike linear regression, it is usually not possible to find 

analytical expressions for the least squares and maximum likelihood estimators for nonlinear 

regression models. Instead, numerical search procedures are used with both estimation procedures.  

For example, The Gauss-Newton method, a.k.a. as the linearization method, uses a Taylor series 

expansion to approximate the nonlinear regression model with linear terms and then employs 

ordinary least squares to estimate the parameters. Iteration of these steps generally leads to 

a solution to the nonlinear regression problem. We fit a Gompertz 3 parameter non linear model to the 

data analysed in section 4. The functional form of the model is shown in Figure 5. 
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Figure 5: Gompertz 3 parameter non linear model 

 

Figure 6 presents the fitted model to the individual dissolution curves. Comparing Figure 6 to Figure 2, 

derived with quadratic B-splines, provides similar qualitative information. The three Gompertz 

parameters for the reference tablets are presented in Figure 7. Tablet T5R stands out because of low 

growth rate (0.07) and high inflection point (11.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 6: Gompertz 3 parameter non-linear model fit to reference tablets dissolution paths 
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Figure 7: The 3 Gompertz parameters from fit to reference tablets dissolution paths 

 

Sections 3 and 4 were designed to introduce FDA and NLR in an application to tablet dissolution curves. 

In the next section we present a complex case study derived from tablet formulations designed with 

mixture experiments to match a target dissolution profile.  

 

5. Optimizing tablet dissolution profiles with mixture experiments 

The goal, g, of this case study is to find polymer amounts and compression values leading matching a 

target reference dissolution curve. The matching gap is the utility function, U, used in this study.  The 

data, X, consists of 102 tablets tested over 4 dissolution times. The tablets were produced in 16 

formulations involving two polymers (A and B) and a tableting compression force. Six tablets were 

produced for each formulation. Dissolution profiles of six tablets of a reference product were used to 

set a target profile. The analysis, f, involves FDA and NRL. To conduct an information quality 

assessment we first describe the FDA and NLR analysis. The InfoQ assessment is presented in Section 6.   

 

Fitting a quadratic B-spline to the 16 formulation experiments with 6 replicates each produces the fit 

shown in Figure 8. 

 
Figure 8: Quadratic B-spline fit to the 16 formulation tablet dissolution paths 
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These 16 paths correspond to 16 mixture experiments representing mixtures of Polymer A and Polymer 

B, the total amount of polymer and the compression force. The experimental array with the first three 

functional principal components (FPC) is shown in Figure 9. 

 

 
Figure 9: Experimental array and functional principal components of Quadratic B-spline fit to the 16 

formulation tablet dissolution paths 

 

The mean and three eigenvalues corresponding to FPC1, FPC2 and FPC3 are shown in Figure 10. 

 

 
 

 
 

Figure 10: Eigenvalues (top) and profiler (bottom) of first three functional principal components of 

Quadratic B-spline   

 

The first eigenfunction appears as affecting dissolution level and the second eigenfunction being 

related to dissolution quadratic shapes. See Section 3 for more details on FPC and eigenfunctions. 
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Generalized regression models the impact of the four experimental factors on the three functional 

principal components: FPC1, FPC2 and FPC3. Figure 11 presents the fit of a best subset regression to 

FPC1. The interactions of Polymer A and B with Total Polymer and Compression Force are significant on 

FPC1 that affects the dissolution level. 

 

 
 

Figure 11: Best subset regression of first functional principal component versus main effect and 

interaction features. 

 

Following the application of FDA we apply NLR to the same data. The Weibull growth non linear model 

used is based on domain specific knowledge of dissolution curves, see Langenbucher, F. (1972). Figure 

12 presents the Weibull function. Figure 13 is an output is fitting the Weibull model to the 16 

formulation experiments and the reference data. 

 
Figure 12: Weibull growth model 
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Figure 13: Fit of formulation experiments data to Weibull growth model 

 

The generalized regression analysis of the 16 formulation experiments  for the asymptote, inflection 

point and asymptotes is presented in Figure 14. 
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Figure 14: Fit of generalized regression the three to Weibull growth model parameters 

 

The asymptote is affected by Polymer A and B and the interaction of Polymer A with the total amount 

of polymer and the Compression Force. The Inflection point is determined by Polymer A and B and the 

interaction of Polymer A and the Compression Force. The growth rate is set up by Polymer A and B, the 

interaction of Polymer A with the total amount of polymer and of Total Polymer with the Compression 

Force.  

 

To design the ideal formulation matching the reference tablets s we minimize the distance between the 

optimized model and the reference model.  The optimized set up using FDA and NRL are listed in Table 

1. 

 

Table 1: Optimized formulation with FDA and NLR model 

 

Model Polymer A Polymer B Total Polymer Compression Force 

FDA 0.725 0.275 0.17 1700 

NLR 0.758 0.242 0.16 2100 
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Under these optimized formulations we compare the designed formulation dissolution curve and the 

reference dissolution curve. Figure 15 presents these curves. NLR clearly matches the Reference path 

better than the FDA path. 

 

 
Figure 15: Fit of optimized formulations under FDA and NLR and Reference path 

 

The next section is comparing the models using the information quality framework. 

 

6. Information Quality Assessment and Discussion 

In assessing information quality derived from applying the FDA and NLR models we find similar positive 

responses to the checklist questions in Section 2 for: Data Resolution, Data Structure, Data Integration, 

Temporal Relevance and Chronology of Data ad Goal. These dimensions were determined to be similar 

for FDA and NLR. The remaining three dimensions turned out to produce difference responses for FDA 

ad NLR. The questions, for these dimensions, also listed in Section 2, with evaluation responses are: 

 

(6) Generalizability: Can you derive general conclusions based on the study, beyond what was explicitly 

studied, for example to other products or processes? 

FDA: The non-parametric FDA model is focused on functional form. 

NLR: The Weibull growth function is based on the work of Langenbucher (1972). The implication being 

that the three function parameters are interpretable on mechanistic knowledge. 

NLR had better generalizability properties than FDA. 

 

(7) Operationalization: Are the measured variables themselves of relevance to the study goal? Are 

stated action items derived from the study?  

Computationally NLR is also affected by starting point and convergence properties. FDA also requires 

numerical tweaking such as setting the number and position of knots and the type of spline function 

used. Overall FDA is easier to operationalize than NLR.   

 

(8) Communication: Are findings properly communicated to the intended audience? 

The dissolution curves parametrized version from NLR analysis arrive better communicated than the 

functional FDA form. In addition the NLR parameters meet the model based regulatory approach 

described in the guidance for dissolution (Food and Drug Administration, 1997).NLR has better 

communication properties than FDA. 



15 
 

 

This high-level assessment of information quality indicates that NLR generates higher information 

quality than FDA. Combining NLR with FDA can handle better operationalization. 
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