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Manufacturing Excellence in Pharma – Part 2 
Measurement Systems Analysis (MSA), Analysis of Variance (ANOVA) 
 
Key ideas 
This case study requires the use of measurement systems analysis (MSA) to assess the precision, 
consistency, and bias of a measurement system. Within the Six Sigma DMAIC methodology, MSA 
addresses the Measure phase, while process behavior charts (or control charts) used in Part 1, address 
the Control phase. MSA helps to predict and characterize future outcomes. One can use the information 
gleaned from MSA to interpret and configure process behavior charts. This case also involves variability 
gauge charts to analyze continuous measurements that can reveal how a measurement system is 
performing. One can also perform a gauge study to see measures of variation in the data. 
 
Background 
FVM Pharmaceuticals is an international drug manufacturer, specializing in manufacturing finished 
formulations that cater to the most demanding global needs. FVM delivers contract manufacturing of 
tablets, capsules, and liquids. 

A typical manufacturing process involves milling an active pharmaceutical ingredient (API) into a powder 
of uniform particle size. The milled material is then blended with other ingredients to bulk up and evenly 
distribute the API. This blended material is then compressed into tablets, which are finally coated to aid 
shelf life, taste, and other properties. At the end of the process, various quality parameters, including 
Critical to Quality (CTQ) metrics, are populated, which further drive batch acceptance. 

The process starts with a raw material that is a concentrated emulsion containing two organic 
compounds. The raw material is supplied by two vendors, and the incoming quality is monitored by 
measuring the concentration of the compounds in milligram per liter (mg/l). Each day, a quality lab 
operator takes raw input material in two batches from each supplier into the process. 

The process of chromatography is a laboratory technique for the separation of a mixture. The company is 
currently leveraging gas chromatography (GC), a common type of chromatography used in analytical 
chemistry for separating and analyzing compounds that can be vaporized without decomposition.  

The task 
Recently, the Quality Control Team observed a significant variability in one of the critical product 
properties of the drug delivered. To address this issue, a cross-functional improvement team was formed 
to identify the root cause of the problem and then solve it. The head of the Cross Functional Team is 
Lawrence, a quality engineer who is a firm believer of data-enabled decision making. He knows that 
building a strong quality culture into the process demands application of statistical techniques to the data 
to discover the actionable insights. He also knows from his experience that bringing operational 
excellence into the manufacturing process is a sequential and multistage process starting from raw 
material to final inspection. At the same time, Quality by Design (QbD) involves ensuring quality 
throughout the production process (starting from raw material to finished product), while giving flexibility to 
the manufacturing system. 

Lawrence and his team have a huge challenge ahead of them to identify the reasons for variation and find 
ways not only to minimize them, but also to identify the optimized process parameters to meet the quality 
standards. 
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In Part 1 of this case study, Lawrence decided to start the investigation with the raw materials, where he 
found that Vendor A’s processes for Compound 1 and Compound 2 are stable but incapable. However, 
for Vendor B, Compound 2 is stable but incapable and Compound 2 is both incapable and unstable.  

Based on their initial findings from raw material investigation, Lawrence and his team started exploring a 
UHPLC measurement system to enable faster and closer raw material monitoring. While raw material 
monitoring is still offline, it should be possible with UHPLC to measure all batches. They set faster inline 
analysis as a stretch goal for the future. 

The dataset UHPLC_GC.jmp shows the measurements of GC and UHPLC for both Compound 1 and 
Compound 2 for each of the operators: John, Laura, and Sarah. A simple data visualization using Graph 
Builder help explain the precision. 

 Exhibit 1 UHPLC vs. Standard GC Analysis Results for Compound 1 and Compound 2 
 

 

 

 

 

 

 

To create, Graph>Graph Builder>Drag GC compound 1 to X axis, UHPLC compound 1 to Y axis. Drop the Operator column to the 
Color zone on the right side of the panel. Select Line of Fit from the top chart list. Select Prediction instead of Fit from the Line of Fit 
option from the left panel. Repeat the same steps to create the chart for Compound 2. 

As shown in Exhibit 1, UHPLC is still in the preliminary exploration phase; it shows poor precision 
compared to the actual standard GC method.  

Since the process involved three operators, the team wanted to examine how much of the variability is 
due to operator variation (reproducibility) and measurement variation (repeatability) when different raw 
material batches are analyzed, so they launched a Gauge R&R study. The main goal of the study is 
checking the extent to which the actual UHPLC method can discriminate between batches so that quality 
deviations can be detected. Poor Gauge repeatability and/or poor reproducibility are signs that the 
discrimination power is too low. 

The data Batch_Input.jmp 

After applying a full factorial experimental design, as shown in Exhibit 2, the quality team collected the 
UHPLC measurement data for both compounds (1 and 2) coming from three operators (John, Laura, and 
Sarah) for four batches (B1, B2, B3 and B4) with additional repeated measurement for the batches. The 
description of the variables is below. 

Batch  The serial number of the batch (B1, B2, B3, B4) 
Operator The name of the operator 
Compound 1 Quality of Compound 1 measured in mg/l 
Compound 2 Quality of Compound 2 measured in mg/l 
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The Compound 1 and Compound 2 variables contain continuous data. The Batch and Operator variables 
contain nominal data. 
 
 Exhibit 2 Full Factorial Design for UHPLC Gauge R&R Study with Measured Responses  

 

 

 

 

 

 

 

 
To create, DOE>Classical>Full Factorial>Add two responses: Compound 1 and Compound 2. Add Batch as a categorical factor with 
four levels and Operator with three levels. Update as shown in Exhibit 2. Set number of replicates to 1 and click Make Table. This 
will create a table with different factor settings to collect the data on the responses. 

Analysis 
Lawrence and his team began identifying the variation between the operators using a variability chart. 
Just as a control chart shows process variation across time, a variability chart shows the same type of 
variation across categories, such as parts, operators, repetitions, and instruments. A variability chart plots 
the data and means for each level of grouping factors, with all plots side by side. Along with the data, one 
can view the mean and range of the data in each category to see how measurements change across the 
categories.  

The report options assume that the primary interest is how the mean and variance change across the 
categories. Variability charts are commonly used for measurement systems analysis such as Gauge 
R&R. This analysis examines how much of the variability is due to operator variation (reproducibility) and 
measurement variation (repeatability). 
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 Exhibit 3 Variability Chart of Compound 1 and Compound 2 
 

 

 
 
 
 
 
 
 
 
 
 

To create, Analyze>Quality and Process>Variability/Attribute Gauge Chart. Drag Compound 1 to the Y zone. Drag Operator to the X 
zone and then drag Batch to the X zone. Click OK. Under the red triangle menu, choose Connect Cell Means, Show Grand Mean, 
Show Group Means, Points Jittered, Xbar Control Limits. Repeat the same steps to create a variability chart for Compound 2. 
 
The variability charts in Exhibit 3 show patterns of variation that can be used to identify possible sources 
of variation (e.g., within operator, between operator, over time), also called variance components. If you 
notice that any of these sources of variation are large, you can then work to reduce the variation from that 
source. 
 
The charts show the measured response on the y-axis and a multilevel, categorized x-axis. The chart 
shows the range of measurements for each operator by batch. Each measurement appears on the chart. 
Maximum and minimum bars indicate the range of values for each cell, and a cell means bar indicates the 
average value for each combination of values. 
 
You can see for Compound 1 that John has more variation in his measurements than Laura and Sarah. 
However, for Compound 2, Laura has more variation in her measurements than the other two. 
 
Based on these findings, the team wanted to understand how much variation in the response data can be 
assigned to the measurement setup. Thus, they performed a measurement system analysis, a systematic 
approach to reduce the noise to better see the signal in measured data. 
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 Exhibit 4 MSA Initial Report: Average and Range Charts of Compound 1 and Compound 2 
 
 

 
To create, Analyze>Quality and Process>Measurement System Analysis. Drag Compound 1 and Compound 2 to the Y zone. Drag 
Operator to X Grouping and Batch to Part zone. Click OK. Under the red triangle menu, choose Parallelism Plots, Test-Retest Error 
Comparison and EMP Gauge R&R Results. 
 
 
The average chart in Exhibit 4 shows the average measurements for each operator. The means of the 
measurements are generally within the control limits for both the compounds, with the exception of John 
for Compound 2. The range chart shows the variability for each operator. Since the ranges are within the 
control limits for both Compound 1 and Compound 2, it indicates that the operators are measuring parts 
in the same way and with similar variation. 
 
The control limits of the average charts in Exhibits 3 and 4 are computed from the random test-retest 
measurement error (natural within-batch variation). One can clearly see that the large measurement error 
causes wide limits that obscure any potential systematic batch variation and instability effect!  
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 Exhibit 5 Parallelism Plots for Operator and Batch for Compound 1 and Compound 2 
 

 
 
 
 
 
 
 
 
 
  
 

 
The parallelism plots in Exhibit 5 show the average measurements for each batch by operator. Because 
the lines are not parallel and there is a major crossing, one can conclude that there may be interaction 
between operators and batches for both Compound 1 and Compound 2. Interactions indicate a serious 
issue that requires further investigation. 
 
Evaluating the measurement process (EMP) is a modern and visual assessment of the measurement 
setup, and the EMP Gauge R&R Results (Exhibit 6) partition the variability in the measurements into 
product (or part) variation and Gauge R&R (measurement) variation. The calculations in this report are 
based on variances, not ranges. We get the same results as from the Gauge R&R report in the variability 
chart platform, except that the calculation for reproducibility does not include interactions and negative 
variance components are set to zero. Zero values could indicate the presence of outliers in the results. 
 

Exhibit 6 EMP Gauge R&R Results for Compound 1 and Compound 2 
 
 
 
 
 
 
 
 
 

 
Performing a Gauge R&R study helps to attribute the total variation to the following sources: 
 

• The process variation from one batch to another, which is the ultimate variation that you want to 
study if measurements are reliable.  

• Repeatability, the variability inherent in making multiple measurements, which is also called the 
within variation.  

• Reproducibility, the variability resulting from different operators measuring batches. 
 
A Gauge R&R analysis then reports the variation in terms of repeatability and reproducibility. 
 
The main component in the Gauge R&R is repeatability, which accounts for 56.3% of the total variation 
for Compound 1 and 26.1% for Compound 2. It can be concluded that the main task for improving the 
UHPLC measurement system is optimizing repeatability. As the reproducibility component only accounts 
for 0-4.7% of the gauge variation, operator bias doesn’t appear to be an issue so far. 
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Analysis of variance (ANOVA) 
 
Lawrence and his team also wanted to explore the differences between batches and between operators, 
including their interactions, to study their synergistic effect. They conducted a two-way analysis of 
variance (ANOVA), a statistical method to explore the variation among groups. 
 

Exhibit 7 ANOVA Results for Compound 1 and Compound 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To create, Analyze> Fit Model. Drag Compound 1 and Compound 2 to the Y zone. Drag Batch and Operator to the Model Effects, 
select both Batch and Operator from the columns list and click Cross. This will add the interaction between Batch and Operator to 
the model effects. Select the option Fit Separately and click Run. 
 
 
According to the Effect Summary, there is a significant batch variation for both compounds. Statistically 
non-significant operator and batch interaction effects can be detected; however, this can be a 
consequence of high RMSA caused by the large measurement error. By improving repeatability operator 
and interaction, effects may show up again later. 
 
A very important conclusion drawn from the charts above is that the actual UHPLC measurement method 
is unable to detect quality shifts caused by significant systematic batch-to-batch variation as is shown in 
the ANOVA analysis (Exhibit 7). 

 

Summary 

Statistical insights 
This case introduced the concept of variance components, which can include process variables, as well 
as settings of the measurement procedure. Now that Lawrence and his team have found the sources of 
variation in the data using measurement system analysis, the next stage will be to ascertain the possible 
variables/factors and their effects (whether linear, nonlinear or interaction) on the measured variation. 
Finally, it will be important to find the optimal settings for those factors and to make the process more 
robust. 
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Managerial implications 
Again, manufacturing excellence had to be applied before making any decisions or requesting process 
changes. As shown here, it is important to eliminate (or minimize) the variation introduced by the 
measurement itself. This variation would just add noise to our measurements, which makes it difficult to 
analyze the signal. For this reason, a measurement systems analysis should always kept in mind if the 
signal-to-noise ratio is poor.    

JMP features and hints 
This case used Graph Builder for data visualization and DOE to design a full factorial experiment. It also 
leveraged Quality and Process platforms and used variability charts measurement system analysis (MSA) 
to compare the variance components. Fit Model was used to create an ANOVA report to explore the 
effects of different batches and operators. 

 

Exercise 
FVM Pharmaceuticals has a liquid drug that has three compounds from three batches. The process 
involved four operators (Tina, Byron, Kelci and Mary). The team wanted to examine how much of the 
observed variability is due to operator variation and measurement variation. The data is presented in the 
data set, FVM_Exercise2.jmp. 

A) Construct a variability chart for each of the three compounds and comment on the metrics. 
B) Perform a measurement systems analysis to find the sources of variation. 
C) Determine if there is any statistically significant impact of the interaction between Batch and 

Operator on the quality measurement of the compounds. (Hint: perform a two-way ANOVA.) 
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