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Abstract Die-criticality definition

» In the semiconductor manufacturing industry for automotive, parts are tested at each * Inthe NXP semiconductor manufacturing industry for automotive, 100% of the parts are inspected by inspection tools, at each layer
manufacturing step to screen likely-to-fail parts. The further upstream the weak parts are or step of their manufacturing. For each of the layers, from sampled defects observed In this inspection step and from SCAN
scrapped, the lower the scrapping cost will be. But testing has a cost as well. Images taken on these defects, a manual classification is performed in 3 classes:

® Killer defects as they are most likely-to-lead to a failure for the parts on which this type of defects was observed,;

A recent project at NXP sought to avoid a manual defect classification of the defects o Not-killer defects with no failure probability for the parts with this type of defects;

observed at the wafer inspection level. Defects are now classified as killer or not-killer o Lastly, nuisances when it appears that the observations are not a defect.

from a training image dataset, and a failure probabillity is assessed for each die.
* Which is done on a sample of defects, may be extended to all the defects, with an automated classification that is going to use

these first sampled defects and their manual classification to build a classification model that will classify automatically all the

 JMP allows a further step in correlating this failure probability to electrical tests with three defects observed on all the dies in these 3 classes.

types of analysis.
® The first analysis assessed a failure probability threshold to limit the number of parts

tested to limit test cost. * Then, a failure probability per die, also called die-criticality, is computed from the count of these 3 types of defects per layer,
o  The second analysis highlighted the tests most correlated with failure probability. a_ssuming more or less impact on the fe_iilure probabilit_y from a killer defect (weight equal to 10 in the total failure probabilit_y), a not-
o  The final analysis used the list of highlighted tests to adjust test limits to screen the killer defect (weight equal to 3) or a nuisance (null w_elght). Furtherm_ore,_ th_e_defects observed on one layer may be more impactful
parts with failure probability outliers. than other ones on another layer: that is to say, a weight can be applied individually for each layer.

The analyses limit test cost while increasing quality.

Die-criticality formula

Failure_probability per die(or Die_criticality)

layer_n
= z {Wei ght_layer;

layer_1
* {{count_of _the_nuisances_layer; x 0]

+ [count_of _the_not_killer_defects_layer; = 3]
+ [count_of _the_killer_defects_layer; * 10]}}

Formula 1: Die_Failure_Probability or Die_Criticality or IPAT (Inline Part AverageTest): 3 potential different names for a same definition
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Upstream and downstream screening Key question

« SO0 after inspection and thanks to the classification model, 100% of the dies have an
estimated failure probability. At this step, if a threshold is set on the failure probability value,
the dies can be scrapped if their failure probability is higher than the failure probability
threshold. This upstream screening may avoid the next test that is the electrical test at die
level (unit probing or UP test), for the dies for which the failure probability is beyond the
threshold: that means a cost and time saving in electrical UP test step.

* S0, the dies that need to be screened out after inspection (upstream screening), are the dies which there is a high insurance that
they will fail at UP test (downstream screening). A confusion matrix can be computed on the answer of the key question: can the
fallure probabillity predict the result of the UP test ? Prediction, accuracy and F1 score metrics are also computed and the
searching for the best threshold will correspond to the searching for the best value of the chosen metric among these typical 3
ones.

 But UP test Is not only dedicated to the screening of the defects, but it is also designed for detecting of every process shift. This

* But, if the threshold is incorrectly set, this screening can become a mess in term of yield loss . . . -
4 J Y may affect a little the setting of the failure probability threshold.

If it Is set too low (a too high yield loss but potentially a more powerful screening of the likely-
to-fail dies) or in term of quality If it Is set too high (more dies pass even if their failure

probabillity Is high, which is fitting with a low yield loss, too). So, threshold setting needs to - -
meet the best typical compromise between the lesser yield loss versus the best quality level. The three different analySIS

Overview on the : : : .
oroject goals « Type 1 analysis / Univariate analysis
Step #2: Bivariate screening _ - o  The key question about the capability to predict the UP test result from the failure probability, is fitting from the first analysis:
(failure probability vs test bins or 1 [l el e Y/ VN this analysis will use a training dataset of dies for which failure probability and UP test result is known. And the goal is to set
test values) UP bivariate analysis I the best threshold to meet the screening efficiency vs additional yield loss compromise. The dies with a failure probability
- e : beyond this threshold will be inked (scrapped) before their UP test.
Unit Probing UP test result 2T Ll Sl : :
(100%) data (100%) ' « Type 2 analysis / Bivariate analysis
ailure Multivariate o If the dies passed the inking step, the goal is still to improve the screening at UP test. This is possible from a failure
pribab'l';'es test limit orobability vs UP bins, because a bin is fitting with one test failing in the bin number group of tests, or better, failure
w't_ l,“?— ata setting orobabillity vs UP Test data correlation result. Test limits may be adjusted from this bivariate analysis result.
Die AOI Result = failure joining deployment
Inspection probability per die l' | 5 - Type 3 analysis / Multivariate analysis
(100%) — all the dies C:ansamdplﬁ?jda_ta’ F?'Iuti '?:Obab'“ty o  Now, by designing a multivariate analysis between failure probability and all the UP tests, a multivariate limit may be
l {0l S el S a',,ure , Implemented, In the extent that this capability can be implemented on the UP testers. Anyway, this type of analysis may
probability vs several tests” function highl; . _ . . . .
On sampled defects and sampled SEM images: L A Ighlight the key tests for which the limits may be strongly beneficially adjusted: in these terms, type 3 analysis appears as a
highlighted - . . . S . . . o
defect classification model preliminary analysis to perform before type 2 analysis, highlighting the key tests to use in the analysis 2, instead of doing it
+ _ _ on all the tests.
Failure probability computing model per die ?t_e" #3: Scree:f'“F “:'t_rl‘ o The da_ta analytic_s method; in multivariate, petween die _failure pr_obability_and test valge_s, available in JMP, are the
multivariate test limit (failure correlation analysis to highlight linear correlation, or machine learning algorithms, as decision trees, bootstrap forest or
Step #1: Univariate screening at probability vs several tests) boosted trees for a good interpretability of the results, or neural networks or support vector machines when a model is
inking step (threshold set on failure looked for, with only a weak understanding of which tests are contributing the most in the model. Since a screening
probability per die) Improvement is aimed by adjusting the limits of the tests the most correlated with die failure probability, only the methods
providing a good interpretability will be used (decision trees, bootstrap forest or boosted trees).

Fig 1. Scheme of the full project: data flow and analysis
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Analysis #1 is performed Iin three steps:

Step #1: Failure probability distribution and cumulative distribution:

The training dataset is fitting with 9 lots of dies, tested at room
temperature at unit probing: ‘RoomTestData.mp’.

The cumulative distribution of Failure Probabillities or Die Criticalities
estimate, upper 95% and lower 95% values, is obtained as

following:

® Die criticality guantiles computed from the
‘RoomTestData.mp’ table by step of 0.001% (estimate, lower
and upper at 95% confidence level):

‘DieCriticality_Quantiles.mp’

® From the ‘DieCriticality_Quantiles.ymp’ table, plotting of the
Cumulative distribution of Failure Probabilities estimate, upper
95% and lower 95% values.

Step #2: Confusion Matrix

The training dataset Is fitting with the same 9 lots of dies, tested at

room and hot temperatures at unit probing:

‘ConfusionMatrixTable.mp’

Beyond the confusion matrix metrics, net-loss and gross-loss are

computed to help in failure-probability threshold setting:

® Net-loss Is fitting with the additional yield due to the screening
on failure-probability threshold, beyond the typical UP vyield
loss.

e Gross-loss Is the total yield loss due to the screening on
failure-probabillity threshold

Precision vs Recall: an improvement is expected on UP test, so the

focus Is not on the parts that were rejected (FN), but on the parts

that passed (FP): so, Precision is a key metric, more important than

Recall. A weighting F1 score could be used, with Beta = 4, to

express that Precision should be twice more important than Recall.

Step #3: Fallure probability threshold selection

Precision is a key metrics. Unfortunately, a high precision can be
linked to a high net-loss, which is not always possible: a
compromise needs to be found between precision and net-loss.

JMP usage and results Type 1 analysis / Univariate analysis

~ Distributions
A = diecriticality

4 Quantiles 4 v Summary Statistics

Mean 0,5180679
Std Dev 2,8374263
Std Err Mean 0,0146378
Upper 95% Mean 0,5467584

100.0% maximum 167,233
99.5% 9,99812
97.5% 9,812
90.0% 0
75.0% quartile
L —_ —_ —_— - 50.0%
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Lower 95% Mean 0,4893775
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Fig 2: Die_Criticality distribution
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~ Graph Builder
Precision = TP/(TP+FP) & 2 more vs. diecriticality

§ e Precision = TP/(TP+FP)
* net_loss (%) = FP/(FN+TN+FP+TP)
® gross_loss (%) = (TP+FP)/(FN+TN+FP+TP)
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Fig 5: Precision vs yield loss (net or gross losses)

Estimate & 2 more

Fig 3: Cumulative distribution of Die_Ceriticality
estimate, upper 95% and lower 95%

| * Graph Builder
Precision = TP/(TP+FP) & 4 more vs. diecriticality

® Precision = TP/(TP+FP)
H ® Recall = TP/(TP+FN)
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~ Graph Builder
Precision = TP/(TP+FP) & 2 more vs. diecriticality

® Precision = TP/(TP+FP)
® net_loss (%) = FP/(FN+TN+FP+TP)
® gross_loss (%) = (TP+FP)/(FN+TN+FP+TP)
Row: 3610
0,6 . diecriticality: 30,689
Precision = TP/(TP+FP):0,5915
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Fig 4. Confusion matrix: plotting of the typical metrics

Fig 7: Precision, net_loss and gross_loss vs
diecriticality

Fig 6: Confusion matrix: is diecriticality a good
predictor of UP test results ?

TRUE CLASS
Positive |[Negative
V)
V)
é Positive 126 87
a (Ipat>th)
L
|_
—
=)
o Negative 53016 124734
% |(Ipat<th)

Fig 8: Confusion matrix (number of dies)
estimated for a specific threshold choice where
net _loss and gross_loss values are accepted
by the business (respectively 0.05% and 0.1%)

failure probability threshold

net loss (%)|gross _loss (%)

30,689

0,049 0,12

Fig 9: Gross and net loss values for the threshold chosen
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Reminder: Confusion Matrix The metrics

* Precision
Out of all the positive predicted, what percentage is truly positive. p o TE
The precision value lies between 0 and 1. reclsiorn =

I'F+ FF

* Recall
Out of the total positive, what percentage are predicted positive. It is the same as TPR (true positive rate). TP

Recall =
« F1 Score TP+ FN

It Is the harmonic mean of precision and recall. It takes both false positive and false negatives into
account. Therefore, it performs well on an unbalanced dataset.

F1 score gives the same weightage to recall and precision. 2 2 [PT'EEESI:HH * RECEI“J
F1l score = 1 T =

. Weighted F1 Score (Precision + Recall)

There is a weighted F1 score in which we can give different weightage to recall and precision. As Precision = Recall
discussed in the previous section, different problems give different weightage to recall and precision.

Beta represents how many times recall is more important than precision. If the recall is twice as important . s
as precision, the value of Beta is 2. F {1 N JEE:] (FT’EE’ISEGH * REE’(IH}
— #
IE,‘ 2 .
B True Positive (8% * Precision) + Recall
FP: False Positive
TN: True Negative Formulas 2: Confusion matrix metrics

FN: False Negative

Additional definitions used in this project: gross loss and net loss

Net-loss Is fitting with the additional yield due to the screening on failure-probability threshold,
beyond the typical UP vyield loss. Gross_loss = ipat fail / total number:of not inked_parts = (TP+FP)/(FN+TN)
Net loss = up passl/ total number of not inked parts = FP / (FN + TN)

Gross-loss is the total yield loss due to the screening on failure-probability threshold.
Formulas 3: Gross loss and Net loss
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In order to design the analyzis
and to be sure to cover any type
of diecriticality vs UP test
relationship, test and diecriticaity
values are simulated and used In
a first step.

Simulation method 1.:
‘curves_distinct_variability per
cent.ymp’

Around twenty curves of test data
are mathematically simulated from
Incremented failure-probabillity
values to see if JMP succeeds to
nighlight the tests for which test
Imit adjustment would be more
peneficial according to their
correlation with die failure
probability. As a conclusion, the
study highlights the need to
Implement a transformation on the
test data to focus only on the
upper and lower test values and
their correlation with die failure
probability.

Simulation method 2:
‘curves_random_diecriticality.]
mp’

Another simulation method Is
used, to be closer to the failure-
probability shape.

A similar conclusion than with
method 1 Is obtained about the
need for transformations.
However, test 3 seems correctly
highlighted by Bootstrap Forest
and Boosted Tree analysis.
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* Model Comparison

> Predictors

4 Measures of Fit for ipat
Predictor Creator .2.4,6,8 RSquare RASE AAE Freq
Pred Formula ipat Fit Least Squares | | 0,9967 0,0174 0,0135 20000
ipat Predictor Partition K 0,7481 0,1524 0,1316 20000
ipat Predictor 1  Bootstrap Forest | 0,9980 0,0137 0,0102 20000
ipat Predictor 2  Boosted Tree | 10,9980 0,0136 0,0103 20000

~ig 11: Fit Least Squares, Partition, Bootstrap
~orest and Boosted Tree analysis are the 4
nlatforms used in the type 3 analysis.

Source LogWorth PValue
Ip4_test_lin_lv_var 191,627 I | 0.00000
hp4_test lin_hv_var 17722 ] 0,00000
hp5_test_square_hv_var 29,626 [ 0,00000
Ip5_test square lv_var 24,992 | | 0,00000
Ip3_test_square_root_lv_var 21,143 - | 0,00000
hp3_test square root_hv var 20,646 | 0,00000
hp6_test_cube_hv_var godol ] oo 0,00000
hp1_test power10_root_hv var 7,952 ::l 0,00000
Ip6_test_cube_Iv_var 66930000 ¢ i i i 000000
Ip1_test power10_root_Iv var 4,205 [ 0,00006
wp6_test_cube_var 2,360 0,00436
wp3_test _square_root_var 2,195 : 0,00638
wp2_test_cube_root_var 2,031 : A 0,00930
Ip2_test_cube_root_Iv_var 1,700 [ 0,01996
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Fig 10: Around twenty diecriticality vs test data
relations are mathematically simulated: which
ones will JMP succeed to highlight as the most

beneficial to have the test limits adjusted ?

Fig 12: Tests selected by Fit Least Squares
jmp modeling for which a test Ilimit
adjustment according to ipat correlation, will
be the most beneficial: actually, most of them
are fitting only with upper or lower test
values.

Details about simulations and curve names in
‘curves_distinct_variability _percent.jmp’:

1 random distribution

+

21 curves with names that describe their generating:
-mathematical functions: linear, square, cube, powerl0,
square-root, cube-root, powerl0_root

-wp: whole part / Ip: lower part of the curve / hp: upper
part

-var: variability added on the mathematically generated
data

~ Bivariate Fit of ipat st1 ~ Bivariate Fit of ipat By test2 4 = Bivariate Fit of ipat By test3

> Predictors

-
* Model C
.. .,,_ ...“,. . : L et e I e oqecl Lomparison
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’ . 2 . ...o". .3 e -u ' ‘. ".‘ .o.
. . * . 08 . . « . 08 . e o H - -
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4 Measures of Fit for ipa

Predictor Creator 2 4 E B RSquare RASE AAE Freq
_ Pred Formula ipat Fit Least Squares | 5 5 5 0,0006 0,1490 0,1266 10000
s e T e, ipat Predictor  Partition - i g 0,0111 0,1482 0,1263 10000
| SRR ' ipat Predictor_1 BootstrapForestj 0,2896 0,1256 0,1069 10000
ipat Predictor 2  Boosted Tree ] i i i 0,0471 0,1455 0,1253 10000
e ) cammma s e | Fig 14: Comparison between the 4 models
A*Bi:zriate Fit of ipat B.y.t.e.s.t:“:.‘ — AvBi\Orzriate Fit of ipat Bytes:f.“‘. s A'Bi:rzriate Fit of ipat By:e:i.t'Q o US e d In the typ e 3 an aIySiS.
~ Bootstrap Forest for ipat
4 Column Contributions
Number
= Biv Term of Splits SS Portion
test3 4165 4,01422185 ] o1113
bi modal_test2 4007 3,36754259 | - ] 0,0933
test2 4108 3,16037764 I 0,0876
test1 4067 3,07462246 | 0,0852
. test7 4210 2,99320994 [ T 0,0830
_ _ L test9 4133 2,85744707 | N 0,0792
Fig 13:. Diecriticality and test values | i 4145 283173531 B 0,0785
test5 3983  2,8066752 | 0,0778
randomly generated test4 4028 2,76385541 N 0,0766
S — test8 4102 2,75970365 | N 0,0765
~ Bivariate Fit of ipat By test3 bi_modal_test] 3997 2,73515678 | 0,0758
1 . . . test10 3962 2,71202539 | 0,0752
R e Fig 15: Test3 Is correctly selected to have its
limits adjusted according to diecriticality thresholc
0,6 ~ Scatterplot 3D
= Fig 17: 3D scatterplot to visualize . e
the best high-side limit f 4
0,2 2
D S
-3 =L -1 0 1 2 3
test3
Fig 16: Bivariate analysis on test3 (type 2 analysis)
Test limit adjustment aims to minimize the following

three  ratios  (scatterplot 3D  used IN
‘only_test3 valSUPtomedian220322.jmp’):
o Yield loss generated by this new test limit (%)

o Percentage of not-rejected parts with higher
PAT scores

o Percentage of rejected parts with lower IPAT
scores

~ Bivariate Fit of ipat By test3 2

ipat

1

0.8

0,6

0.4

0,2

Fig 18: new test
o o limit for  high
; , ' | side test3

test3 2
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i i i ~/Oneway Analysis of diecriticali in_num ~ Graph Builder
JMP usage and results Type 2 bivariate analysis on real data Onwway Analyss of dieciicabty By hoin. P
. . ] ] ] ] ] ~ Bivariate Fit of diecriticality By UP207_opens_vdd_JCOMP 150 0 hbin_num
A ‘Failure probability vs UP test’ bivariate analysis is performed, for each test, In C o — I
. . . . _ * _E 59 183
order to see if an adjustment of test limits may be beneficial: S R . ' 8 —H K
. " . . , . _ . * £ 100
o Example on real data: on ‘Diecriticality vs 1test.jmp’, Fit Y by X of g . . —— Pt
. .- . . . = s g 11 EH9T  EE217
diecriticality by UP207_opens_vdd_JCOMP to be able to visualize how the < e s ' t . . B> mmos W2
o : : emalee, ° 50 s L £
test limits could be adjusted (search for an optimal method by a scatter 3D 'I.'I%ii.fi: % : AN — I — Tl
i . 0 o ofat = BNz EE149 237
plot previously shown on simulated data: test3). l M QSS . -
' UP207_opens_vdd_JCOMP ' L - e T O o B 153
nmme = m < Each Pair airs 34 154
. ) . hbin_num Student's t Tukey-Kramer B 35 160
0,05 0.05 I
JMP usage and results Type 3 multivariate analysis on real data _ _ _ 2 5
- . . . . e~ Fig 17: The bin #185 shows a different | T I I
Two multivariate analysis are interesting: the response is always diecriticality, but the factors may be: . . e . il ! N 1 !
. . AP . .. . o die failure_probability in mean than the other bins 0o/ Sl o el i o S N A I R
 The hard bins as a first step: a bin is fitting with a group of UP tests per specific function; a bin highlighted by a model (Ea_c h Pair Student’s t test) R SRR ARNRAA
will indicate a group of tests highly correlated with diecriticality : A : o i
« Or all the UP tests: the model will be able to detect the most correlated tests, not only a group of tests. ~ Model Comparison H19 1-8' bie_Failure_Probability mean is higher for
’ > Predictors the bin #185 -2 A study should be launched on the
. .. . . 4 Measures of Fit for diecriticality UP tests fitting with this bin number
Fallure prObablllty VS UP blnS anaIyS|S Predictor Creator 2 4 6 B RSquare RASE AAE Freq
On ‘RoomTestData.jmp’ file, two analysis are performed to highlight the bins that show the highest values of diecriticality: | Jo i ponn* soonmt ? ? ? ? | Cores srae Tt T
I I 1t I i diecriticality Prediction Formula Support Vector Machines | | | | 0,0070 240,93 23,792 4546 ~ Boosted Tree for diecriticality
© OnewaY An_a_IySI_S of dIECI‘.ItICallty By hbm—num diecriticality Predictor_1 an’fstrap Forest i | 0318 18194 12996 5511 4 Column Contributions
o I\/Iean(dlecrltlcallty) VS hbm_num Predicted diecriticality Neural 01| 00049 241,19 15667 4546 Number
Fig 19: Model comparison on Diecriticality_vs_28tests.jmp’ | (o .. .. oo s 65314977 B ootr
‘Failure probablllty vs UP testsfanaIyS|s: |~ Response diecriticality Upzoo_aﬁens_uji_mm_z 145 110?64886%5 0,0924
. . . . mgn . . UP454 _shorts_odds_RESET_SUP_B 101 109061714 ; 5 ; ; 0,0910
The training dataset contains values for 28 tests (‘Diecriticality _vs_ 28tests.jmp’). 4 Effect Summary UP207_opens_vdd_JCOMP 103 108510806 | 0,0905
By a Fit Model analysis, 7 tests among the 28 ones are highlighted as the most contributing ones for Source logWorth  PValue St e s e ool T B -
Die_Failure Probability, or as significant factors in the modeling of Die_Failure_Probability: a bivariate analysis between T o ———— L N R I yon Ve hrcrctiod BT N T N -
each of these tests and Die_Failure_Probability should be run, if it has not been already conducted in step 2 analysis, in | [PopeswsfSEs 0 e o UP3_opens vss PAD 20 % 882000507 . 00074
: .. — : : (= : " . : : —>hOrts_evens_ViEr_TEs1_ Rl L T T T r UP455_shorts_odds_JCOMP 91 784252073 | | | | | 0,0065
order to adjust the test limits (Type 2 analysis rerun on the analysis 3 result: ‘Fit Y by X of diecriticality’ script In UP9_opens vss VPP TEST FLA 19 A o L 0001091
‘Diecriticality_vs_28tests.jmp’). U450 sty s PAD.2 Ber | oo | Fig21: Key contributors listed by Boosted Tree model
As previously shown on simulated data, beyond this typical ‘Fit Model analysis, other machine learning algorithms are |:|g 20: Tests highlighted by the |:|t Model platform e
available in JMP. In particular, the algorithms based on decision trees provide a good interpretability on the results: Sig 29: Pareto of the
_partltlon anaIySIS (One deCISlon tree) A'B:::Oriate Fit ofdii::riticality By UP1_opens_vss PAD 2 A-B:;r::ate Fitofdiecritic.:alit):BY UP200_opens_vdd _PAD_2 Cogntribliltlons b teSt 0.8 80
-bootstrap forest or boosted trees (ensemble methods based on a forest of trees). et s (Boosted Tree m>c/) del) -
The key result of these analysis is the contribution from all the individual tests on die criticality, or a list of the tests the | | .. - Lo s
most correlated with the diecriticality, and each of these tests will be analyzed in a bivariate analysis with diecriticality to I m = __f"‘ﬂﬁ_
look for better test limits to take this correlation into account. In particular, a boosted tree analysis highlights 4 tests that 0w aw | as o s 0 0k o om o ”
explain 80% data variability (*ooosted_trees_contribution.mp’: a bivariate ‘diecriticality vs test data’ analysis could be |« -swrerddgeriaiy e e * cpeaersRtzer Wengeasasens
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Conclusion

A project between NXP and KLA is aiming to improve screening of the dies at wafer-inspection and UP steps, in order to increase
quality without adding a too high yield loss.

The first component of this project is constituted by an image classification model, designed by KLA, that is going to classify the defect
Images as Kkiller-defect, not-killer-defect and not-a-defect. Then, from this classification and from a weight that is attributed per class (10
for a killer defect, 3 for a not-killer one, and 0 for a nuisance), it Is possible to compute a failure probability per die, that takes into
account, for each die, the quantity of defects per class and per inspected layer.

The second component of the NXP-KLA project starts from this failure probability per die, that is also called die-criticality, and looks for
a correlation between die-criticality and UP test results: in the extent that die-criticality may correctly predict the UP results, UP test step
IS skipped for the dies with the highest die-criticality values which are the most-likely-to-fail at UP. The key question Is the adjustment of
the die-criticality threshold between a too high yield loss and a too low quality level. More downstream, for dies with die-criticality
smaller than the threshold, a correlation between die-criticality and UP test values can be revealed, and test limits may be
conseguently adjusted.

JMP Is the main tool used to set the die-criticality threshold and to adjust test limits for the tests which an adjustment is beneficial for.
This poster presented the key concerns faced in these analysis and how JMP helped to solve them. Other points could have been
presented, too, as missing data management, test collinearity, variability in the matching between hard bins and the test groups,...

A key subject on this project is also the interface that needs to be provided to the project-users. Indeed, these analysis are not
performed only once, but are re-run as soon as KLA updates its image classification models and as soon as new dies are inspected

and classified. An engineer may be continuously led to adjust die-criticality threshold or test limits. The analysis need to be automated
and piloted through a friendly interface.

A complex connecting to the NXP inspection and UP databases, very large data volumes, need for automation and interfaces, Is
conducting NXP to use many different platforms in parallel of IMP (Dataiku, Python, RStudio, RShiny, H20, ...), but JMP stays more
interesting to quickly design an analysis, validate assumptions, estimate a first threshold value on samples, ....
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