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• In the semiconductor manufacturing industry for automotive, parts are tested at each

manufacturing step to screen likely-to-fail parts. The further upstream the weak parts are

scrapped, the lower the scrapping cost will be. But testing has a cost as well.

• A recent project at NXP sought to avoid a manual defect classification of the defects

observed at the wafer inspection level. Defects are now classified as killer or not-killer

from a training image dataset, and a failure probability is assessed for each die.

• JMP allows a further step in correlating this failure probability to electrical tests with three

types of analysis.

o The first analysis assessed a failure probability threshold to limit the number of parts

tested to limit test cost.

o The second analysis highlighted the tests most correlated with failure probability.

o The final analysis used the list of highlighted tests to adjust test limits to screen the

parts with failure probability outliers.

• The analyses limit test cost while increasing quality.

Abstract Die-criticality definition

• In the NXP semiconductor manufacturing industry for automotive, 100% of the parts are inspected by inspection tools, at each layer

or step of their manufacturing. For each of the layers, from sampled defects observed in this inspection step and from SCAN

images taken on these defects, a manual classification is performed in 3 classes:

o Killer defects as they are most likely-to-lead to a failure for the parts on which this type of defects was observed;

o Not-killer defects with no failure probability for the parts with this type of defects;

o Lastly, nuisances when it appears that the observations are not a defect.

• Which is done on a sample of defects, may be extended to all the defects, with an automated classification that is going to use

these first sampled defects and their manual classification to build a classification model that will classify automatically all the

defects observed on all the dies in these 3 classes.

• Then, a failure probability per die, also called die-criticality, is computed from the count of these 3 types of defects per layer,

assuming more or less impact on the failure probability from a killer defect (weight equal to 10 in the total failure probability), a not-

killer defect (weight equal to 3) or a nuisance (null weight). Furthermore, the defects observed on one layer may be more impactful

than other ones on another layer: that is to say, a weight can be applied individually for each layer.

Die-criticality formula
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Formula 1: Die_Failure_Probability or Die_Criticality or IPAT (Inline Part AverageTest): 3 potential different names for a same definition
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Upstream and downstream screening Key question
• So after inspection and thanks to the classification model, 100% of the dies have an

estimated failure probability. At this step, if a threshold is set on the failure probability value,

the dies can be scrapped if their failure probability is higher than the failure probability

threshold. This upstream screening may avoid the next test that is the electrical test at die

level (unit probing or UP test), for the dies for which the failure probability is beyond the

threshold: that means a cost and time saving in electrical UP test step.

• But, if the threshold is incorrectly set, this screening can become a mess in term of yield loss

if it is set too low (a too high yield loss but potentially a more powerful screening of the likely-

to-fail dies) or in term of quality if it is set too high (more dies pass even if their failure

probability is high, which is fitting with a low yield loss, too). So, threshold setting needs to

meet the best typical compromise between the lesser yield loss versus the best quality level.

• So, the dies that need to be screened out after inspection (upstream screening), are the dies which there is a high insurance that

they will fail at UP test (downstream screening). A confusion matrix can be computed on the answer of the key question: can the

failure probability predict the result of the UP test ? Prediction, accuracy and F1_score metrics are also computed and the

searching for the best threshold will correspond to the searching for the best value of the chosen metric among these typical 3

ones.

• But UP test is not only dedicated to the screening of the defects, but it is also designed for detecting of every process shift. This

may affect a little the setting of the failure probability threshold.

The three different analysis

• Type 1 analysis / Univariate analysis

o The key question about the capability to predict the UP test result from the failure probability, is fitting from the first analysis:

this analysis will use a training dataset of dies for which failure probability and UP test result is known. And the goal is to set

the best threshold to meet the screening efficiency vs additional yield loss compromise. The dies with a failure probability

beyond this threshold will be inked (scrapped) before their UP test.

• Type 2 analysis / Bivariate analysis

o If the dies passed the inking step, the goal is still to improve the screening at UP test. This is possible from a failure

probability vs UP bins, because a bin is fitting with one test failing in the bin number group of tests, or better, failure

probability vs UP Test data correlation result. Test limits may be adjusted from this bivariate analysis result.

• Type 3 analysis / Multivariate analysis

o Now, by designing a multivariate analysis between failure probability and all the UP tests, a multivariate limit may be

implemented, in the extent that this capability can be implemented on the UP testers. Anyway, this type of analysis may

highlight the key tests for which the limits may be strongly beneficially adjusted: in these terms, type 3 analysis appears as a

preliminary analysis to perform before type 2 analysis, highlighting the key tests to use in the analysis 2, instead of doing it

on all the tests.

o The data analytics methods in multivariate, between die failure probability and test values, available in JMP, are the

correlation analysis to highlight linear correlation, or machine learning algorithms, as decision trees, bootstrap forest or

boosted trees for a good interpretability of the results, or neural networks or support vector machines when a model is

looked for, with only a weak understanding of which tests are contributing the most in the model. Since a screening

improvement is aimed by adjusting the limits of the tests the most correlated with die failure probability, only the methods

providing a good interpretability will be used (decision trees, bootstrap forest or boosted trees).

Fig 1: Scheme of the full project: data flow and analysis
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JMP usage and results _ Type 1 analysis / Univariate analysis

Analysis #1 is performed in three steps:

Step #1: Failure probability distribution and cumulative distribution:

• The training dataset is fitting with 9 lots of dies, tested at room

temperature at unit probing: ‘RoomTestData.jmp’.

• The cumulative distribution of Failure Probabilities or Die Criticalities

estimate, upper 95% and lower 95% values, is obtained as

following:

o Die criticality quantiles computed from the

‘RoomTestData.jmp’ table by step of 0.001% (estimate, lower

and upper at 95% confidence level):

‘DieCriticality_Quantiles.jmp’

o From the ‘DieCriticality_Quantiles.jmp’ table, plotting of the

Cumulative distribution of Failure Probabilities estimate, upper

95% and lower 95% values.

Step #2: Confusion Matrix

• The training dataset is fitting with the same 9 lots of dies, tested at

room and hot temperatures at unit probing:

‘ConfusionMatrixTable.jmp’

• Beyond the confusion matrix metrics, net-loss and gross-loss are

computed to help in failure-probability threshold setting:

o Net-loss is fitting with the additional yield due to the screening

on failure-probability threshold, beyond the typical UP yield

loss.

o Gross-loss is the total yield loss due to the screening on

failure-probability threshold

• Precision vs Recall: an improvement is expected on UP test, so the

focus is not on the parts that were rejected (FN), but on the parts

that passed (FP): so, Precision is a key metric, more important than

Recall. A weighting F1_score could be used, with Beta = ½, to

express that Precision should be twice more important than Recall.

Step #3: Failure probability threshold selection

• Precision is a key metrics. Unfortunately, a high precision can be

linked to a high net-loss, which is not always possible: a

compromise needs to be found between precision and net-loss.

failure probability threshold net_loss (%) = FP / (FN + TN)gross_loss (%) = (TP+FP)/(FN+TN)

30,689 0,049 0,12

Fig 3: Cumulative distribution of Die_Criticality

estimate, upper 95% and lower 95%

Fig 4: Confusion matrix: plotting of the typical metrics

Fig 5: Precision vs yield loss (net or gross losses)

Fig 2: Die_Criticality distribution

Fig 6: Confusion matrix: is diecriticality a good 

predictor of UP test results ?

Fig 7: Precision, net_loss and gross_loss vs 

diecriticality
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Fig 8: Confusion matrix (number of dies)

estimated for a specific threshold choice where

net_loss and gross_loss values are accepted

by the business (respectively 0.05% and 0.1%)

Fig 9: Gross and net loss values for the threshold chosen
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Reminder: Confusion Matrix _ The metrics

Gross_loss = ipat_fail / total_number_of_not_inked_parts = (TP+FP)/(FN+TN)

Net_loss = up_pass1/ total_number_of_not_inked_parts = FP / (FN + TN)

• Precision

Out of all the positive predicted, what percentage is truly positive.

The precision value lies between 0 and 1.

• Recall

Out of the total positive, what percentage are predicted positive. It is the same as TPR (true positive rate).

• F1 Score

It is the harmonic mean of precision and recall. It takes both false positive and false negatives into

account. Therefore, it performs well on an unbalanced dataset.

F1 score gives the same weightage to recall and precision.

• Weighted F1 Score

There is a weighted F1 score in which we can give different weightage to recall and precision. As

discussed in the previous section, different problems give different weightage to recall and precision.

Beta represents how many times recall is more important than precision. If the recall is twice as important

as precision, the value of Beta is 2.

TP: True Positive

FP: False Positive

TN: True Negative

FN: False Negative

Additional definitions used in this project: gross_loss and net_loss

Net-loss is fitting with the additional yield due to the screening on failure-probability threshold,

beyond the typical UP yield loss.

Gross-loss is the total yield loss due to the screening on failure-probability threshold.

Formulas 2: Confusion matrix metrics

Formulas 3: Gross loss and Net loss
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JMP usage and results _ Type 2_bivariate and type 3_multivariate analysis on simulated data
In order to design the analyzis

and to be sure to cover any type

of diecriticality vs UP test

relationship, test and diecriticaity

values are simulated and used in

a first step.

Simulation method 1:

‘curves_distinct_variability_per

cent.jmp’

Around twenty curves of test data

are mathematically simulated from

incremented failure-probability

values to see if JMP succeeds to

highlight the tests for which test

limit adjustment would be more

beneficial according to their

correlation with die failure

probability. As a conclusion, the

study highlights the need to

implement a transformation on the

test data to focus only on the

upper and lower test values and

their correlation with die_failure

probability.

Simulation method 2:

‘curves_random_diecriticality.j

mp’

Another simulation method is

used, to be closer to the failure-

probability shape.

A similar conclusion than with

method 1 is obtained about the

need for transformations.

However, test 3 seems correctly

highlighted by Bootstrap Forest

and Boosted Tree analysis.

Fig 10: Around twenty diecriticality vs test data

relations are mathematically simulated: which

ones will JMP succeed to highlight as the most

beneficial to have the test limits adjusted ?

Fig 12: Tests selected by Fit Least Squares

jmp modeling for which a test limit

adjustment according to ipat correlation, will

be the most beneficial: actually, most of them

are fitting only with upper or lower test

values.

Fig 11: Fit Least Squares, Partition, Bootstrap

Forest and Boosted Tree analysis are the 4

platforms used in the type 3 analysis.

Details about simulations and curve names in

‘curves_distinct_variability_percent.jmp’:

1 random distribution

+

21 curves with names that describe their generating:

-mathematical functions: linear, square, cube, power10,

square-root, cube-root, power10_root

-wp: whole part / lp: lower part of the curve / hp: upper

part

-var: variability added on the mathematically generated

data

Fig 13: Diecriticality and test values

randomly generated

Fig 14: Comparison between the 4 models

used in the type 3 analysis.

Fig 15: Test3 is correctly selected to have its

limits adjusted according to diecriticality threshold

Fig 16: Bivariate analysis on test3 (type 2 analysis)

Simulation method 1 Simulation method 2

Test limit adjustment aims to minimize the following

three ratios (scatterplot 3D used in

‘only_test3_valSUPtomedian220322.jmp’):

o Yield loss generated by this new test limit (%)

o Percentage of not-rejected parts with higher

IPAT scores

o Percentage of rejected parts with lower IPAT

scores

Fig 17: 3D scatterplot to visualize

the best high-side limit for test3

Fig 18: new test

limit for high

side test3
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JMP usage and results _ Type 2_bivariate analysis on real data
A ‘Failure probability vs UP test’ bivariate analysis is performed, for each test, in

order to see if an adjustment of test limits may be beneficial:

o Example on real data: on ‘Diecriticality_vs_1test.jmp’, Fit Y by X of

diecriticality by UP207_opens_vdd_JCOMP to be able to visualize how the

test limits could be adjusted (search for an optimal method by a scatter 3D

plot previously shown on simulated data: test3).

Two multivariate analysis are interesting: the response is always diecriticality, but the factors may be:

• The hard bins as a first step: a bin is fitting with a group of UP tests per specific function; a bin highlighted by a model

will indicate a group of tests highly correlated with diecriticality

• Or all the UP tests: the model will be able to detect the most correlated tests, not only a group of tests.

‘Failure probability vs UP bins’ analysis:

On ‘RoomTestData.jmp’ file, two analysis are performed to highlight the bins that show the highest values of diecriticality:

o Oneway Analysis of diecriticality By hbin_num

o Mean(diecriticality) vs hbin_num

‘Failure probability vs UP tests’ analysis:

The training dataset contains values for 28 tests (‘Diecriticality_vs_28tests.jmp’).

By a Fit Model analysis, 7 tests among the 28 ones are highlighted as the most contributing ones for

Die_Failure_Probability, or as significant factors in the modeling of Die_Failure_Probability: a bivariate analysis between

each of these tests and Die_Failure_Probability should be run, if it has not been already conducted in step 2 analysis, in

order to adjust the test limits (Type 2 analysis rerun on the analysis 3 result: ‘Fit Y by X of diecriticality’ script in

‘Diecriticality_vs_28tests.jmp’).

As previously shown on simulated data, beyond this typical ‘Fit Model’ analysis, other machine learning algorithms are

available in JMP. In particular, the algorithms based on decision trees provide a good interpretability on the results:

-partition analysis (one decision tree)

-bootstrap forest or boosted trees (ensemble methods based on a forest of trees).

The key result of these analysis is the contribution from all the individual tests on die criticality, or a list of the tests the

most correlated with the diecriticality, and each of these tests will be analyzed in a bivariate analysis with diecriticality to

look for better test limits to take this correlation into account. In particular, a boosted tree analysis highlights 4 tests that

explain 80% data variability (‘boosted_trees_contribution.jmp’: a bivariate ‘diecriticality vs test data’ analysis could be

launched on these main tests, at least as a first step.

Support Vector Machine and Neural Network algorithms are also available in JMP to look for a model between

diecriticality and test values, but the results will not be useful to highlight the tests for which an adjustment of the limits will

be beneficial.

JMP usage and results _ Type 3_multivariate analysis on real data

Fig 18: Die_Failure_Probability mean is higher for

the bin #185 → A study should be launched on the

UP tests fitting with this bin number

Fig 17: The bin #185 shows a different

die_failure_probability in mean than the other bins

(Each Pair Student’s t test)

Fig 19: Model comparison on ‘Diecriticality_vs_28tests.jmp’

Fig 20: Tests highlighted by the Fit Model platform

Fig 21: Key contributors listed by Boosted Tree model

Fig 22: Pareto of the

contributions by test

(Boosted Tree model)

Fig 23: Bivariate

‘diecriticality vs test

data’ analysis for 4

tests



Yield and Quality Issue Solving by Correlating Optical Inspection Step Results With Electrical Tests

A project between NXP and KLA is aiming to improve screening of the dies at wafer-inspection and UP steps, in order to increase

quality without adding a too high yield loss.

The first component of this project is constituted by an image classification model, designed by KLA, that is going to classify the defect 

images as killer-defect, not-killer-defect and not-a-defect. Then, from this classification and from a weight that is attributed per class (10 

for a killer defect, 3 for a not-killer one, and 0 for a nuisance), it is possible to compute a failure probability per die, that takes into 

account, for each die, the quantity of defects per class and per inspected layer.

The second component of the NXP-KLA project starts from this failure probability per die, that is also called die-criticality, and looks for 

a correlation between die-criticality and UP test results: in the extent that die-criticality may correctly predict the UP results, UP test step 

is skipped for the dies with the highest die-criticality values which are the most-likely-to-fail at UP. The key question is the adjustment of 

the die-criticality threshold between a too high yield loss and a too low quality level. More downstream, for dies with die-criticality 

smaller than the threshold, a correlation between die-criticality and UP test values can be revealed, and test limits may be 

consequently adjusted.

JMP is the main tool used to set the die-criticality threshold and to adjust test limits for the tests which an adjustment is beneficial for. 

This poster presented the key concerns faced in these analysis and how JMP helped to solve them. Other points could have been

presented, too, as missing data management, test collinearity, variability in the matching between hard bins and the test groups,...

A key subject on this project is also the interface that needs to be provided to the project-users. Indeed, these analysis are not 

performed only once, but are re-run as soon as KLA updates its image classification models and as soon as new dies are inspected

and classified. An engineer may be continuously led to adjust die-criticality threshold or test limits. The analysis need to be automated 

and piloted through a friendly interface.

A complex connecting to the NXP inspection and UP databases, very large data volumes, need for automation and interfaces, is 

conducting NXP to use many different platforms in parallel of JMP (Dataiku, Python, RStudio, RShiny, H2O, …), but JMP stays more 

interesting to quickly design an analysis, validate assumptions, estimate a first threshold value on samples, ….
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