Using Flawed Daita Creatively with JMP:

 What To Do When Your Measurements Don't Measure U
Introduction

In Psychometrics, relatively little research has been conducted on the effectiveness of individual test items that are chosen to reflect specific student skills. In our research towards the development of a new elementary mathematics assessment, a pilot study was conducted in first through fifth grades evaluating the efficiency of our new assessment. DIBELS ${ }^{\circledR}$ Math, in capturing student performance.
-Elizabeth N. Dewey, Senior Research Analyst / Statistician — Dynamic Measurement Group, Inc., Eugene, OR 97401

Issues with the Data

Skipping and Missing Data

Students were asked to complete the worksheet in order, but skipping impacted the interpretability of the original analysis.

Figure 1. Pie charts organized like student worksheets illustrate patterns of skipping, which limited inference tems 5 and 10 were often skipped in third grade.

Figure 3. Median test for differences within skill sets returns significant results.

Figure 2. The Third Grade worksheet and skill set chart.
Differences within Skill Sets
Students didn't attempt every item, thus evaluation of the items that appeared later were inconclusive. Additionally, significant differences between the items that we were able to evaluate suggested that our skill sets didn't function as intended. The question became:

What skills are we measuring, and how do we tell if our measurements are reliable? We couldn't answer this question.

Methods of Exploration

Exploratory Factor Analysis (EFA)

 and Analysis of Means (ANOM)The EFA components form a model that relates the skill sets to a latent immeasurable overall skill (algebraic computation) that influences responses on the test items (Child, 1990). Percent-scores were used for analysis, and factors were retained based on commonly used guidelines: positive eigenvalues, percentage of variance explained, a scree test, the size of the residuals, and interpretability (Nunnally \& Bernstein, 1994, Kim \& Mueller, 1978, Jolliffe, 2002).

Figure 4. An analysis of means plot ranks the difficulty of factors.

DIBELS Math Pilot Study Third Grade Exploratory Factor Analysis Results

Skill set	Rotated Factor Loadings by Factor								Communality Estimates	
	1		2		3		4			
	Form A	Form B	A	B	A	B	A	B	A	B
1	-. 02	-. 11	. 80	. 81	. 01	-. 07	-. 01	. 14	. 62	. 62
2	. 07	. 18	. 65	. 70	. 14	-. 07	-. 03	. 00	. 54	. 58
3	. 84	. 77	-. 08	. 05	-. 04	-. 02	. 08	. 06	. 69	. 65
4	. 84	. 79	-. 05	. 04	. 04	-. 13	. 02	. 22	. 70	. 73
5	. 65	. 82	. 11	. 04	. 16	. 03	-. 18	-. 05	. 52	. 68
6	. 10	. 14	. 14	. 11	. 35	. 19	. 47	. 54	. 61	. 54
7	. 05	. 09	. 06	. 04	. 08	-. 03	. 76	. 83	. 69	. 74
8	. 05	-. 04	. 19	. 07	. 64	. 27	-. 21	. 20	. 48	. 16
9	. 06	. 02	-. 11	-. 10	. 84	. 80	. 18	. 17	. 81	. 73
Factor Variance	. 29		. 21		. 19		. 19		Model Variance = . 72	

Note. $\mathrm{N}=500$. Scores were adjusted for items attempted at the student level. Factor loadings in bold represent large weights. Communality estimates in bold represent high reliability. Factor variance is the amount of variance explained in the model by the factor. Models variance represents the total variance explained by the model. Factor reliability estimates (Cronbach's
Alpha) ranged from . 58 to .66

Results

New Categories and Skill Sets

Names were given to each factor related to the skill sets and ordered by difficulty:

- Factor 2 - Moderate Multi-Number Addition Proficiency
- Skill Set 1 (add two two- or three-digit numbers with renaming from ones to tens and tens to hundreds)
- Skill Set 2 (add three two- or three-digit numbers with renaming from ones to tens and from tens to hundreds). - Factor 1 - Moderate Multi-Digit Subtraction Proficiency
- Skill Set 3 (subtract a two- or three-digit number from a three-digit number with renaming from tens to ones and hundreds to tens)
- Skill Set 4 (subtract a two- or three-digit number from a three-digit number with a zero in the tens column with renaming from tens to ones and hundreds to tens)
- Skill Set 5 (subtract a three- or four-digit number from a four-digit number with or without renaming)
- Factor 4 - Moderate Two-Digit by One-Digit Multiplication Proficiency
- Skill Set 6 (multiply a one-digit number by a two-digit number without renaming).
- Skill Set 7 (multiply a one-digit number by a two-digit number with renaming)
- Factor 3 - Advanced Two-Digit Dividend Division Proficiency
- Skill Set 8, form A (divide by a one-digit divisor resulting in a one-digit quotient and no remainder)
- Skill Set 9 (divide by a one-digit divisor resulting in a one-digit quotient and remainder)

Discussion

Reliability of the Analysis

Similar skill sets from both forms successfully loaded onto the same factor, suggesting that items across forms maintain strong underlying relationships within the latent construct. The lone exception was skill set 8 , form B. While items were randomly assigned, form A items contained two-digit dividends and form B items contained one-digit dividends, which were notably easier; the EFA suggested that the items on form B were a different skill set. Reliability is strong across factors indicating good model fit, and reliability for skill sets is moderate to strong suggesting the skill sets are well-aligned within the model.

Next Steps

Items within skill sets were categorized into subgroups based on the alignment to the Common Core State Standards for Mathematics, and new definitions were created to generate new items. These methods were repeated for all other grades, and a hierarchy of algebraic computational skill was created This quantitative approach provided the foundation for developing a new mathematics assessment in early childhood education: DIBELS Math.

References

Child, D. (1990). The essentials of factor analysis (2nd ed.). London: Cassel Educational Limited.
Jolliffe, I.T., (2002). Principal Component Analysis (2nd ed.). New York: Springer-Verlag New York, Inc.
Kim, J. O., \& Mueller, C. W. (1978). Factor analysis: Statistical methods and practical issues. Newbury Park, CA: Sage Nunnally, J. C., \& Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. Stevens, J. (1986). Applied multivariate statistics for the social sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.

Acknowledgement
Thanks to DMG for handing me an inte
four months as I worked on it out loud.

