
Introduction 
A technology team at Bank of America wished to use historical data to predict the 
performance of new projects based on the combination of the applications being tested for 
programming bugs. This team is tasked with designing and running test scripts to identify 
bugs so that they can be corrected prior to putting any applications with updates or new 
functionality back into production. Data Analytics & Modeling supports this team and was 
asked to develop the predictive model.  

The objective of the analysis was two-fold: (1) initially estimate count and type of bugs and 
the timeframe in which they would likely to be detected, and (2) predict whether a project 
already underway could be completed on-time based on issues which had already been 
identified and the expected length of time to resolve them.  

Methods Abandoned – Why Regression Failed 
After a cursory examination of the data, traditional regression techniques were not deemed 
viable for three distinct reasons:  

1. Potential predictors were all nominal variables with multiple levels – the technology 
team managed 40+ applications; other potential predictors had at least four levels each.  

2. All predictors were very unevenly distributed amongst their levels – 69% of bugs came 
from just 10% of the applications due to the relative complexity of these applications 
and the frequency of upgrades. This uneven distribution of data would preclude the use 
of interaction terms in a regression model, despite their known influence.  

3. Dependent variables were time (in cycles) to detect and to correct a bug, respectively. 
Neither was expected to be a simple linear combination of the predictor variables. 

Methods Used – Survival, Partition and Distribution Analysis 
The model for time to correct a bug was addressed first. Since this question can be viewed 
as a form of survival analysis (i.e., how long will the problem persist before it is resolved), 
exploratory analysis started with the JMP® Reliability and Survival platform. The 
distribution for the sample population of approximately 2800 bugs was heavily skewed. The 
overall average close time was approximately 2 cycles, but if an issue was still open after 
the first cycle, it would take an average additional 3 cycles to close. 

This behavior suggested fitting the data to a Weibull distribution, frequently used in survival 
modeling. However, the response clearly varied based on the application being tested and 
several other key predictors.  Therefore, it was not viable to build a prediction model based 
on a single Weibull distribution.  

Because of its flexibility and ability to handle interactions with unevenly distributed data, the 
Partition Model platform (Figure 1) was used to segment the data into appropriate “peer 
groups”. An initial analysis, based strictly on the “best” splits, resulted in some odd results 
due to the significant gaps in the data. A more structured approach was subsequently used 
based on the available candidate report statistics and subject matter expertise.   

The key to success was not allowing previous predictors to be reintroduced after creating a 
partition using a new predictor. This forced a “hierarchical” split resulting in 18 separate 
“peer” groups based on 3 predictor variables. (See Figure 1 below). 

After saving the partition leaf numbers to the data set, the Distribution platform was 
executed using the leaf number as a BY variable. The parameter estimates and their 
confidence intervals were saved to a combined data table for further analysis. As part of the 
model diagnostics, confidence intervals for the Weibull coefficients were compared for 
overlap to ensure that no spurious splits had been made during the partition process.  

Partition and distribution analyses were also used to model the time to detect a bug. A 
different set of predictors resulted from this partition analysis, but the Weibull distribution 
was again the best fit distribution. The two sets of partition means and Weibull coefficients 
were used in computations in a separate custom analysis tool.  (See section at right). 

Results 
Since each testing initiative is a unique combination of applications, software modifications and test scripts, 
a highly precise model was never anticipated.  Rather, the desired outcome was the ability to distinguish 
between initiatives where the bugs could be resolved quickly and easily (Figure 2) vs. an initiative where 
bug resolution would be expected to drag out (Figure 3). Similarly, it was necessary to estimate whether 
most bugs could be detected within the first few cycles of an initiative vs. a more extended period. By 
incorporating the results of these two complementary models into the custom analysis tool described 
below, the dual objectives of the analysis were achieved. 

How the Weibull Models were Used in a Custom Analysis Tool to Make Predictions 
• The initial estimate for the expected number and type of bugs is based on the applications being tested 

and their historical averages and distributions by type. 

• To assign when such a future bug would be expected to occur in the process, a random number between 
0 and 1 is generated for each period.  

• The random number is normalized by dividing by the expected number of bugs for that 
application. 

• If the normalized random number is less than the probability predicted by the appropriate Weibull 
distribution, then a bug is assigned for that period; otherwise no bug is assigned. 

• Actual “detected on” dates are used for bugs which have already been identified. 

• The time to close a predicted future bug is estimated based on the mean closure time for the partition 
group into which it falls. 

• The  estimated time to close a currently open bug is estimated as (t + L) based the conditional survival 
probability1: 

   [ S(t) – S(t + L)] / S(t)   where 

• The survival functions S(t) and S(t + L) are evaluated using the appropriate Weibull distribution 

• t is the current time period  

• L is additional time needed to ensure that the estimated conditional probability is barely greater 
than a specified  threshold probability limit (e.g., 0.95  or 0.99)  

• The closed, open, and predicted future bugs, combined with their actual or projected closure times, are 
used to generate a graphical view of expected performance by application throughout the entire project 
period. This can be used to (1) estimate resource needs while still in the planning stages of a project or 
(2) give early warning of  the possibility of missing a critical deadline for those projects already underway. 
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Figure 1. Depiction of First Two Steps of JMP ® Partition Analysis for # Cycles to Fix a Bug  
(NOTE: All statistics and values shown in the figure are for illustrative purposes ONLY and are not 
based on actual data) 

All Bugs (3000) 
Mean = 2.1 

cycles 

App Group A  
(2000 bugs) 
Mean = 1.3 

cycles 

App Group A1 
(1600 bugs) 
Mean = 1.1 

cycles 

App Group A2 
(400 bugs) 
Mean = 2.2 

cycles 

App Group B 
 (1000 bugs) 
Mean = 3.8 

cycles 

Final analysis involved 17 steps (18 groups) 
 

Application plus two additional predictors  
were used as predictor variables 

Figure 2. Distribution Analysis for  Time in Cycles to Close (Leaf 1) with Weibull Distribution Overlay (in Red)  
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Figure 3. Distribution Analysis for  Time in Cycles to Close (Leaf 17) with Weibull Distribution Overlay (in Red) 
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