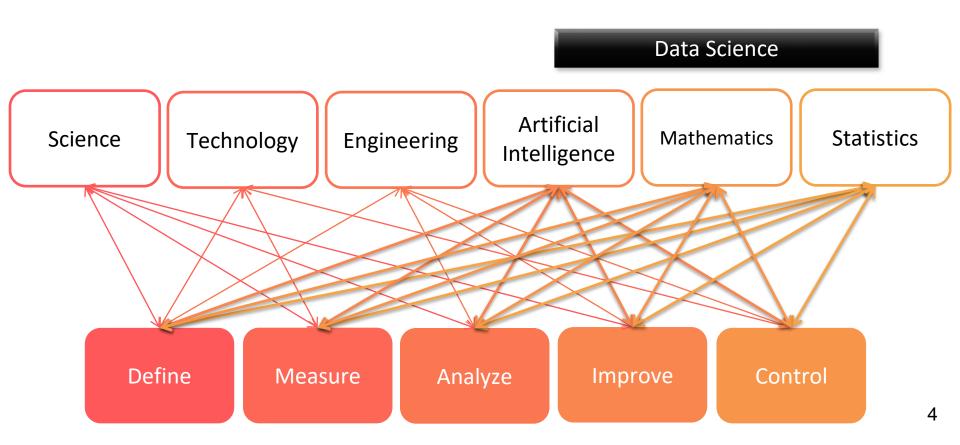
STEAMS and DMAIC Curriculum for Data Scientists Using JMP 16©

Mason Chen, Charles Chen, Patrick Giuliano

Stanford Online High School STEAMS Club

Overview

- Opportunity statement the traditional Six Sigma DMAIC process combined with the interdisciplinary STEAMS methodology can help data scientists make greater contributions in the field of Big Data
- Project objective develop a Six Sigma data science training curriculum for high schoolers to industry professionals by mapping JMP 16
 platforms onto DMAIC phases


Case Study: Mason Chen's Learning Experience

- 2015 Big Data Statistics Summer Camp (10 years old)
- 2016 May IBM SPSS Statistics Certified (10 years old)
- 2016 August IASSC Minitab DMAIC Black Belt Certified (11 years old)
- 2016 August ASQ/ASA/JMP Joint Annual **STEAMS** Speaker (11 years old)
- 2016 October IBM Modeler Data Mining Certified (11 years old)
- 2017 April IEOM Rabat DMAIC EV3 Robotics Best Paper Award (11 years old)
- 2017 April IEOM Rabat Java Best Paper Award (11 years old)
- 2017 August Found STEAMS Organization (12 years old)
- 2018 October JMP USA DS Best Contributed Paper Award (13 years old)
- 2019 Youngest IEEE Presenter, JMP Principal Component & Clustering (13 years old)
- 2020 JMP STIPS Certification- Data Mining (14 years old)
- 2020 Learning JMP DOE Cert Exam (15 years old)
- 2021 March JMP Europe Discovery Summit Best Student Poster Award (15 years old)
- 2021 Learning JMP 16 Text Mining and Time Series Forecast (15 years old)
- 2021 June Stanford Summer Course: Linear Algebra (16 years old)
- 2021 August Stanford OHS Data Science R Course (16 years old)
- 2021 August JMP 16_Based Six Sigma Data Science Program (16 years old)
- 2021 September R-Based Six Sigma DMAIC Statistics Curriculum (16 years old)

2019 ASA JSM Denver Conference at Rocky Mountain Summit (12,005 ft)

Connecting STEAMS and DMAIC

Data Science JMP 16 Platforms

- Map JMP Platforms to Data Science Certification Program
- Based on Big Data 3Vs: Volume, Variety, and Velocity.
- Interactive Data Visualization

Graphical Builder

Text Mining

Explorer

Tabulate (Pivot Table)

Join Tables

Tables

- Neural Network
- Partition Tree
- Time Series & Forecast

Predictive Modeling

- Explore Outliers
- Explore Missing Values
- Explore Patterns

Screening

- Multivariate
- Principal Component Analysis
- Discrimination

Multivariate Methods

- Hierarchical Clustering
- K Means Clustering
- Cluster Variable

Clustering

- Process Goal Plot
- Control Builder
- Model Driven SPC

Quality Method

- C&E Fishbone
- Pareto
- Distribution

Problem Solving

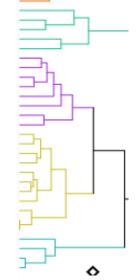
JMP 16 Data Science Statistics

- DMAIC quality and reliability measurement systems analysis (MSA), process capability, statistical process control (SPC), lot acceptance sampling
- DFSS design modeling analysis of variance (ANOVA), regression, design of experiment (DOE), Monte Carlo simulation, robust tolerance
- Linear algebra eigen analysis, principal component analysis (PCA), factor analysis, singular value decomposition (SVD)
- Data mining classification, neural network, partition trees, random forest
- Time series and forecasting time series decomposition, autoregressive integrated moving average (ARIMA) models, forecasting
- **Text mining** stemming, recoding, tokenization, phrases
- Survey and consumer research sampling plans, choice model, MaxDiff model, marketing segmentation

Six Sigma DMAIC Data Science Curriculum

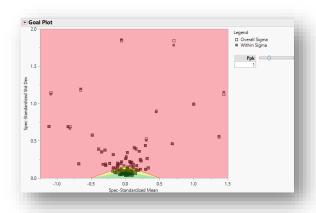
JMP 16 Platforms	A. Regular DMAIC BB	B. Data Mining	C. Text Mining and Categorial
LSS BB 03 Statistics	Basic Statistics, Distributions, Prospective Sample Size and Power, Sample Size Explorer	Basic Data Scier	nce Statistics
LSS BB 04 JMP Introduction	Discovering JMP Book	Using JMF	P Book
LSS BB 09 Measure M2 MSA	MSA Design, Variability and Attribute Gauge Charts,		
LSS BB 10 Measure M3 PCA	Process Capability	Quality Utility, Process History Explorer	
LSS BB 13 Analyze A2	Essesstial Graphing Book Part I, Pareto Chart, Cause and Effect Diagram	Essential Graphing Book Part II	Essential Graphing Book Part II, FMEA Plus
LSS BB 14 Analyze A3	Bivariate, Oneway, Continegency, Tabulate, Modeling Utilities, Fit Model (LS, Stepwise), Matched Pairs	Tabulate Plus, Modeling Utilities Plus, Multivariate Correlations, Principal Componets, Discriminat, Partial Least Square, Factor Analysis, Multi Dimensional Scaling, Item Analysis, Hierarchical Clustering, K Means Clustering, Normal Mixture Clustering, Cluster Variables	Tabulate Plus, Text Explorer, Modeling Utilities Plus, Multiple Correspondence, Two-Way Hierarchical Clustering, Latent Class Clustering, Categorical Response
LSS BB 16 Improve I1	Prediction Profiler	Custom Profiler, Excel Profiler, Multiple Factor Analysis	Choice Design, Choice Model, MaxDiff Design, MaxDiff Model,
LSS BB 18 Improve I3	Custom DOE, DSD, Simulator	Neural Network, Partition,Time Series Analysis and Forecast, Response Screening, Process Screening, Predictor Screening	Neural Network, Partition
LSS BB 20 Control A1 SPC	Control Chart Builder	Multivariate and Model Driven Control Chart	

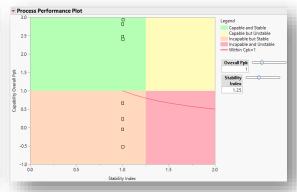
Define Phase

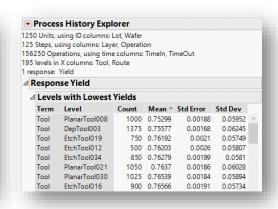

Overview

- Problem statement (voice of the customer, voice of business)
- Project goal and objective (critical to quality)
- Success criteria (specification limits)
- Team building (forming, storming, norming, performing)

JMP 16© platforms


- Build JMP database query builder
- Data visualization graph builder, Pareto plot, bubble plot, variability plot
- Data mining clustering, multivariate, and partition methods
- Marketing Research: Consumer Research


% Nat. Bran Oats & Honey at. Low Fat Granola w raisins ond Crunch w Raisins Premium Raisin Bran laisin Bran Two Scoops Fibre Dates, Walnuts, and Oa



Measure Phase

 Several JMP Platforms can help visualize or/and summarize Process Capability and Process Stability Index of larger scale MFG production

Goal Plot

How well variables are conforming to specification limits

Process Performance Plot

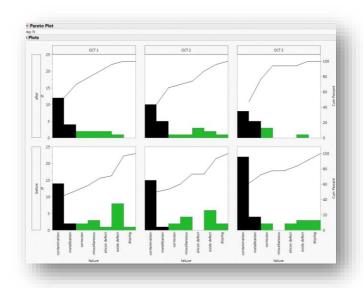
Divided based on process capability and stability

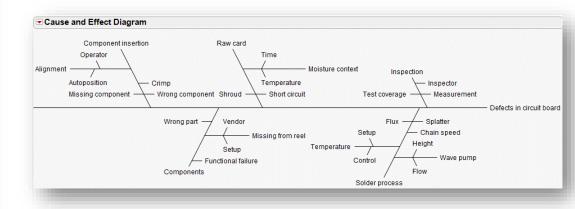
Process History Explorer

Helps identify factors associated with poor yield

Analyze Phase

Overview


- Root cause analysis
- Summarize complex datasets
- Visualize and discover patterns and insights
- Isolate and screen for important factors


JMP 16c platforms

- Root cause analysis fishbone diagram
- Table summary tabulate
- Text mining text explorer
- Multivariate methods multivariate correlation, factor analysis
- Clustering hierarchical clustering, k-means clustering, cluster variables
- Survey and consumer research categorical response analysis

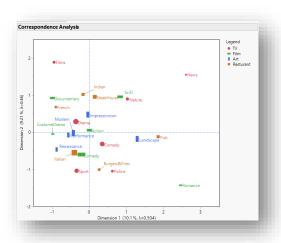
Analyze: Identifying the Root Cause

Pareto plot

Highlights the severity of different problems

Fishbone diagram

Brainstorm and organize sources of the problem


Analyze: Data Summarization

		sex									
			Fen	nale		Male					
		marital status				marital status					
		Married Single			Ma	rried	Single				
		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev		
country	size	age	age	age	age	age	age	age	age		
American	Large	33.6	8.107	41.0		34.7	3.931	32.0	6.265		
	Medium	31.4	5.827	29.0	9.258	31.3	5.413	32.1	11.05		
	Small	31.0	5.657	29.0	9.539	31.8	4.813	26.5	6.455		
European	Large	34.0	7.071	28.0				26.0			
	Medium	31.0	5.06	28.7	5.508	32.3	5.62	31.0	10.13		
	Small	29.8	6.611	28.0	1.414	33.8	4.381	25.7	2.517		
Japanese	Large	25.0				32.0					
	Medium	30.5	4.993	28.0	3.071	32.3	3.878	27.4	5.016		
	Small	29.6	4.251	31.1	9.562	29.8	5.357	28.7	4.739		
country											
American		31.9	6.452	30.0	9.115	32.6	4.919	31.0	8.179		
European		31.0	5.612	28.3	3.559	33.3	4.608	28.4	7.328		
Japanese		29.8	4.54	30.1	8.113	30.9	4.822	28.3	4.781		

tool· chamber· custom· power· leak· cabl· water· gas· check· damag· line· connect· replac· system· suppli· box· amatheater· ac· side· valv· pump· safeti- alarm·

Tabulate

Descriptive statistics and pivot tables

Text Explorer

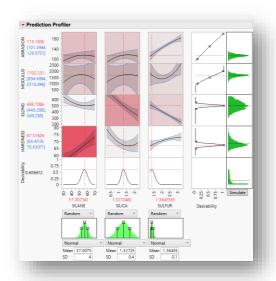
Analyzes patterns between unstructured text

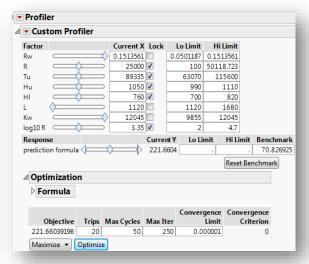
Multiple Correspondence Analysis

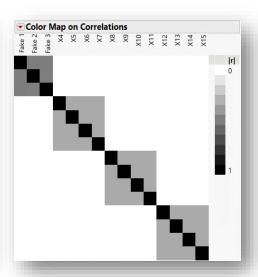
Associations between categorical levels

Improve Phase

Overview


- Build predictive models
- Design new experiments
- Improve production quality


JMP 16c platforms

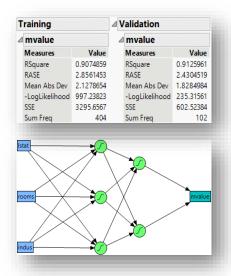

- Predictive modeling prediction profiler, custom profiler
- Design of experiment (DOE) custom DOE, mixture DOE, group orthogonal supersaturated designs, augmentation
- Specialized models neural network, partition model, response screening, process screening, predictor screening
- Survey and consumer research choice model, MaxDiff design

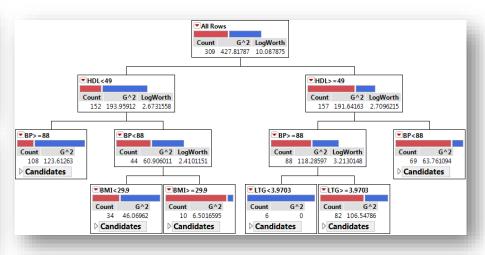
Improve: Design Optimization

Prediction Profiler

Studies response distribution and factor sensitivity

Custom Profiler

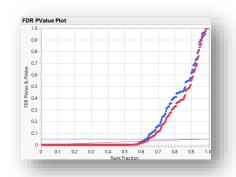

Finds optimal factor settings without graphs

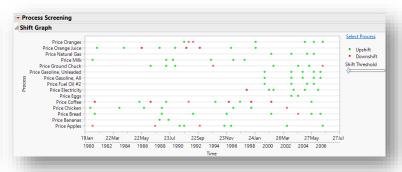

Group Orthogonal Supersaturated

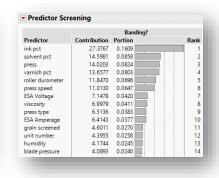
For designs with a greater number of factors than runs

Improve: Predictive Models

Neural network


Uses a transfer function to predict response variables


Partition


Creates a decision tree by recursively partitioning data

Improve: Design Optimization

Response Screening

Features that aid the analysis of large datasets

Process Screening

Process capability and stability for many responses

Predictor Screening

Ranks predictors using bootstrap forest partitioning

Improve: Consumer Research

	Choice Set	Choice ID	Disk Size	Speed	Battery Life	Price
1	1	1	40 GB	2.0 GHz	6 Hrs	\$1000
2	1	2	80 GB	1.5 GHz	4 Hrs	\$1500
3	2	1	80 GB	1.5 GHz	4 Hrs	\$1200
4	2	2	40 GB	1.5 GHz	6 Hrs	\$1500
5	3	1	40 GB	1.5 GHz	4 Hrs	\$1200
6	3	2	80 GB	2.0 GHz	6 Hrs	\$1500
7	4	1	40 GB	2.0 GHz	4 Hrs	\$1000
8	4	2	80 GB	1.5 GHz	6 Hrs	\$1500
9	5	1	80 GB	2.0 GHz	6 Hrs	\$1200
10	5	2	40 GB	1.5 GHz	6 Hrs	\$1000
11	6	1	40 GB	1.5 GHz	4 Hrs	\$1500
12	6	2	80 GB	1.5 GHz	6 Hrs	\$1000

●	Subject	Choice Set	Candy	Choice
1	1	1	Reese's Cups	
2	1	1	Hershey Bar	
3	1	1	Snickers	
4	1	1	Butterfinger	
5	1	2	Butterfinger	
6	1	2	Heath Bars	
7	1	2	Plain M&Ms	
8	1	2	Snickers	
9	1	3	Plain M&Ms	
10	1	3	Snickers	
11	1	3	Peanut M&Ms	
12	1	3	Hershey Bar	

Margi Util	_				Candy
0.90	27 0.2	664			Plain M&Ms
0.67	65 0.2	125			Reese's Cups
0.65	99 0.2	090			Peanut M&M
0.24	66 0.1	382			Heath Bars
0.03	0.1	113			Hershey Bar
-1.0	0.0	374			Butterfinger
-1.4	55 0.0	252			Snickers
Param	eter Estim	ates			
Likelih	ood Ratio	Tests			
	L-R				
Source	ChiSquare	DF	Prob>(ChiSq	
Candy	39.769	6	<.0	0001*	

Choice Design

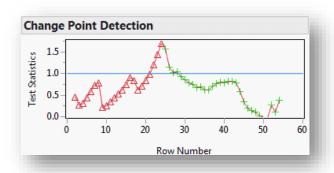
Used to find the best combination of features

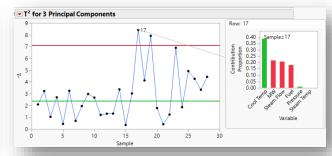
MaxDiff Design

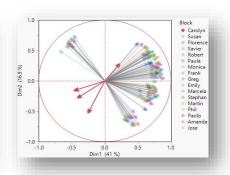
Only considers most and least preferred items

Control Phase

Overview


- Scale-Up Process Control
- Sustain Improvement over long period
- Upstream-Downstream Multivariate Process Control


JMP 16c platforms

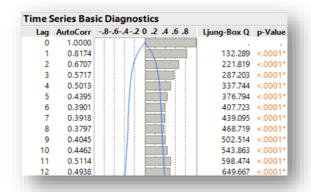

- Classical Control Charts: Control Chart Builder
- Time Sensitive Control Charts: CUSUM, EWMA Control Charts
- Multivariate Control Charts: T2 Control Chart, Model Driven Multivariate Control Chart
- Consumer Research: Multiple Factor Analysis
- Time Series Analysis: Time Series Decomposition and Smoothing, ARIMA, Forecasting

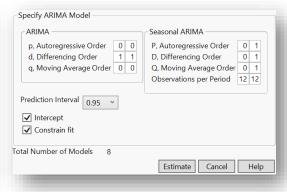
Control: Multivariate Tools

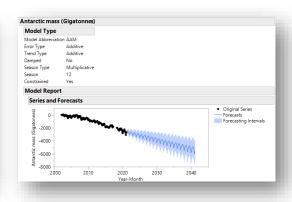
Change Point Detectionplot

Detects a shift in the mean by dividing the data

T Square chart


Uses principal components for process stability


Multiple factor analysis


Uses eigenvalue decomposition to compare items

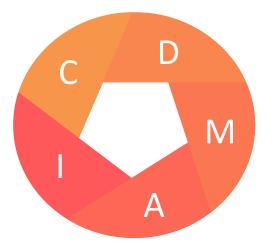
Control: Time Series Techniques

Model diagnostics

Identify trend, seasonal, and cyclic components

ARIMA models

Fits data using seasonal or non-seasonal methods


Forecasting

Finds the optimal model to predict future points

Takeaways

- Traditional Six Sigma DMAIC and Interdisciplinary STEAMS methods can help develop Data Scientist on leadership and team building
- Modern JMP 16 platforms are mapped to DMAIC Phases to help deploy Six Sigma Projects in Data Science fields
- Database Management, Applied Engineering Statistics, Data Mining and Text Mining are all critical to today's Data Scientific Analytics

Thanks!