Applying Time Series Tools to Study Glacier Melting Rate

Mason Chen

Objective

Apply Time Series platforms to study the Antarctic glacier mass data from 2002 to 2021 and to predict the melting rate for the next twenty years (2021 to 2041)

Thwaites Glacier Crisis

Scientists recently found that more warm water was flowing underneath the Antarctic glacier, the widest on the planet, than previously thought

Data

ANTARCTICA MASS VARIATION SINCE 2002

Data source: Ice mass measurement by NASA's GRACE satellites. Gap represents time between missions. Credit: NASA \downarrow 151.0

RATE OF CHANGE

billion metric tons per

year

۲

ARMA

Non-seasonal and seasonal

(0, 1, 0) Seasonal Model

Trend component may be

masked by seasonal component

Model S	Sumn	nary							
DF					177	Stal	ble	Yes	
Sum of So	uared	Innovations		19090	29.53	Inve	ertible	Yes	
Sum of Sc	uared	Residuals		19090	29.53				
Variance I	Estimat	te		10785.	4776				
Standard	Deviat	ion		103.85	3154				
Akaike's '	A' Info	rmation Criter	ion	2159.0	3944				
Schwarz's	Bayes	ian Criterion		2162.2	2122				
RSquare				0.9855	2619				
RSquare A	١dj			0.9855	2619				
MAPE				62.700	4251				
MAE				74.804	4093				
-2LogLike	lihood			2157.0	3944		- 1		
Parame	ter E	stimates							
									(
Term	Lag	Estimate	Sto	d Error	t Ra	tio	Prob:	> t	E
Intercept	0	-10.42635	7.7	758467	-1	.34	0.18	07	-10.

- The Seasonal ARIMA model includes the seasonal component in the forecasts and prediction interval
- The forecasting trend is much steeper after decomposing the seasonal and trend components

Model S	Summa	ry							
DF					142	Stable	Y	es	
Sum of So	uared Inr	novati	ons	1528	3569.52	Invertib	le Y	es	
Sum of So	uared Re	sidual	s	1574	430.25				
Variance 8	Estimate			1076	54.5741				
Standard	Deviation			103.	752465				
Akaike's '	A' Inform	ation (Criterion	1752	2.44471				
Schwarz's	Bayesian	Criter	ion	1758	3.38434				
RSquare				0.98	705993				
RSquare A	٨dj			0.98	698883				
MAPE				40.4	405967				
MAE				61.9	792001				
-2LogLike	lihood			1748	3.44471				
Parame	ter Est	imate	s						
Term	Factor	Lag	Estim	ate	Std Err	or tRa	ntio	Prob> t	Constant
MA2,12	2	12	0.632	2670	0.1006	69 6	.28	<.0001*	Estimate
Intercept	1	0	-2.381	520	4.3176	69 -0	.55	0.5821	-2.3815202

Conclusion

 \bullet

- Seasonal ARIMA models could more effectively predict the glacier melting rate by decomposing the seasonal components
- Overall slope of the optimal seasonal ARIMA model was
 20% greater than that of the non-seasonal ARIMA model

