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SUMMARY

Recent work has shown that there may be disadvantages in the use of the chi-square-like goodness-of-fit
tests for the logistic regression model proposed by Hosmer and Lemeshow that use fixed groups of the
estimated probabilities. A particular concern with these grouping strategies based on estimated probabilit-
ies, fitted values, is that groups may contain subjects with widely different values of the covariates. It is
possible to demonstrate situations where one set of fixed groups shows the model fits while the test rejects fit
using a different set of fixed groups. We compare the performance by simulation of these tests to tests based
on smoothed residuals proposed by le Cessie and Van Houwelingen and Royston, a score test for an
extended logistic regression model proposed by Stukel, the Pearson chi-square and the unweighted residual
sum-of- squares. These simulations demonstrate that all but one of Royston’s tests have the correct size. An
examination of the performance of the tests when the correct model has a quadratic term but a model
containing only the linear term has been fit shows that the Pearson chi-square, the unweighted sum-of-
squares, the Hosmer—Lemeshow decile of risk, the smoothed residual sum-of-squares and Stukel’s score test,
have power exceeding 50 per cent to detect moderate departures from linearity when the sample size is 100
and have power over 90 per cent for these same alternatives for samples of size 500. All tests had no power
when the correct model had an interaction between a dichotomous and continuous covariate but only the
continuous covariate model was fit. Power to detect an incorrectly specified link was poor for samples of size
100. For samples of size 500 Stukel’s score test had the best power but it only exceeded 50 per cent to detect
an asymmetric link function. The power of the unweighted sum-of-squares test to detect an incorrectly
specified link function was slightly less than Stukel’s score test. We illustrate the tests within the context of
a model for factors associated with low birth weight. ( 1997 by John Wiley & Sons, Ltd. Stat. Med., Vol. 16,
965—980 (1997).

(No. of Figures: 0 No. of Tables: 7 No. of Refs: 24)

INTRODUCTION

The logistic regression model has become a widely used and accepted method of analysis of
binary outcome variables. This popularity stems from the availability of easily used software in
both mainframe and microcomputer packages and the ease of interpretation of the results of the
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Table I. Estimated coefficients, standard errors and p-values for the fitted logistic
model to the low birth weight data

Variable Coefficient Standard error p-value

AGE !0·022 0·034 0·511
LWT !0.013 0·006 0·050
RACE—1 1·236 0·517 0·017
RACE—2 0·946 0·416 0·023
SMOKE 1·054 0·380 0·006
CONSTANT 0·332 1·118 0·764

fitted model, be it used for estimating probabilities and/or odds ratios. Commensurate with this
increase in application has been an increase in statistical research on the model. One area of
current research is the development of new methods to assess the adequacy of the fitted model.
The need for this research has been motivated by limitations of currently available methods.

AN EXAMPLE OF THE PROBLEMS IN ASSESSING OVERALL GOODNESS-OF-FIT

To illustrate some of the problems with currently available methods of assessing overall good-
ness-of-fit1 we present the results of the fit of a model using the low birth weight data in Appendix
I of Hosmer and Lemeshow.2 These data were collected at Baystate Medical Center in Spring-
field, Massachusetts, in 1986. The outcome variable was whether or not birth weight was less than
2500 grams. Data were collected on 189 births of which 59 were low birth weight and 130 were
normal birth weight. The purpose of this example is to illustrate problems with assessing model fit
rather than to provide a definitive analysis of these data. The independent variables used in this
example are age of the mother (AGE), weight of the mother at the last menstrual period (LWT),
race of the mother, (white, black, or other, coded into two design variables using white race as the
referent group (RACE—1, RACE—2)) and whether or not the mother smoked, 1"yes, 0"no,
(SMOKE)). To avoid differences between packages when ties are present in the estimated
probabilities we added the value of an independent U(0, 1) variate to each AGE and LWT. The
fitted model using the ‘jittered’ data agreed to three decimal places with the ‘unjittered’ data.
Table I shows the results of fitting this logistic regression model, while Table II shows measures of
overall goodness-of-fit obtained from six packages.

The fitted model shown in Table I contains variables known to be important risk factors for
low birth weight. Mother’s age, although not significant, was retained in the model because of its
known biologic significance. All six packages mentioned in Table II obtained the same estimated
coefficients and estimated standard errors.

The p-values for the goodness-of-fit statistics presented in Table II highlight current problems
in trying to interpret summary tests of goodness-of-fit from packaged programs. First, the p-value
for the Pearson chi-square statistic is, in this case, meaningless, as it is based on a contingency
table whose expected cell frequencies are too small (all are less than one) to justify use of
a chi-square distribution with 183 degrees-of-freedom. The statistic itself is a good measure of
model adequacy; the problem with its current application lies in the way packages compute its
p-value. We consider an alternative and easily implemented method that gives a correct p-value.
Second, we obtain six different values of the Hosmer—Lemeshow goodness-of-fit statistic based on
grouping subjects into deciles of risk. Four packages produce a statistic with a p-value '0·1, one
with 0·05(p-value(0·1 and one with a p-value(0·05. The problem is that the packages use
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Table II. Value of the Pearson chi-square statistic, X2, and values of the
Hosmer—Lemeshow decile of risk staistic, CK , computed by six different packages

Statistic Value D.F. p-value

Pearson-chi-square, X2 180·8 183 0·532
BMDPLR’s CK 18·11 8 0·020
LOGXACT’s CK 13·08 8 0·109
SAS’s CK 11·83 8 0·159
STATA’s CK 12·59 8 0·127
STATISTIX’s CK 12·11 8 0·147
SYSTAT’s CK 14·70 8 0·065

different algorithms to select cutpoints that define the deciles. It is disconcerting to note that the
statistic seems sensitive to choice of groups. All packages produce the same fitted model.
However, depending on our choice of level of significance and particular package used, we might
reach different conclusions on overall model fit.

CURRENTLY USED SUMMARY MEASURES OF FIT

The addition of goodness-of-fit tests and logistic regression diagnostic statistics to statistical
software packages has made the once difficult task of using these methods to assess the adequacy
of a fitted logistic regression model a routine step in the model building process. Any analysis
should incorporate a thorough examination of logistic regression diagnostics, see Hosmer and
Lemeshow,2 Chapter 5, before reaching a final decision on model adequacy. We do not wish to
understate the importance of the use of these statistics, but the focus of this paper is on overall
goodness-of-fit tests.

We begin by setting the notation used to describe the model. Assume we are in the strictly
binary case and observe n independent pairs (x

i
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i
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Examining a model’s goodness-of-fit involves determining whether the fitted model’s residual
variation is small, displays no systematic tendency and follows the variability postulated by the
model. Evidence of lack-of-fit may come from a violation of one or more of these three
characteristics. Thus, in the context of a logistic regression model, the essential components of fit
are specified by the following assumptions:

(A1) the logit transformation is the correct function linking the covariates with the conditional
mean, logit[n (x)]"x @b;

(A2) the linear predictor, x @b, is correct (we do not need to include additional variables,
transformations of variables, or interactions of variables);

(A3) the variance is Bernoulli, var(½
i
Dx

i
)"n (x

i
) [1!n (x

i
)].

Assessment of model fit may occur at a number of stages in the modelling process. We may use
it as an aid in model development where our goal is to find violations primarily in (A2) and/or to
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verify that a ‘final’ model does fit where the emphasis is more towards examining (A1) and (A3). In
the case of a logistic regression model we are faced with the practical problem that assumptions
(A1)—(A3) are not mutually exclusive. Specifically, assumption (A3) may be confounded with (A1)
and/or (A2). If we violate (A2) and misspecify the linear predictor then the model-based estimate
of the variance is also incorrect. Similarly, if we have the incorrect link function, with or without
linear predictor misspecification, then the model-based estimate of the variance is also incorrect.

A useful conceptual framework for thinking about assessment of model fit is to consider the
data as described by a 2]n contingency table. The two rows are defined by the values of the
dichotomous outcome variable y and the n columns by the assumed number of possible distinct
values taken on by the p non-constant covariates in the model. The replicated design occurs when
there are fewer than n distinct values (patterns) of the covariates. The likelihood ratio D (deviance)
and Pearson chi-square, X2, statistics that compare observed values to those predicted by the
fitted logistic regression model in the 2]n table are

D"!2 G
n
+
i/1

y
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i
/nL
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Evidence for model lack-of-fit occurs when the values of these statistics are large. Towards this
end, many packages provide a p-value computed using the s2 (n!p!1) distribution. For the
situation considered in this paper, the strictly binary case, this p-value has no value. For the
p-value to be a valid measure of model fit the number of columns in the table must be fixed and
the sample size large enough that the estimated expected values in the table all exceed some
minimum number such as five. Hosmer and Lemeshow2 (Chapter 5) discuss two methods of
grouping based on the ranked estimated logistic probabilities that form groups of equal numbers
of subjects or use fixed cutpoints on the [0, 1] interval. The statistic, based on 10 equal sized
groups (called ‘deciles of risk’), is denoted CK , and is currently computed in most statistical
packages. We denote in this paper the statistic based on fixed cutpoints as HK which is computed in
few packages. Hosmer and Lemeshow1 showed, via simulations, that when the logistic regression
model is correct, assumptions (A1)—(A3) hold, and the estimated expected values are ‘large’ in all
cells, the distributions of both CK and HK for g groups are well approximated by the chi-square
distribution with g!2 degrees-of-freedom, s2(g!2).

SMOOTHED RESIDUAL BASED TESTS

The advantage of the Hosmer—Lemeshow type tests is that they are based on groupings of the
estimated probabilities that are intuitively appealing and easily understood by subject matter
scientists. The disadvantage is that the value of the statistic depends on the choice of cutpoints
that define the groups. In addition, they may have low power for detecting certain types of
lack-of-fit. le Cessie and van Houwelingen3,4 note that because the Hosmer—Lemeshow tests are
based on a grouping strategy in the ‘y’ space they lack power to detect departures from the model
in regions of the ‘x’ space that yield the same estimated probabilities. For example, a model with
a quadratic term may have widely different ‘x’ values with the same estimated probability.

Tsiatis5 proposed an approach based on fixed groups in the ‘x’ space that yields a score test for
fit. One can use this approach with models that contain quadratic terms or periodic functions
since one can form groups to circumvent the difficulties noted by le Cessie and van Houwelin-
gen.3,4 However, by choosing fixed groups, the decision about whether or not the model fits still
may depend on the particular choice of groups. le Cessie and van Houwelingen address these
problems by proposing a class of tests based on smoothed residuals.

968 D. HOSMER E¹ A¸.

( 1997 by John Wiley & Sons, Ltd. STAT. MED., VOL. 16, 965—980 (1997)



The motivation for the use of smoothed residuals comes from work on non-parametric
regression. Copas6 and Azzalini et al.7 have used the idea of smoothing the values of the outcome
variable to obtain a non-parametric estimate of the regression function. Copas uses the estimate
mainly for plotting the observed outcome and the smoothed outcome versus predictor variables
while Azzalini et al. use it to develop a pseudo-likelihood ratio test. Their basic idea is to compare
a ‘smoothed’ value of the outcome variable for each subject (which is a weighted average of the ‘y’
values for other subjects ’near’ the subject) to a similarly smoothed estimate of the logistic
probabilities. We can define the idea of ‘nearness’ in terms of a distance measure in the ‘x’ space as
suggested by le Cessie and van Houwelingen, or it can be in the ‘y’ space.

In this paper we consider weight functions defined using the uniform kernel for the ‘x’ space, as
used by le Cessie and van Houwelingen, and a cubic weight in the ‘y’ space. The advantage of the
cubic weight is that it is available as a smoothing option in a number of packages, thus lending
itself readily to plotting.

The ‘x’ space weight defining the distance between subject i and j is w
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non-zero for each subject. Fowlkes8 has also used these weights in the context of a residual
analysis in logistic regression.

The smoothed standardized residuals are rL
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Computational details appear in the Appendix.

OTHER OVERALL TESTS OF GOODNESS-OF-FIT

Royston9,10 proposed two procedures designed to detect departure from linearity in the logit that
use partial sums of residuals. Royston did not specifically advocate the use of these tests for
overall assessment of goodness-of-fit. However, since the tests are designed to be sensitive to
departures in monotonicity in the logit or to detect a quadratic logit, then it seemed worthwhile to
include them in the present study. The first test statistic is PRK

1
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q
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is the ith largest estimated logistic probability and y
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value of the outcome variable. This test is called ‘Royston monotone’ in this paper as it was
proposed to detect an overall departure from monotonicity in the logit. The second test is
PRK

2
"max

1)l)n@2
Dq

l
!q

n~l
D and is called ‘Royston quadratic’ as it was formulated to detect

a quadratic departure in the model. Royston2 provides easily computed transformations of the
two test statistics that allow calculation of p-values from the standard normal distribution. Both
tests are a special case of the test discussed in Beran and Miller.11

In the case of a single covariate the Royston monotone test is identical to a test proposed by Su
and Wei.12 Su and Wei proposed using a computationally intensive simulation to calculate the
p-value. The computations for a model based on a sample of size n containing p main effect terms
for continuous covariates are of order npR where R is the number of simulations performed. The
accuracy of the estimated p-value is a function of R, for example 500 simulations are needed to
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estimate significance at the 5 per cent level to within 2 per cent with 95 per cent confidence. In
preliminary simulations the performance of the Su and Wei method of obtaining the p-value was
superior to Royston’s analytic approach for models containing a single covariate. However, the
overall performance, size and power, of the Su and Wei test was neither better nor worse than the
other much less computationally intensive tests. Thus the Su and Wei test was not included in
the detailed simulation study whose results are presented in this paper.

A generalized logistic model proposed by Stukel13 provides a convenient model amenable to
testing the adequacy of the fitted logistic model. The Stukel model uses a logit function with two
additional parameters a

1
and a

2
. These two parameters allow the generalized logistic model to be

either symmetric or asymmetric with tails either lighter or heavier than is the case with the logistic
model. The usual linear logistic model results when a

1
"0 and a

2
"0. A two degree-of-freedom

test of the hypothesis that both parameters are equal to zero is obtained from the score test for the
coefficients for the variables z

1
"1

2
gL 2I(gL *0) and z

2
"!1

2
gL 2I (gL (0), gL "x @bK , where I( · ) is the

indicator function returning the value one when the argument is true and zero otherwise. We
denote this test statistic S¹K .

Brown14 developed a different two-parameter score test based on an extended logistic regres-
sion model proposed by Prentice.15 A comparison of the Prentice model to the generalized
logistic model by Stukel13 showed that both offer the same level of flexibility in terms of
generating alternative models but that Stukel’s generalized logistic model is analytically easier to
use since it does not require the integration needed with the Prentice model. Stukel13 provides the
expressions for the variables needed to carry out Brown’s score test. We note that the Brown test
is computed by program BMDPLR, but is not included in our simulations since the test is aimed
at the same type of model departure as the Stukel test.

Copas16 has suggested using the unweighted residual sum-of-squares, SK "+ (y
i
!nL

i
)2, to

assess the model’s adequacy. It is also a special case of the class of statistics considered by le Cessie
and van Houwelingen4 and we also consider this test statistic in the simulations.

SIMULATION RESULTS

We used simulations to study the properties of the overall goodness-of-fit tests. The goal was to
assess the adequacy of the proposed null distribution of the statistics when the fitted logistic
model was the correct model and to assess the power of the tests to detect a variety of departures
from the logistic model.

Statistics used in the simulations are: the Pearson chi-square statistic, X2; the unweighted
sum-of-squares statistic, SK ; the smoothed standardized residual-based test with weight functions
based on a uniform kernel smooth, ¹K

ru
; and the cubic distance smooth, ¹K

rc
. In preliminary

simulations the performance of the smoothed standardized residual based test and a similar
statistic based on smoothed unstandardized residuals were comparable so we chose to use the
standardized residual based test so that the results are more comparable to those in le Cessie and
van Houwelingen.3 Details on calculation of the estimated means, variances and the approach
used to calculate the p-values for these four tests appear in the Appendix. Other statistics
examined are the Hosmer—Lemeshow decile of risk statistic, CK , with 10 groups, and the Hos-
mer—Lemeshow fixed cutpoint statistic, HK , with up to 10 groups (Note: In some situations we used
fewer than 10 groups when no estimated probabilities fell in certain intervals.) In all cases the
degree-of-freedom was the number of groups minus two. We also included the two tests proposed
by Royston, PRK

1
and PRK

2
, and the score test, S¹K , based on Stukel’s extended logistic regression

model. We performed all simulations on a DEC Alpha 2000 computer running the OSF
operating system using a FORTRAN 5 program.
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Table III. Situations used to examine the null distribution of the test statistics

Covariate distribution Logistic coefficients Distributional charactertistics of the logistic
probabilities (n"100)

n
(1)

Q
1

Q
2

Q
3

n
(n)

U(!6, 6) b
0
"0, b

1
"0·8 0·009 0·087 0·5 0·913 0·991

U(!4·5, 4·5) b
0
"0, b

1
"0·8 0·029 0·144 0·5 0·856 0·971

U(!3, 3) b
0
"0, b

1
"0·8 0·087 0·231 0·5 0·769 0·913

U(!1, 1) b
0
"0, b

1
"0·8 0·313 0·400 0·5 0·600 0·687

N(0, 1·5) b
0
"0, b

1
"0·8 0·057 0·304 0·5 0·696 0·943

s2(4) b
0
"!4·9, b

1
"0·65 0·009 0·025 0·062 0·202 0·965

3 Independent U(!6, 6) b
0
"0, b

1
"b

2
"b

3
"0·8/3 0·028 0·234 0·5 0·767 0·972

3 Independent N(0, 1·5) b
0
"0, b

1
"b

2
"b

3
"0·8/3 0·134 0·369 0·5 0·628 0·861

Independent U(!6, 6), b
0
"!1·3, b

1
"b

2
"0·8/3, 0·052 0·204 0·386 0·608 0·928

N(0, 1·5) and s2(4) b
3
"0·65/3

Null Distribution

We considered a number of different situations to examine the performance of the tests when the
logistic model fit was the correct model. We chose the various distributions of the covariate to
produce distributions of probabilities in the (0, 1) interval that one might encounter in practice.
Table III describes the situations where the distribution of the covariate(s) is given, along with the
true coefficients for the logistic model and expected values for the smallest, largest, and three
quartiles for the resulting distribution of logistic probabilities for a sample of size 100 (that is,
considering the distribution of n (x) as a transformation of the distribution of x). The Uniform
distribution on the (!6, 6) interval U (!6, 6), produces a symmetric distribution with mostly
small or large probabilities, while the U(!1, 1) produces probabilities mostly in centre of the
(0, 1) interval. A highly skewed right distribution results (mostly small but a few large probabilit-
ies), when the covariate has the s2 (4) distribution. Other choices for the distribution produce
a more uniform distribution of probabilities.

In all simulations we first generated a sample of size n"100 or 500 values of the covariate(s)
and then we generated the outcome variable by comparing an independently generated U(0, 1)
variate, u, to the true logistic probability using the rule y"1 if u)n (x) and y"0 otherwise. In all
situations we used 500 replications. Table IV shows the per cent of time each of the statistics
rejected the hypothesis of fit at the a"0·05 level.

The results in Table IV indicate that in all but a few situations eight of the nine statistics reject
at, or nearly at, the five per cent level when we used a"0·05.

The Royston monotone test never rejected the hypothesis. These results suggest the need for
further work on the analytical method proposed by Royston for calculating p-values.

We also see in Table IV that the cubic smoothed standardized residual statistic with a three
variable model rejects too often. The reason for this is that the approximate variance estimator in
(A4) underestimates the true sampling variance. This estimator also slightly overestimated the
variance of the uniform kernel smooth in two of the multivariable situations leading to fewer
rejections than expected.

Power

We examined the power of the tests of fit to detect three particular types of departure from the
logistic model. The situations studied were the omission of a quadratic term in a continuous
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Table V. Coefficients for the generalized logistic model

Model a
1

a
2

Probit 0·165 0·165
Complimentary log-log 0·620 !0·037
Long tails !1·0 !1·0
Short tails 1·0 1·0
Asymmetric long-short tails !1·0 1·0

variable, and the omission of the main effect for a dichotomous variable and its interaction with
a continuous variable and an incorrectly specified link function. In all situations studied the
distribution of the continuous covariate, x, was U(!3, 3). The distribution of the dichotomous
covariate, d, was Bernoulli (1/2) and was independent of the continuous covariate.

We used five different models to evaluate power with omission of a quadratic term from
the model. We generated the outcome variable using a logistic model with logit
g(x)"b

0
#b

1
x#b

2
x2 where we chose the values of the three coefficients such that

n(!1·5)"0·05, n (3)"0·95 and n (!3)"J and J"0·01, 0·05, 0·1, 0·2 and 0·4. This generated
models where the lack of linearity in the logit function became progressively more pronounced.

We used four different interaction models to study the power with omission of a dichotomous
variable and its interaction term from the model. We generated the outcome variable from
a model with logit g (x, d)"b

0
#b

1
x#b

2
d#b

3
xd. We chose the four parameters such that

n(!3, 0)"0·1, n (!3, 1)"0·1, n(3, 0)"0·2 and n (3, 1)"0·2#I where I"0·1, 0·3, 0·5 and 0·7.
Thus the four models display progressively more interaction.

We examined five different models to assess the power to detect an incorrectly specified link
function. We generated the values of the outcome variable from Stukel’s generalized logistic
model using the function g(x)"0·8x as the linear predictor and values of the parameters a

1
and

a
2

as specified in Table V. Stukel13 noted that if a
1
"a

2
"0·165, then the resulting generalized

logistic model has nearly the same shape as the probit model and when a
1
"0·62 and

a
2
"!0·037 has the same shape as the complimentary log-log model. We chose the remaining

three situations to yield one model with both tails longer, one model with both tails shorter tails
and an asymmetric model with one tail longer and one tail shorter than the logistic model.

The situations we used to examine the power of the tests were chosen to represent typical
logistic regression models encountered in practice. We felt this approach was preferable to
selecting biologically implausible parameter configurations where the tests would likely have high
power for any sample size. The combination of two sample sizes, 100 and 500, and the various
models examined yields results which provide an adequate picture of what types of departures
from a linear logistic model the various tests can detect with moderate to high power.

Table VI shows the per cent of time each of the tests rejected the hypothesis of fit at the a"0·05
level.

In Table VI(a) we see that the power is, as expected, poor when trying to detect models that are
quite close to the logistic. As the departure from linearity in the logit increases, the power
increases rapidly for all tests except the Royston monotone test. High power is attained for
samples of size 100 in those situations where there are substantial differences over the entire [0, 1]
interval between the true quadratic model and the fitted linear model. The power is near 90 per
cent for samples of size 500 for even slight, J"0·05, departures from the linear logistic model.

The results in Table VI(b) show that all tests have low power for samples of size 100 and 500
to detect even a fairly extreme interaction. We performed additional simulations, whose
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Table VI. Simulated per cent rejection of fit at the a"0·05 using sample sizes of 100 and 500 with 500
replications, confidence intervals are obtained as $2 per cent

(a) Quadratic models

Statistic/sample size Correct model
J"0·01 J"0·05 J"0·1 J"0·2 J"0·4

100 500 100 500 100 500 100 500 100 500

Pearson chi-square, X2 7·2 9·6 35·2 90·0 59·4 98·6 84·5 100 98·2 100
Unweighted sum-of-
squares, SK

6·8 6·2 35·4 90·4 60·4 99·2 84·9 100 98·7 100

Hosmer—Lemeshow, CK 7·6 6·4 29·1 80·0 52·6 97·0 77·2 100 94·9 100
Hosmer—Lemeshow, HK 3·8 3·4 8·6 40·0 7·2 77·0 25·0 98 62·8 100
Uniform kernel smooth, ¹K

ru
7·4 7·6 29·6 82·8 53·0 96·8 79·3 100 95·7 100

Cubic weight smooth, ¹K
rc

8·4 7·2 35·5 86·0 59·0 98·6 82·0 100 96·7 100
Royston monotone, PRK

1
0·0 0·0 0·0 0·0 0·6 30·0 5·6 86 27·5 100

Royston quadratic, PRK
2

0·4 0·2 5·6 39·8 20·0 83·8 50·3 100 87·1 100
Stukel score test, S¹K 6·0 6·0 29·2 68·4 53·8 98·6 79·5 100 77·9 100

(b) Interaction models

Statistic/sample size Correct model
I"0·1 I"0·3 I"0·5 I"0·7

100 500 100 500 100 500 100 500

Pearson chi-square, X2 5·8 4·8 4·9 5·4 5·0 4·0 3·2 1·8
Unweighted sum-of-squares, SK 4·5 6·0 3·9 3·8 3·8 7·0 7·8 11·2
Hosmer—Lemeshow, CK 4·3 5·8 3·9 4·2 3·0 6·0 5·2 6·8
Hosmer—Lemeshow, HK 6·4 4·0 2·5 2·8 2·2 3·0 3·4 5·8
Uniform kernel smooth, ¹K

ru
3·4 4·2 2·3 4·0 2·2 4·6 4·8 6·6

Cubic weight smooth, ¹K
rc

3·8 5·4 4·9 5·6 4·0 6·0 6·4 9·4
Royston monotone, PRK

1
0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0

Royston quadratic, PRK
2

3·6 5·6 3·9 4·2 2·0 6·0 6·0 8·4
Stukel score test, S¹K 3·8 5·6 6·4 3·4 3·4 7·0 4·2 10·2

(c) Alternative link functions

Statistic/sample size Correct model
Probit Complimentary Long tails short tails Asymmetric

log-log long-short tail

100 500 100 500 100 500 100 500 100 500

Pearson chi-square, X2 5·0 14·4 2·2 20·8 8·2 24·0 0·0 27·8 10·0 29·8
Unweighted sum-of-
squares, SK

5·8 31·8 5·4 33·4 8·2 35·8 11·2 37·8 21·8 41·0

Hosmer—Lemeshow, CK 2·2 21·8 4·8 24·4 4·8 23·4 2·2 27·2 16·6 29·8
Hosmer—Lemeshow, HK 3·6 32·4 6·0 27·8 7·2 28·6 5·6 31·6 22·8 34·6
Uniform kernel smooth, ¹K

ru
4·0 15·8 4·2 17·0 3·8 17·8 1·0 20·6 16·4 22·6

Cubic weight smooth, ¹K
rc

3·2 26·6 3·8 26·0 4·4 27·2 1·0 28·8 18·6 33·4
Royston monotone, PRK

1
0·0 0·8 0·0 1·0 0·0 1·0 0·0 1·4 0·0 1·6

Royston quadratic, PRK
2

0·6 19·8 2·2 18·6 2·6 22·8 0·0 25·8 19·4 27·6
Stukel score test, S¹K 4·0 38·6 8·6 43·4 7·8 42·8 22·0 43·8 40·2 51·0
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results are not shown, using the U(!6, 6) distribution for the continuous covariate that yielded
power in the 40 per cent range when I"0·7 for samples of size 100. The reason for the increase
in power is the U(!6, 6) distribution places proportionally more of the estimated probabilities
in the upper tail where there is the greatest difference between the model fit and the correct
model.

The power to detect an alternative link function is poor for sample size 100 for all tests when
the correct model is similar to the logistic model and it is less than about 40 per cent for sample
size 500. This is not too surprising as the differences between the alternative links, probit and
complementary log-log, and the logistic occur primarily in the tails which contain a small
proportion of the estimated probabilities. The power of the Stukel score test is highest among all
tests considered, but is, at best, only moderate even for sample size 500 and the asymmetric model
that differs from the logistic over much of the [0, 1] interval.

The short tails models for sample size 100 presents an interesting situation. When both a
1

and a
2

are large and positive in the Stukel model, the probability function becomes quite
steep and the fitted values tend to be either small or large. When this occurs, the test statistics,
X2 and SK -trace(Vª ), approach zero. However their estimated variances become quite large
due to the range in the nL ’s and thus in cL and dK (see Appendix). The normalized goodness-of-fit
tests tend to be not significant since the numerator is small and the estimated variance is
large. For example, the power of the Pearson chi-square statistic in Table VI(c) is less than
the nominal alpha level when a

1
"a

2
"1. Although not shown, there is a differential effect

of the shape of the link on the Pearson chi-square and unweighted sum-of-squares statistic.
However, as the two parameters, a

1
and a

2
, become sufficiently large, both tests degenerate. With

a sample of size 500 there are a sufficient number of estimated probabilities which are not
near zero or one to allow the statistic to have a distribution which leads to power in the 25—30
per cent range.

The short tailed case affects the smoothed residual based tests with sample size 100. The actual
sampling variance of the smoothed residual based test was much less than that estimated by (A4).
The effect is that the test statistics tended to be systematically too small, and, as a result, the
hypothesis of fit is not rejected sufficiently often. The reason for this is that with a steeply sloped
probability function there is considerable agreement between the smoothed y and nL when
smoothing is in the y-space. Table VI(c) for the fitted model contains only one continuous
covariate and the shape of the model affects both smoothed residual based tests. The tests
perform much better with a sample size of 500 and have power in the 20—30 per cent range. In
models with several covariates, smoothing in the ‘x-space’ should provide greater power. These
results combined with those in the multivariable null model simulation suggest the need for
further research to improve the variance approximation given in (A4).

In summary, the results in Table VI show that overall the goodness-of-fit tests have, with the
exception of the Royston monotone test, reasonable power for detecting a curvature type
misspecification of the mean function and low power for interactions and an incorrect but still
symmetric link function. The score test based on the Stukel model has moderate power to detect
an asymmetric link function.

The overall performance of the Pearson chi-square statistic and unweighted sum-of-squares
was superior to the other tests. The performance of the Hosmer—Lemeshow decile of risk statistic,
the smoothed residual based tests and the Stukel score test were comparable. However, the work
of le Cessie and van Houwelingen3,4 suggest that with models more complicated than those used
in our simulations the smoothed residual based tests will have greater power than the decile of
risk test. It is not clear how the Stukel score test would perform with more complicated models
and this merits study.
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Table VII. Values of the goodness-of-fit statistics for the low birth weight model in Table I

Statistic Value Mean Variance p-value

Pearson chi-square, X2 180·79 188·91 24·707 0·102
Unweighted sum-of-squares, SK 36·91 36·45 0·065 0·071
Hosmer—Lemeshow, CK 12·59 8 16 0·127
Hosmer—Lemeshow, HK 6·70 6 12 0·349
Uniform kernel smooth, ¹K

ru
0·514 0·579 0·028 0·641

Cubic weight smooth, ¹K
rc

1·469 0·801 0·018 (0·001
Royston monotone, PRK

1
5·88 * * 0.300

Royston quadratic, PRK
2

8·05 * * 0·049
Stukel score test, S¹K 6·626 2 4 0·036

Consideration of the computational intensity, power and current availability in packages
suggests that a practical strategy is to use the Pearson chi-square statistic and/or the unweighted
sum-of-squares statistics in conjunction with the Hosmer—Lemeshow CK statistic and the Stukel
score test. The 2 by 10 table, of observed and estimated expected frequencies used to compute
CK provides a useful overall summary of the fit or lack-of-fit of the model and is easily understood
by subject matter scientists. In addition it is good practice to examine plots of the residuals,
perhaps smoothed, to support the visual inspection of the 2 by 10 table.

RETURN TO THE EXAMPLE

We return to an evaluation of the fit of the model for low birth weight shown in Table I. We used
the scaled chi-square distribution to obtain p-values for the Pearson chi-square statistic and the
smoothed residual based statistics and the standard normal distribution for the unweighted
sum-of-squares statistic. Table VII gives results of the application of all nine tests.

The results in Table VII show that three of the nine statistics (the least powerful of the nine
tests) have p-values'0·15, three have p-values between 0·05 and 0·15, and three have a p-
value(0·05. The extremely small p-value for the smoothed residual based test using the cubic
weight function may be due to the observed underestimation of the sampling variance of this test
with multivariable models.

When we employ the recommended strategy of using the Pearson chi-square and/or un-
weighted sum-of-squares tests for power against overall non-linearity in the logit, the Hos-
mer—Lemeshow decile of risk statistic and 2 by 10 table for confirmatory evidence and the Stukel
score test for power against a non-logit link we see that it suggests lack-of-fit of the model.
Inspection of the 2 by 10 table showed a slight departure from model fit in the seventh decile of
risk where there were more low birth weight babies observed than expected. Further modelling
efforts suggested the inclusion of interactions between AGE and LWT and SMOKE and LWT.
When we added these variables to the model, the fit improved to the point where the p-values
were greater than 0·15. One requires a thorough examination of regression diagnostics as well as
biologic plausibility, and in this case over fitting before one makes a decision on the final model.
The recent paper by Harrell et al.17 provides an excellent discussion with practical examples on
issues surrounding the development of logistic regression models.
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SUMMARY

The use of overall summary measures of goodness-of-fit of logistic regression models has become
an important and easily performed step in model building. Decisions on model fit using tests
based on cutpoints may depend more on choice of cutpoints than on fit or lack-of-fit. Tests not
dependent on cutpoints proposed by le Cessie and van Houwelingen3,4 and Royston,9,10 a score
test for an incorrectly specified link function proposed by Stukel13 the cutpoint based tests of
Hosmer and Lemeshow,2 the Pearson chi-square statistic and the unweighted sum-of-squares test
have been studied via simulation under both null and alternative scenarios. The simulation
results showed that all but the Royston monotone maintained the correct size. The Pearson
chi-square and unweighted sum-of-squares statistics had the highest power for omission of
a quadratic term. All tests had low power to detect a continuous dichotomous variable interac-
tion. All tests had more power to detect lack-of-fit due to model misspecification when the logit
was non-monotone increasing (decreasing) under the alternative than when it was monotone
under both null and alternative models. None of the tests studied had high power to detect an
incorrectly specified link function with sample size 100. The Stukel score test had moderate for
sample size 500.

Because of the superior power of the Pearson chi-square/unweighted sum-of-squares statistics
and Stukel score test in the simulations, we recommend their use and the use of cutpoint and/or
smoothed residual based tests for confirmation of model fit or lack-of-fit. Assessment of signifi-
cance using the Pearson chi-square statistic should use the conditional mean and the variance
estimate and one should compute p-values using the scaled chi-square distribution. When using
the unweighted sum-of-squares statistic one should compute a standardized statistic with p-
values obtained from the standard normal distribution. In all cases one must keep in mind the
lack of power with small sample sizes to detect subtle deviations from the logistic model. Thus the
choice of both the logistic regression model and its covariates should have a strong biological or
clinical basis.

APPENDIX I: EXPRESSING THE SQUARED RESIDUALS TESTS
AS QUADRATIC FORMS IN THE RESIDUALS

Application of the sum-of-squared residual-based test statistics requires computation of estimates
of their respective means and variances under the assumption that the logistic model fit is correct.
Derivation of means and variances is simplified if we express the test statistics as quadratic forms
in the residuals.

Let W represent an n by n matrix of weights whose ith row, w
i
, contains the weights for the

‘nearness’ or distance of subject i to subjects 1 to n. In vector form the estimated standardized
residuals are r̂"Vª ~1@2 ê, where Vª "diag[vL

i
"nL

i
(1!nL

i
)] is an n by n diagonal matrix. Thus the

smoothed standardized residuals are r̂
s
"Wr̂"WVª ~1@2 ê. We can express the smoothed stand-

ardized residual based test statistics in matrix form as

¹K
r
"r̂ @W @D~1

r
Wr̂

"ê @V~1@2(W @D~1
r

W)Vª ~1@2 ê (1)

where D
r
is an n by n diagonal matrix that contains the diagonal elements of the matrix WW @.

The expression in (1) shows that the test statistics only use the main diagonal elements of the
respective full covariance matrices of the smoothed residuals. If we used the full covariance
matrices to define the quadratic forms, then the statistics simplify to the Pearson chi-square
statistic. Thus we can think of the Pearson chi-square statistic as a full covariance matrix version
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of the smoothed residual-based tests. We also obtain the Pearson chi-square statistic if we do no
smoothing (that is, use W"I

n]n
, the identity matrix).

APPENDIX II: MOMENTS AND ASYMPTOTIC DISTRIBUTION
OF THE GOODNESS-OF-FIT STATISTICS

We begin by summarizing results that provide expressions for calculating large sample approxi-
mations for the mean and variance of the Pearson chi-square statistic. McCullagh18~20 has
derived moments conditional on bK , work summarized in McCullagh and Nelder.21 Recently,
Osius and Rojek22 considered this problem and showed that, in the strictly binary case, the
conditional and unconditional moments are asymptotically equivalent. Here we summarize the
results of Osius and Rojek. By substracting n the statistic simplifies to

X2!n"(1!2pL ) @Vª ~1ê.

First-order approximations presented in le Cessie and van Houwelingen3 show pL :p#Me,
ê:(I!M)e and Vª :V where M"VX(X @VX)~1X @ is the logistic regression version of the hat
matrix. Using these approximations for purposes of calculating moments we obtain
X2!n:(1!2p) @V~1 (I!M)e which yields that the asymptotic mean is zero and the variance
is var(X2!n):c @(I!M)Vc where c @"(1!2p) @V~1. Hence we may obtain an estimate of the
variance as the residual sum-of-squares, RK , from the regression of ĉ on X with weights Vª . Osius
and Rojek show that when one has fit the correct model the asymptotic distribution of
(X2!n)/JR is Normal(0, 1). Equivalent results appear in Windmeijer.23 Our simulations
suggest that, for small samples, we obtain better distributional results if we use an estimate of the
conditional mean and variance obtained by McCullagh16, namely

EK (X2 Db)"(n!p!1)!
1

2

n
+
i/1

(1!6vL
i
)mL

ii
/vL

i
#

1

2

n
+
i/1

cLJ
i
cL
i
mL

ii
vL
i

where mL
ii

is the ith diagonal of the hat matrix Mª , cLI
i
is the fitted value obtained from the weighted

regression used to compute the unconditional variance. We obtain the conditional variance by
multiplying RK by (n!p)/n.

The asymptotic moments of SK are E[SK !trace(V )]:0 and var[SK !trace(V)]:d @(I!M)Vd
where d is the vector with general element d

i
"(1!2n

i
). Thus we can obtain an estimate of the

variance as the residual sum-of-squares from the regression of dª on X with weights Vª . The
expressions for the mean and variance given here are simpler than those obtained by Copas.16
We obtained our results by simplifying SK under the strictly binary assumption and then
using first-order approximations of bK and pL . We used the standardized statistic
[SK !trace(Vª )]/JMvarY [SK !trace(Vª ) ]N to assess significance using the standard normal distribu-
tion.

We obtain moments for the smoothed standardized residual based test statistics using
first-order approximations ¹K

r
:e @A

r
e where A

r
"(I!M) @Q

r
(I!M) and Q

r
"

V~1@2(W @D~1
r

W)V~1@2. Well-known results for moments of quadratic forms, Seber,24 yield that

E(¹K
r
)"trace(A

r
V ) (2)

and

var(¹K
r
)"

n
+
i/1

a2
rii

l
i
(1!6l

i
)#2 trace(A

r
VA

r
V). (3)

We obtain estimates of the moments by using Vª in all expressions.
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Early in the simulations we encountered time problems when implementing the variance
estimator in (3). The difficulty is that the computations are of order n4 to evaluate the matrix A

r
.

As a result we used the approximation given in the Appendix of le Cessie and van Houwelingen3

varY (¹K
r
):2 A

2

3B
p trace(WW @)

n2
(4)

for the varY (¹K
r
). This approximation reduced the order of computation to n2.

Our simulations show that for small samples we may better approximate the distributions of
the Pearson chi-square statistic, X2, and le Cessie and van Houwelingen’s smoothed residual test
¹K

r
, by scaling the statistic and using a chi-square distribution whose degrees-of-freedom depend

on the estimated mean and variance. The details of this method may be found in le Cessie and van
Houwelingen3 and are summarized here for convenience. For a particular goodness-of-fit
statistic, denoted simply as Stat, we calculate the p-value as Pr[s2(l)*bStat] where b"2EK /varY ,
l"2EK 2/varY and EK and varY are the estimated mean and variance of the statistic Stat.
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