Building Structural Equation Models in JMP Pro

Laura Castro-Schilo, Ph.D.

Sr. Research Statistician Developer

James Koepfler, Ph.D.

Sr. Research Statistician Tester

Building Structural Equation Models in JMP Pro

Building Structural Equation Models in JMP Pro

- What, why, and how of SEM
- Building blocks
 - Simple linear regression
 - Confirmatory factor analysis
- Multiple-Group Analysis
- Summarize key benefits of SEM in JMP Pro

What is SEM?

Definition

• General *analysis framework* for investigating associations between variables

Numerous models can be fit in SEM

Multiple regression
Simultaneous equation models
Growth curve models
Time series models

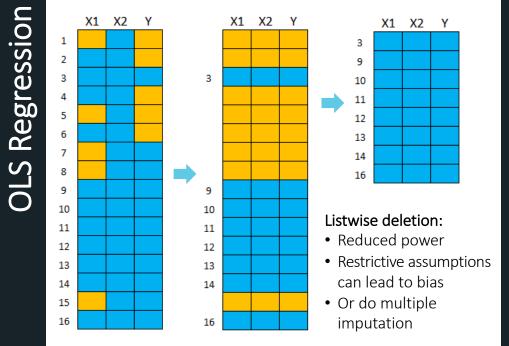
• Flexibility: Model variances, covariances, and means in observed data

What is SEM? Analogy

SEM

OLS Regression

SEM in JMP Pro



Even in the simplest cases: Missing data

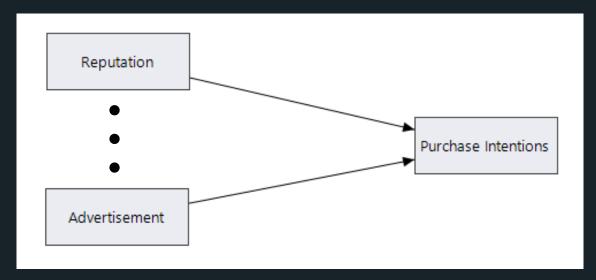
Sample Size = 16 (100%)

Sample Size = 8 (50%)

SEM is particularly useful if you need to...

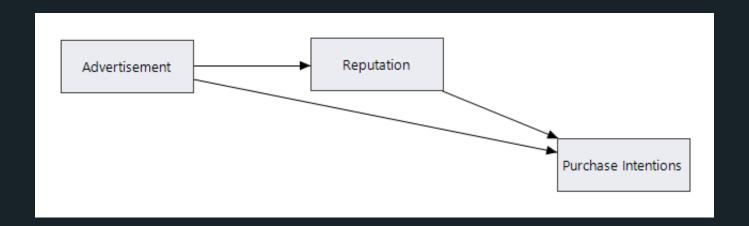
- Handle missing data with cutting edge methods without the hassle of multiple imputation
- Specify a model in which variables are both predictors and outcomes
 - Understand mechanisms by which things happen
- Test specific theories about the association of variables
 - Leverage your domain expertise
- Model variables that cannot be measured directly (aka latent variables)
- Model variables that have measurement error (and account for it)
- Diagrams that describe your statistical models intuitively

- Specify a model in which variables are both predictors and outcomes
 - Understand mechanisms by which things happen



SEM is particularly useful if you need to...

- Specify a model in which variables are both predictors and outcomes
 - Understand mechanisms by which things happen



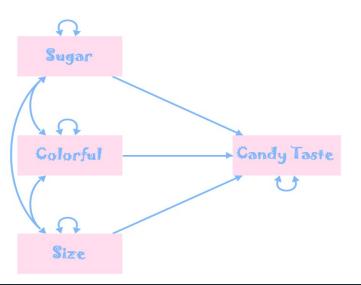
Purchase Intentions = $B_0 + B_1 Reputation + \cdots + B_p Advertisement + e$

SEM is particularly useful if you need to...

- Test specific theories about the association of variables
 - Leverage your domain expertise

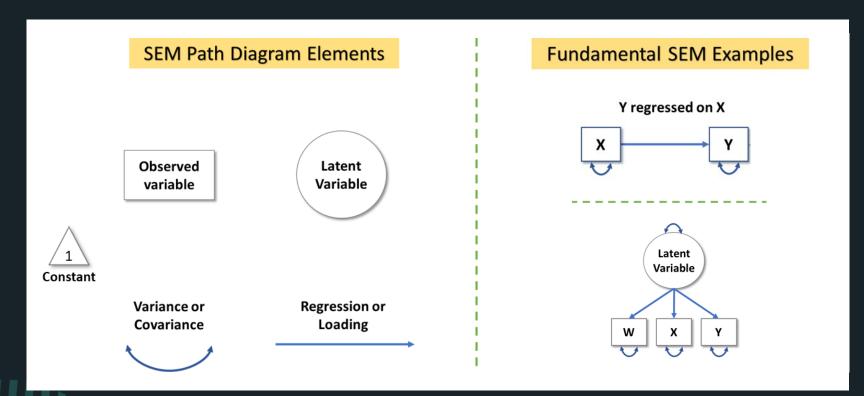
SEM is particularly useful if you need to...

- Model variables that
 - Cannot be measured directly (aka latent variables)
 - Have measurement error (and account for it)

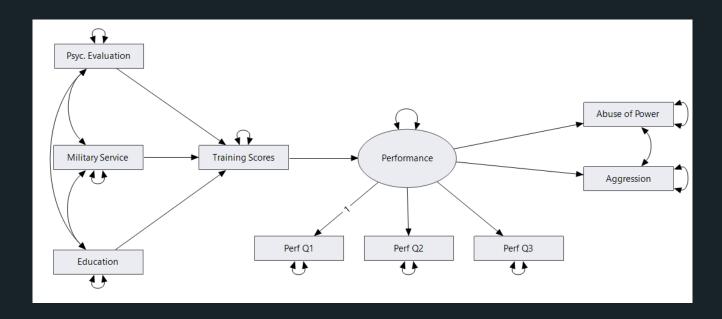


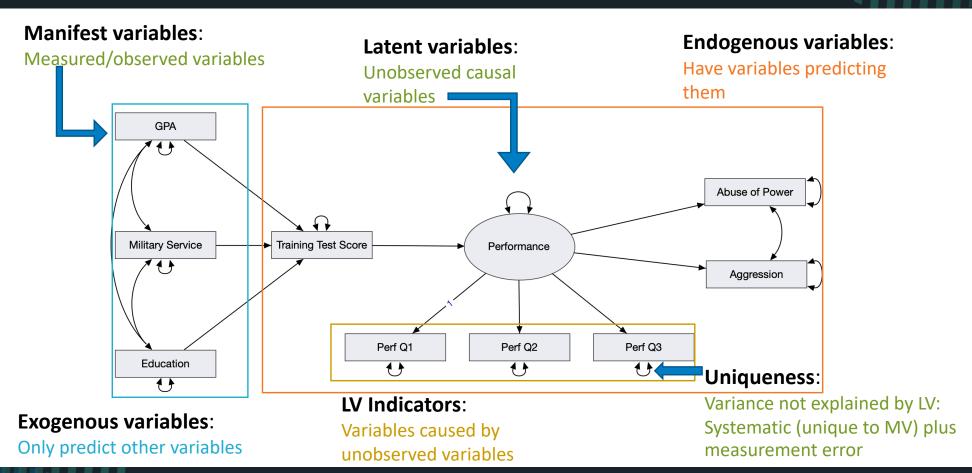
SEM is particularly useful if you need to...

• Diagrams that describe your statistical models intuitively


$$\begin{split} &CandyTaste_{i} = \tau_{1} + \beta_{1}Sugar_{i} + \beta_{2}Colorful_{i} + \beta_{3}Size_{i} + \varepsilon_{ci} \\ &Sugar_{i} = \tau_{2} + \varepsilon_{sui} \\ &Colorful_{i} = \tau_{3} + \varepsilon_{coi} \\ &Size_{i} = \tau_{4} + \varepsilon_{si} \end{split}$$

opyright © JMP Statistical Discovery LLC. All rights reserve


Path Diagrams: Intuitive, Powerful, Represent Statistical Model


Undercover Agents

SEM for Improving Operations and Field Outcomes

SEM Terminology

How does SEM work?

Shift in focus: from data table to covariance matrix

- Multivariate analysis of covariance structures (and means)
- Implications:
 - Data
 Variances and covariances (and means)
 - ResidualsWRT variances and covariances (and means)
 - Degrees of freedomWRT variances and covariances (and means)df = knowns unknowns

● ● ● Polline Consumer Data.jn											Data.jmp	
▼Online Consumer D ► Locked File /Library/Appli Reference Simulated data ► SEM: CFA. ► SEM: CF Mediation ▼Columns (29/0)		4	25/0 Cols 💌	Privacy_2	Reput_4		Security_2	Trust_1	Privacy_3	Trust_3	Reput_1	
		•	1	3		3	5	5	4	5	3	
		•	2	4		4	5	4	4	3	5	
		•	3	5		3	5	3	4	3	4	
Covariance Matrix												
	Privacy_2		Reput_4	4 Secu	rity_2		Trust_	1 Priv	acy_3	Trust_	_3 Re	put_1
Privacy_2	1.55964		0.28826	6 0.4	12039		0.4727	1 1.0	04427	0.5997	' 5 0.0	04196
Reput_4	0.28826		1.27246	0.2	23057		0.2977	5 0.0	03093	0.3457	'5 0 .6	67080
Security_2	0.42039		0.2305	7 1.	16237		0.7078	0 0.	32091	0.6175	9 0.2	28596
Trust_1	0.47271		0.2977	5 0.7	70780		1.3299	4 0.	35357	0.7019	99 0.3	30974
Privacy_3	1.04427		0.03093	3 0.3	32091		0.3535	7 1.	48972	0.4010	9 -0.1	15226
Trust_3	0.59975		0.3457	5 0.6	31759		0.7019	9 0.4	40109	1.2603	30 0.3	38632
Reput_1	0.04196		0.67080	0.2	28596		0.3097	4 -0.	15226	0.3863	32 1.4	41909
All rows Selected Excluded Hidden Labeled	843 0 0 0	•	1/	4		2	5	3	4	4	3	
		•	18	5		3	5	3	5	4	4	
		•	19 20	5 5		3	5	4	5	4	3	
		•	21	5		4	5	3	4	4	3	

Example: 7 variances + 21 covariances df = 28 – unknowns (# of estimates)

How does SEM work?

SEM Path Diagram

$$\sigma_X^2$$
 X

$$\sigma_Y^2$$
 Y

Depicts a model that implies a covariance structure

This model implies non-zero variances and zero covariances

W X Y

Sample W 1.32

Covariance X 0.61 1.40

Y 0.53 0.74 1.14

Model estimation tries to match the data as close as possible

Model Estimates $\sigma_W^2 = 1.32$ $\sigma_X^2 = 1.40$ $\sigma_Y^2 = 1.14$

W X Y

Difference (residuals) X 0.61 0.00
Y 0.53 0.74 0.00

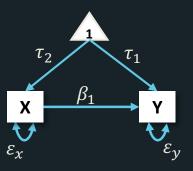
Differences of what the model implied and what the data said are summarized to produce many indices of model fit

How does SEM work?

- Model and path diagram imply
 - Covariance structure: Σ
 - Parameter vector: Θ
- We have sample covariance matrix: 5
- We minimize a discrepancy function $F[S, \Sigma(\Theta)]$ to obtain $\widehat{\Theta}$
- We use:

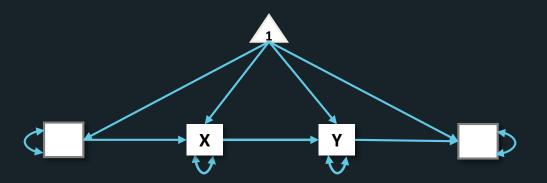
$$F_{ML}(S, \Sigma) = \ln |\Sigma| - \ln |S| + tr(S\Sigma^{-1}) - p$$

• Missing data: Full Information Maximum Likelihood



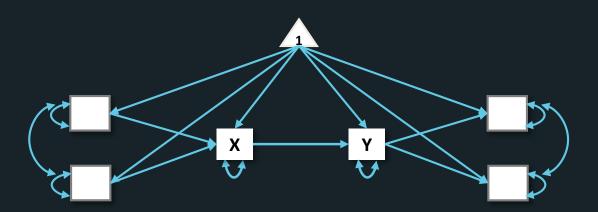
Simple Linear Regression

Simple Regression Example



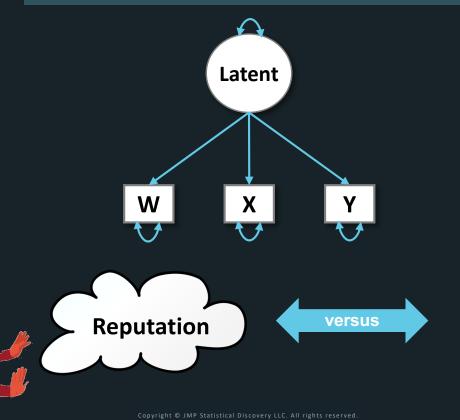
$$Y = \tau_1 + \beta_1 X + \varepsilon_y$$
$$X = \tau_2 + \varepsilon_x$$

Regression + Regression + ... + Regression = Path Analysis

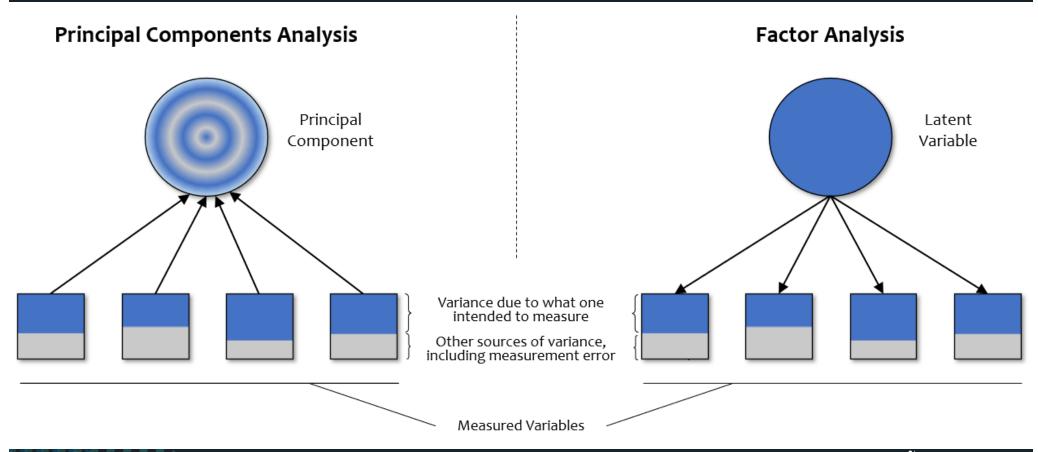

Regression Building Block

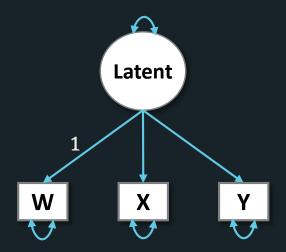
Regression + Regression + ... + Regression = Path Analysis

Regression Building Block

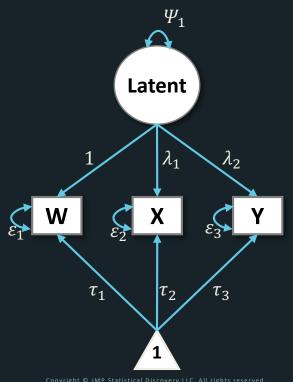


DEMO

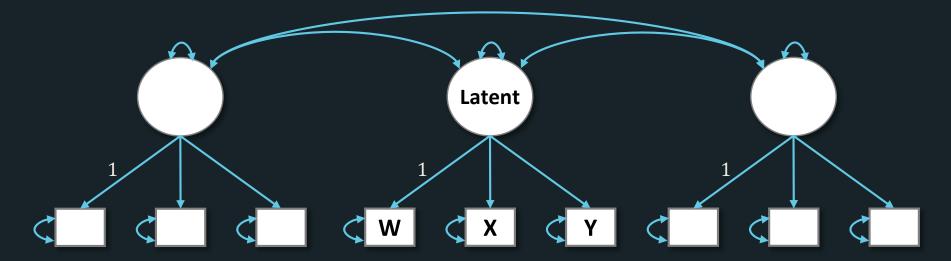

Confirmatory Factor Analysis (CFA)



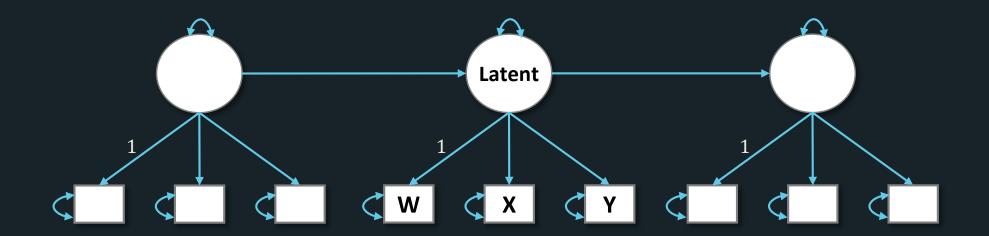
Latent Variable Definition



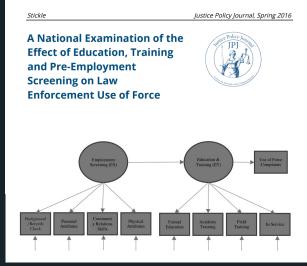
Confirmatory Factor Analysis (CFA)

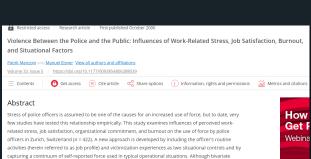

Confirmatory Factor Analysis (CFA)

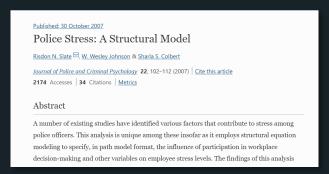
$$W = \tau_1 + 1L + \varepsilon_1$$
$$X = \tau_2 + \lambda_1 L + \varepsilon_2$$
$$Y = \tau_3 + \lambda_2 L + \varepsilon_3$$


CFA Building Block

Building Block #1 and #2


CFA + Regression Building Blocks





SEM Research Examples in Law Enforcement

Victimization, stress and use of force among South Korean police officers

Jinseong Cheong, Ilhong Yun

Policing: An International Journal

JSSN 1363-951X

Article publication date: 8 November 2011

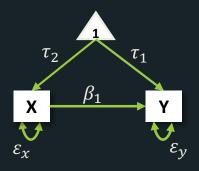
Application of the South Advance of the South Korean frontline officers (n=574).

Design/methodology/approach

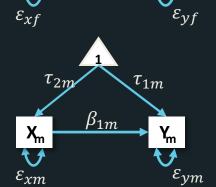
Largely drawing on a methodological approach adopted by Manzoni and Eisner the paper employs a structural equation modelling approach.

DEMO

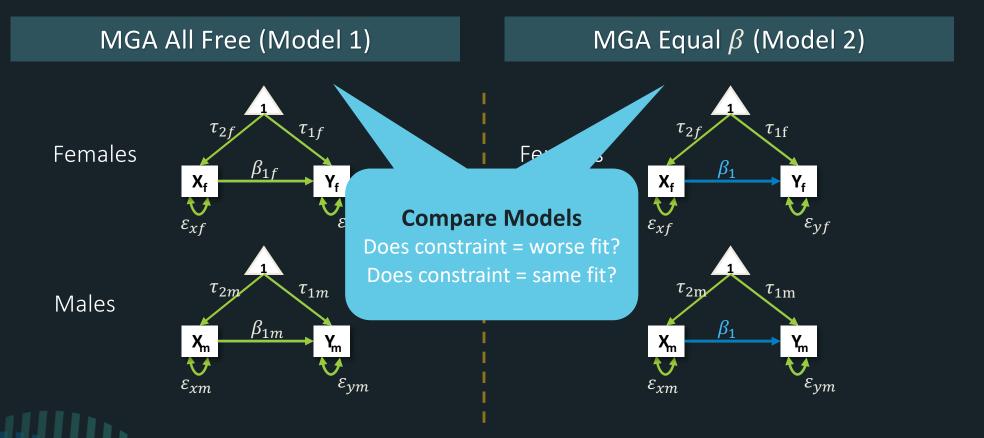
Multiple Group Analysis SEM Technique


- Extends all models fit in SEM
- Investigate similarities and differences across populations
- Requires grouping variable (often with few levels)

Multiple Group Analysis


Simple Regression Example

MGA Extension


Females

Males

Multiple Group Analysis

Multiple Group Analysis

DEMO

Summary SEM in JMP Pro

• SEM: Many benefits

• JMP Pro: Reduces barriers

jmp.com

Copyright © JMP Statistical Discovery LLC. All rights reserve