
WHITE PAPER

JMP® Extensibility Synergy with MATLAB
Case Studies Using the JMP® Interface to MATLAB

SAS White Paper

Table of Contents

Abstract . . 1

Introduction. . 1

MATLAB Functions in JMP® 11. . 2

Case I: Signal Processing/Fast Fourier Transform (FFT) Application. . . 6

Case II: DOE for Computer Simulation Model Optimization 9

Case III: Genetic Algorithm Optimization Application 12

Summary . . 20

Acknowledgements. . 20

Contact Information . . 20

John Salmon, PhD, Research Engineer, Aerospace Systems Design Laboratory,

Georgia Institute of Technology

Daniel Valente, PhD, Communications Specialist, SAS

1

JMP® Extensibility Synergy with MATLAB

Abstract
Extensibility is one of the hallmarks of JMP. In JMP 11, the provisions exist for integrating
JMP with MATLAB. From JMP Scripting Language (JSL), you can send data from JMP
to MATLAB, execute MATLAB functions and return results from MATLAB to JMP for
further analysis and visualization. This paper will present three case studies that apply
this new functionality. The examples shown will illustrate functionality where JMP and
MATLAB have features that do not overlap. In the first case, a MATLAB program is
executed to transform data from the time to frequency domain and return the results
to JMP. The second example shows how to design an experiment in JMP using the
Custom Designer, run trials of a simulation model in MATLAB, and then return results
for analysis and profiling in JMP. The third case uses a genetic algorithm in MATLAB to
optimize a multidimensional objective space interactively from JMP.

Introduction
JMP is a desktop, in-memory statistical analysis and data visualization software product
from SAS. In addition to an extensive collection of capabilities for performing statistical
analyses and graphing data, it also includes a rich scripting language, JSL. In recent
versions of the software, JMP users have been able to connect to other software to
extend the capabilities of JMP. Currently, users can connect to SAS®, R and – most
recently in JMP 11 – MATLAB, which is the focus of this paper.

MATLAB, a software solution from MathWorks, is a matrix programming language
and interactive programming environment for numerical computation, data analysis,
visualization, and building custom engineering models and applications. It includes a
rich set of add-on modules, known as toolboxes, which give MATLAB users access to
functions to perform specialized modeling and design work as needed.

The JMP interface to MATLAB provides access to MATLAB with JSL through a set
of functions that will be described in detail in the next section of this paper. The basic
execution model is to first initialize a MATLAB connection, perform the required MATLAB
operations and then terminate the MATLAB connection. Similar to the R interface in
JMP, the connection utilizes a separate instantiation of MATLAB.

Combined with the other development tools within JMP, including the Application Builder
and the Add-In Builder, both experienced and novice users of JSL can build custom
applications, which can leverage engineering models or functionality in MATLAB. The
applications can give colleagues who don’t use MATLAB or understand its programming
language access to MATLAB models through a JMP application. These applications can
be easily deployed across an organization as an add-in.

2

SAS White Paper

The three cases highlighted in this paper give the reader an overview of the some
of the possible interaction and integration points between JMP and MATLAB. Each
example focuses on a single integration paradigm with the idea that each of these JSL
programs could serve as a starting point for a more advanced customized application.
Each discusses the “what” and the “why,” often with only broad outlines of the “how”
(specifically in the details of the MATLAB functionality). We will, however, introduce the
scope of the integration interface and present a list of the available JSL functions and
the complete JSL code for a simple example in the introductory section. Also, the code
for most of the examples presented in this paper can be downloaded from the JMP File
Exchange at: jmp.com/fileexchange.

MATLAB Functions in JMP®

MATLAB must be installed on the same computer as JMP, and JMP is not distributed
with a copy of MATLAB. Because JMP is supported as both a 32-bit and 64-bit
Windows application, you must install the corresponding 32-bit or 64-bit version of
MATLAB. JMP delays loading MATLAB until a JSL script requires access to it. When
JMP needs to load MATLAB, it is located based on the current search path using a
PathVar declaration. This should be set using the platform preferences of the JMP
interface to MATLAB. Setting the MATLABROOT to the path of the MATLAB installation
on your computer will make sure JMP knows where to find MATLAB (See Figure 1).

Figure 1. MATLAB interface platform preferences.

3

JMP® Extensibility Synergy with MATLAB

After the path has been set in the platform preferences, you can perform a quick check
to make sure that your MATLAB connection is working by running a  MATLAB Init();
function. If the connection has been successful, the function will return 0 to the log. If the
operation was not successful, an error message will be returned.

Table 1 shows the available JSL functions for the JMP interface to MATLAB.
All of these functions are listed in the Scripting Index within the JMP help system
(Help > Scripting Index).

JSL Function

MATLAB Connect (); Returns a MATLAB connection scriptable object.

MATLAB Control (); Changes the control options for MATLAB.

MATLAB Execute (); Sends a list of inputs, executes statements and
returns a list of options.

MATLAB Get (); Returns data from MATLAB, where the name
argument can represent any of the following
MATLAB data types: numeric, string, matrix, list,
data frame.

MATLAB Get Graphics (); Returns the last graphics object written to the
MATLAB graph display window in a graphics
format specified by the format argument.

MATLAB Init (); Initializes the MATLAB interface.

MATLAB Is Connected (); Returns 1 if there is an active MATLAB
connection; otherwise, returns 0.

MATLAB JMP Name to MATLAB Name (); Maps a JMP variable name to a MATLAB variable
name using MATLAB variables naming rules.

MATLAB Send (); Sends data to MATLAB, where the name argument
can represent any of the following JMP data
types: numeric, string, matrix, list, data table.

MATLAB Send File (); Sends a data file to MATLAB where the filename
argument is a string specifying a pathname to the
file to be sent to MATLAB.

MATLAB Submit (); Submit statements to MATLAB. Statements can
be in the form of a string value or list of string
values.

MATLAB Submit File (); Submit statements to MATLAB using a file
specified by the path argument.

MATLAB Term (); Terminate the MATLAB interface.

Table 1. Listing of available MATLAB integration functions available through JSL.

4

SAS White Paper

A first example to demonstrate how the interface works is shown in Figure 2. This
example shows each stage of the interface workflow, so it serves as a good prototype
of more complex scripts. The first step is to initialize the MATLAB connection with a
MATLAB Init(); call.

Then, we use a  MATLAB Submit(); function to execute some MATLAB code in
MATLAB. In this case, we are running the “magic” function with an input parameter of
3 and storing the results into a variable named m. In order to bring the m matrix into the
JMP variable space for further use of the results in JMP, we run the  MATLAB Get();
function, which takes the data stored in m and assigns it to a JMP variable, which we
have named: magicMat. To see the results of our small program, we write the contents
of magicMat to the log and bring the data into a JMP data table as shown in Figure 3.
And finally, we end our MATLAB session with a  MATLAB Term(); command.

The benefit here is that the data from our MATLAB program is now in a JMP data table
and ready to be visualized, modeled or explored without any further MATLAB coding.
We also gain the interactivity in JMP for exploring MATLAB model output and are able
to use the pre-existing JMP tools for data visualization (e.g., via Graph Builder, Control
Chart Builder, Distribution), data analysis (Fit Model, Partition, Screening, etc.) as well as
further data cleanup and summarization (tools in the Tables menu, Tabulate, etc.).

Figure 2. Simple MATLAB integration example.

Figure 3. A screenshot of the resulting data table from the example shown in Figure 2.

5

JMP® Extensibility Synergy with MATLAB

MATLAB users will be accustomed to working with the Command Window during the
course of a MATLAB session. When using the JMP interface to MATLAB, you can still
retain this active variable-exploration paradigm while working with your scripts and
functions by using the JSL command shown in Figure 4.

Executing a  MATLAB Control (Visible(1)); command will show a MATLAB
Command Window that you can interact with from the instantiation of MATLAB that
JMP creates. The default is to make this invisible so that MATLAB runs completely
behind the scenes when called from JMP, but there are often situations during code
development where it would be advantageous to use commands run from the
Command Window.

Once the Command Window has been brought up, you have access to the full features
of the command environment, namely the ability to probe into a variable space, access
the help system or execute MATLAB commands. Going back to our simple example,
we can examine how this Command Window may be used. Figure 5 shows the
MATLAB Command Window accessed through JSL after running the example shown in
Figure 2. From this Command Window we can look at the active workspace using the
whos command, investigate matrix values or access the help system as needed.

Figure 4. JSL to instantiate a MATLAB Command Window from JSL.

Figure 5. MATLAB Command Window instantiated when running the MATLAB Control
(Visible(1)); command from JSL.

6

SAS White Paper

If you want to run a current MATLAB program that requires the use of multiple custom
functions in different files within a folder, you need to tell JMP where to access those
custom functions. The easiest way to do this is to execute a  MATLAB Submit(“CD
‘Your FilePath Here’”); statement from JSL. After this has been submitted, you
can call any of the included functions from within JSL, now that the current directory has
been specified.

The basics of the JMP interface to MATLAB have been shown, and the next sections
will explore some possible uses for the interface with three case studies.

Case I: Signal Processing/Fast Fourier Transform (FFT) Application

It is often the case that you need to convert data that represents a time-domain signal to
the frequency domain in order to analyze its frequency spectrum. When signal vectors
contain tens of thousands of samples, an efficient way to accomplish this Fourier
transform is imperative. The Fast Fourier Transform functions in MATLAB accomplish
this task and can efficiently perform this transform, even with hundreds of thousands of
points of data. This example shows how we can build an application in JMP to send a
time-domain signal to MATLAB, perform the FFT, and then return the resulting vector of
spectral data back to JMP for visualization and further analysis.

Figure 6 shows an impulse response (IR) measured in a medium-sized office. The
resulting data file is 25,000 samples, roughly corresponding to about 0.5 seconds of
audio data (at a sampling rate of 48 kHz). The x-axis corresponds to time (displayed in
numbers of samples) and the y-axis is the amplitude of the response at that time.

Figure 6. Impulse response data measured in a medium-sized office.

 Impulse R esponse

A
m

pl
itu

d
e

- 0.013
- 0.012
- 0.011
- 0.010
- 0.009
- 0.008
- 0.007
- 0.006
- 0.005
- 0.004
- 0.003
- 0.002
- 0.001
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
Sample

7

JMP® Extensibility Synergy with MATLAB

To convert this IR from the time domain to the frequency domain, we can use a pre-
existing MATLAB function that we have written, which will convert these data, and also
return the proper frequency vector given the sampling frequency of our audio file (so that
the resulting x-axis will be correct when plotted).

To make this program more convenient for future use, we can also create a column
dialog that will ask the user for the column, which includes the time data that needs to
be converted to the frequency domain.

The code to produce Figure 7 is shown in Figure 8. The  Column dialog();  creates
a new window that lists all the columns in the current data table. We can use the
collist();  to collect the column that includes the data. This column will contain
data in the time domain for converting to the frequency domain in our MATLAB function.
Then we store the data in the column that the user selected into a variable called yvec.

Figure 7. FFT application launcher.

Figure 8. Code to produce Figure 7.

8

SAS White Paper

The code to run the FFT function in MATLAB is shown in Figure 9. Our calcFFT_FR12
function takes several input arguments: the matrix that contains the input signal, the
sampling frequency and two switches. For this example we have set the switches to 0
because we simply want to calculate the FFT and frequency array vector, then return
the results to JMP. The extra functionality built into this program is unneeded for our use
here.

The function returns three variables: The matrix containing the FFT data, an RMS value
and a matrix that contains each FFT bin’s frequency value in Hz. In JMP, we are just
interested in the fftsignal and freqArray. We can use the  Matlab Get();
function to bring those variables from the MATLAB variable space to that of JMP. As in
our simple example (Figure 2), now that the data is in the JMP variable space, we can
bring the data into a JMP data table. Then we can use the Graph Builder to visualize
the frequency response of the IR (see Figure 10). As in all JMP platforms, the graphs are
interactive, so a region of the response that seems to be more intense in energy than the
surrounding frequencies can be selected, and these points are automatically selected
back in the data table. Markers or coloring can be added to the data points, and we
can drill down into this region to study it in more detail – all without having to write any
additional plotting code or run subsequent analyses in MATLAB.

Figure 9. Code to run an FFT function in MATLAB.

 FFT A nalysis

A
m

pl
itu

de
 (d

B
FS

)

- 80

- 75
- 70

- 65
- 60

- 55

- 50
- 45

- 40
- 35

- 30

- 25
- 20

- 15
- 10

-5

0

20 30 40 50 60 70 100 200 300 400 500 700 1000 2000 3000 4000 6000 10000 20000

Frequency (Hz)

Figure 10. FFT analysis of impulse response data.

9

JMP® Extensibility Synergy with MATLAB

Now that this time-to-frequency conversion program is created in JMP, we can add it
to the set of available tools during analysis any time that this functionality is needed. We
have effectively expanded the scope of analysis that JMP can perform by utilizing this
MATLAB function.

Case II: DOE for Computer Simulation Model Optimization

The Custom Designer in JMP is an easy way to set up an experimental design to fit
the specific problem you are facing. It can be customized to the unique set of factors,
constraints and questions you are trying to address through experimentation.

Adopting a systematic design for optimizing the output of a computer simulation
model or matching the response of a model to collected behavioral data are two areas
where using design of experiments (DOE) in JMP makes algorithm development in
MATLAB more efficient. We can use JMP to set up experimental conditions, perform
simulation runs and analyze or explore a model’s opportunity space interactively with
the JMP Profiler.

In the next example, we will consider exploring a simulation model built in MATLAB,
which includes five input parameters. Our goal is to maximize the output of the model
by tuning each of these five parameters.

Figure 11. Custom design for a MATLAB simulation model.

Figure 11 shows the setup of the response and the five factors we are interested in
exploring. Setting up this experiment in JMP using a Custom Design will produce an
optimal design of run conditions for our model, as well as the Fit Model script to analyze
the results once they are returned from our MATLAB model.

10

SAS White Paper

The JSL to run our experiment is shown in Figure 12. We will use the  for each
row (); function to run through each of the rows in the JMP data table, send factor
values to MATLAB and then execute our model with this factor setting. As in the
previous example, we can use the  MATLAB Send (); function to send each of the
factor settings v1-v5 from the JMP variable space to the MATLAB variable space, and
then execute our MATLAB model. This returns the yield output given our set of input
variables. To return the yield value to the row corresponding to our trial run, we can use
the  MATLAB Get (); function to bring the yield variable into the JMP variable space.
Finally, we can use the  :Response = resp; code to write the resulting yield into the
response column in the row that corresponds to the condition we have just run.

This code is flexible; if we decide to change the number of experimental conditions, add
factor constraints or adjust our factor settings, we can just rerun the code and collect
new data from our MATLAB model.

The resulting model can be fit using the Fit Model script generated by the experimental
design. This is shown in Figure 13. While multiple regression can be performed using
MATLAB, the interactivity in JMP afforded specifically by the JMP Prediction Profiler is
an attractive option to MATLAB users, both for exploring the opportunity space of the
model as well as for communicating results to others. With the Profiler, you can drag a
factor, change its setting and immediately see the impact on the response and other
factors. By using the Maximize Desirability command in the Profiler, you can quickly
identify the factor settings, which amount to the greatest yield response.

Another useful tool in Fit Model is the “assess variable importance” option, which
is also accessed via the Prediction Profiler. This is shown in Figure 14. The “assess
variable importance” method can be used to see the impact each factor is having
on a response. It is also a way to compare factor effects across multiple modeling
techniques. This technique can also be used to compare new versions of MATLAB
simulation models using a common method.

Figure 12. JSL code to run each row in the JMP data table as a condition of the
simulation model and return results back to the yield column. This code is robust to
new experimental designs and number of conditions.

11

JMP® Extensibility Synergy with MATLAB

By using JMP to design experiments, run MATLAB simulation models, return results
and analyze them in JMP, you speed up the learning cycle in designing your MATLAB
models and optimize resources – especially when MATLAB model simulation run times
are long. Implementing a systematic way to run an experiment using an optimal design
allows you to extract the most information from a simulation model for the same amount
of experimental runs.

Figure 13. Results of Fit Model from running the simulation model in MATLAB. We can
then use the interactive Profiler to explore the model, optimize variables and maximize
our yield response.

M A TLA B M odel R esponse

A ctual by Predicted Plot

0

200

400

600

800

Re
sp

on
se

 A
ct

ua
l

0 200 400 600 800
Response Predicted P<.0001 RSq=0.82

RM SE=77.104

Summary of Fit
RSquare
RSquare Adj
Root M ean Square Error
M ean of Response
Observations (or Sum Wgts)

0.824105
0.815847
77.10414
362.4137

224

Prediction Pro� ler

0
200
400
600
800

Re
sp

on
se 754.845

[717.9902,
791.6998]

0
0.

5
1

D
es

ira
bi

lit
y

0 .840492

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8

0 .7
X1

1.
8

1.
9 2

2.
1

2.
2

2.
3

1 .8
X2

40 45 50 55 60

40
X3

-1
0 -5 0 5 10

10
X4

-1
0 -5 0 5 10

- 10
X5

0

0.
25 0.

5

0.
75 1

Desirability

12

SAS White Paper

Figure 14. Assessing variable importance from the Profiler. This method lets us compare
main and total effects of each of our factors on the response. It can also serve as an
omnibus method for comparing the impact of variables across iterations of our MATLAB
simulation model, giving a clear view of the input variables that most affect the response.

V ariable Importance: Independent R esampled Inputs

Summary R eport
Column
X1
X3
X2
X5
X4

M ain E� ect
0.354
0.398
0.001
0.049
0.031

Total E� ect
0.54

0.455
0.128
0.049
0.031

.2 .4 .6 .8

M arginal M odel Plots

0
200
400
600
800

Re
sp

on
se

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8

X1

40 45 50 55 60

X3

1.
8

1.
9 2

2.
1

2.
2

2.
3

X2

-1
0 -5 0 5 10

X5

-1
0 -5 0 5 10

X4

Case III: Genetic Algorithm Optimization Application

A final example of the JMP interface to MATLAB is to utilize capabilities that are
not included in JMP but are found in MATLAB. An example of this is a multivariate
optimization employing a genetic algorithm (GA).

Suppose a model is developed in MATLAB that calculates the impact of implementing
different sets of technologies on an aircraft to: 1) decrease fuel consumption, 2) reduce
emissions and pollutants (i.e., NOx), and 3) reduce noise during takeoff and landing.
These three objectives are further joined by a desire to keep the risk low (by adding
as few technologies as possible to the aircraft design) while minimizing the cost. Of
course, these objectives may conflict. The trade-offs between the objectives can
result in different optimal technology sets based upon the decision maker’s objective
function. Since this objective function is unknown a priori, a Pareto frontier, or the set
of nondominated points, is sought to explore and quantify the designs that would be
optimal for different objective functions.

13

JMP® Extensibility Synergy with MATLAB

With more than 90 technologies within the entire technology portfolio from which to
choose, exhaustively testing all 290 combinations is infeasible. Therefore, a genetic
algorithm is employed in MATLAB to assist in discovering this Pareto frontier for further
decision analysis. Given that an optimizer implementing a genetic algorithm may require
significant time to execute multiple generations with large populations of candidate
designs, a user may want to perform intermediate analysis in between each generation,
stop the execution if errors are found, or exit early if a sufficient Pareto frontier is
defined. Furthermore, checking the behavior of the optimizer without running a full set of
generations may be more useful for validation and verification purposes. Lastly, since a
user or the end decision maker will want to explore the Pareto frontier dynamically after
the model has been executed, using JMP to perform the post-processing and data
analyses can facilitate the decision making.

The MATLAB model creates various output graphs shown in Figure 15. The associated
data stored in variables or matrices can be exported to tables or other formats (e.g.,
CSV). However, since a user may want to interact with and perform additional analyses
on these data to explore the technology sets linked to each design point, a simple
interface can be developed within JMP, which ties directly to the MATLAB output data.
Data selection, filtering and other interactive functionality within JMP easily facilitate the
analysis required for good decision making.

The MATLAB model contains a main executable file with a number of initialization
commands and required functions for the GA to operate correctly. This main file will
make use of all other .m files containing function definitions as well as native functions
specific only to MATLAB. Some of the user-defined variables include setting: 1) the
technology readiness level required by feasible technology sets, 2) the maximum
acceptable cost, and 3) the population size. Similarly, additional GA-specific parameters
such as the crossover rate, mutation rate and maximum number of generations can
be defined.

Figure 15. MATLAB output graphs from GA optimizer after one generation. Left: 3-D
graph of Pareto frontier. Right: 2-D view of the same data.

	
 	

14

SAS White Paper

To define these parameters from a JMP interface, a user can obtain access to various
inputs (e.g., a number edit box), which are sent to MATLAB to update those specific
variables. Other essential inputs to the model, such as the compatibility matrix (the
matrix defining whether two technologies are mutually exclusive), could be likewise
defined by the user in more complex interfaces, or by selecting the appropriate data file,
but a default matrix is set from the MATLAB code directly. Similarly, an impact matrix,
which defines each technology’s settings for various aircraft design parameters used to
calculate the noise, fuel burn and emissions of the specified design, could likewise be
updated or entered from the JMP interface.

Once the MATLAB connection is made from JMP, the JMP interface initializes the
first generation of data points (i.e., technology combinations) and evaluates the
performance of each combination. Then the user is permitted to execute additional
generations of the GA optimizers by sending the command through the connection
to improve the set of combinations and approach the Pareto frontier of nondominated
points. After each iteration (or generation), the JMP interface will display the data on
a 3-D graph representing the output metric values for each of the three objectives for
each technology set. Each generation is displayed in the interface with the capability
to explore the full generation history as shown in Figure 16. With the data inside a
JMP data table, data points can be selected, hidden, filtered or further analyzed in the
numerous statistical and graphical platforms within JMP.

Figure 16. 3-D graph of the 10th generation of the GA optimizer
for the three objectives fuel burn, noise and NOx.

	

15

JMP® Extensibility Synergy with MATLAB

One example of such a process is available within the interface directly. By clicking on
the “Animate” button, a 3-D graph and scatterplot matrix are created with a dynamic
filter prepared to cycle through and animate the relative exploratory nature of each
generation in the GA optimizer. See Figure 17.

Figure 17. Implementing a filter with animation to explore the generation history of the
GA optimizer.

	

After 15 generations, many members in the population approach the Pareto frontier. This
is clearly visible in the Noise vs. Fuel Burn subplot in the scatterplot matrix of Figure 17.
The edge of the nondominated points (top right corner of this subplot) reveals a trade
between noise and fuel burn. Along this edge or Pareto frontier, seeking to improve one
objective may require a decrease in the other. Other trades exist in the other subplots
where the axes have been set such that the ideal solution is in the top right corner of
each subplot (i.e., larger negative values are better).

Furthermore, an analyst familiar with the interactivity inherent in JMP can use the
software’s native functionality to isolate and identify the Pareto frontier in the last
generation or in each of the generations. One way to accomplish this would be to use
basic data table manipulation techniques, selecting the dominant rows from the Row
Selection menu and unchecking the appropriate check boxes associated with each of
the three objectives to indicate a desire for low values. A button to perform this process
automatically also has been added to the interface beside the “Animate” button, the
results of which are applied to the data and shown in Figure 18. Although various
MATLAB functions exist to perform a similar action, a user may not be willing or qualified
to seek out the necessary functions. Thus, bringing the data into JMP can make it easier
to perform the desirable analysis since it doesn’t require the user to search for and learn
new functions in MATLAB.

16

SAS White Paper

Figure 18. Application of native JMP functionality for selecting dominant points.
	

An animation with the Pareto frontier identified will cycle through the generations,
showing the movement of the frontier to more optimal values. Similarly, these plots can
be created to compare generations side by side, as shown in Figure 19, to study the
intermediate Pareto frontier at each generation.

Finally, the interactivity of GUI elements in JMP enables dynamic exploration of the actual
set of technologies associated with each design point. These data can be joined with
the performance metrics and costs associated with any particular technology portfolio
for further comparisons, analysis and, ultimately, portfolio decisions.

A number of methods, described below, can be implemented to facilitate this process
of exploring the technology portfolios that compose the Pareto frontier of the last
generation executed.

Figure 20 plots the data from the last generation with the number of technologies in
each portfolio and the associated cost. In general, and as expected, more technologies
in a portfolio result in a higher cost. However, with the JMP functionality to select points
on the Pareto frontier of the three-objective space, the subdivision between dominated
and nondominated points can be quickly applied and separated in Graph Builder, as
shown on the right-hand graph of Figure 20.

The analysis suggests to reach the Pareto frontier, a relative cost just greater than 43 is
required. Similarly, the minimum number of technologies at that same point to reach the
Pareto frontier is 18.

17

JMP® Extensibility Synergy with MATLAB

However, this is only half the trade-off between cost, risk and performance. By adding
the output metrics of the three objectives to the graph, the trade-offs between cost and
performance are more readily visible, as shown in Figure 21.

Figure 19. Comparing generations 0 (top left) through generation 16 (bottom right) of the
GA optimizer (skipping every other generation), for the objectives of minimizing noise
and fuel burn.

N
oi

se
 M

ar
gi

n
N

oi
se

 M
ar

gi
n

N
oi

se
 M

ar
gi

n
N

oi
se

 M
ar

gi
n

N
oi

se
 M

ar
gi

n
N

oi
se

 M
ar

gi
n

N
oi

se
 M

ar
gi

n

N
oi

se
 M

ar
gi

n

N
oi

se
 M

ar
gi

n

Figure 20. Number of Technologies vs. Relative Cost without (left) and with (right)
categorizing data based on Pareto frontier status.

	

18

SAS White Paper

In this figure, the least expensive technology portfolio with a relative cost of 43 and with
18 technologies offers, comparatively, a lot of NOx and noise reduction but only 30
percent fuel burn reduction. Figure 21 suggests that with more technologies, fuel burn
reduction could be improved up to 50 percent, but at the expense of noise, and, of
course, at a higher relative cost with more risk (due to more technologies). This is evident
by the general trend lines of the data added to the same graph and shown in Figure 22.
Linear fits of the various relationships are shown with other fit metrics and could be used
in turn for additional optimization processes.

Figure 21. Number of Technologies vs. Relative Cost and performance objectives
categorized by Pareto frontier status.

19

JMP® Extensibility Synergy with MATLAB

Figure 22. Number of Technologies vs. Relative Cost and performance objectives
categorizing by Pareto frontier status with additional fit metrics.

Pursuing more than just a few technologies might still be too risky or too expensive,
and thus it may be desirable to investigate which technologies occur most often on the
Pareto frontier. Figure 23 shows the technologies sorted with respect to the frequency of
occurring in the portfolios in the Pareto frontier. One potential decision mechanism could
then be to include the most common technologies (e.g., the first five) and compare
the performance of that portfolio to the full set. It would almost definitely not be on the
Pareto frontier (which required at least 18 in this example) but may be more feasible in
terms of affordability.

Figure 23. Occurrence for each of the technologies across all portfolios on the Pareto
frontier.

	

20

SAS White Paper

Summary
This paper presented the JMP interface to MATLAB, introduced in JMP 11. The basic
execution model, available functions and a simple example showing how to use the
interface was shown. Three cases where using JMP with MATLAB functionality were
then introduced. The first showed a custom application built in JMP to use MATLAB
functionality, which extends the analytic options available for processing data in
JMP – in this case, implementing an FFT algorithm to convert data in the time domain
to the frequency domain. Next, a case where JMP is used to design an optimal
experiment and run conditions of a simulation model built in MATLAB was shown.
Results were returned to JMP for analysis, factor profiling and assessing variable
importance. And finally, a custom application built in JMP to run a genetic algorithm
in MATLAB to optimize a multidimensional object space interactively was presented.
We’ve just scratched the surface of what is possible with the connection between JMP
and MATLAB. Because of the flexibility and interactivity of JMP, as well as the ability to
explore data from MATLAB in an ad hoc nature, it is possible to use JMP as a hub to
reach out to pre-existing or new MATLAB functions, return data to JMP for analysis,
visualization and exploration, and then communicate results and findings to others.

Acknowledgements
Thanks are due to Jeff Polzin of JMP for developing and implementing the MATLAB
interface in JMP 11.

Contact Information
Comments and questions: Please contact Daniel Valente.
Email: Daniel.Valente@jmp.com
Phone: +1 919-531-1655

For more information on analytical application development with JMP visit:
jmp.com/applications/analytical_apps

21

JMP® Extensibility Synergy with MATLAB

About SAS and JMP
JMP is a software solution from SAS that was first launched in 1989. John Sall, SAS co-founder and Executive Vice President, is the
chief architect of JMP. SAS is the leader in business analytics software and services, and the largest independent vendor in the business
intelligence market. Through innovative solutions, SAS helps customers at more than 65,000 sites improve performance and deliver value
by making better decisions faster. Since 1976 SAS has been giving customers around the world THE POWER TO KNOW®.

SAS Institute Inc. World Headquarters     +1 919 677 8000
JMP is a software solution from SAS. To learn more about SAS, visit sas.com
For JMP sales in the US and Canada, call 877 594 6567 or go to jmp.com.....
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 106667_S113481.0913

