JMP Discovered Webcast May 19, 2020 Functional Data Analysis

If Computer Audio is not working, please use Teleconference Connection United States Toll Free: 1-855-369-0445 Meeting number (access code): 599 489 850#

PLEASE MUTE YOUR PHONES!

Thanks

JMP Defense & Aerospace Team

Anna-Christina De La Iglesia

Program Manager <u>anna-christina.delaiglesia@jmp.com</u> 919-531-2593

Procurement, Upgrades, License Renewals...

Sam Tobin

Senior Account Representative <u>sam.tobin@jmp.com</u> 919-531-0640

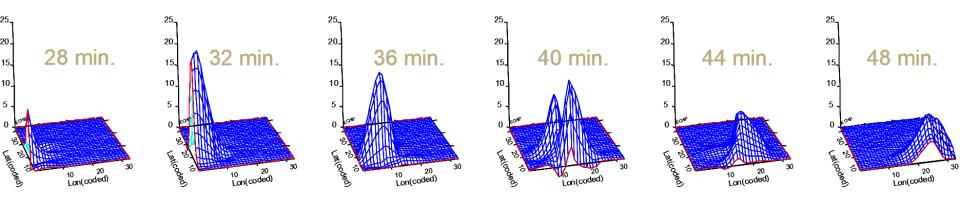
Technical Questions, Getting Started, Tutorials, Mentoring...

Tom Donnelly, PhD, CAP

Principal Systems Engineer & Co-Insurrectionist tom.donnelly@jmp.com 302-489-9291

Modeling Streamed Sensor Data with Functional Data Analysis 1) Using the Sensor Stream as an Input to a Machine Learning Model, and 2) Predicting the Shape of the Sensor Stream using Design of Experiments

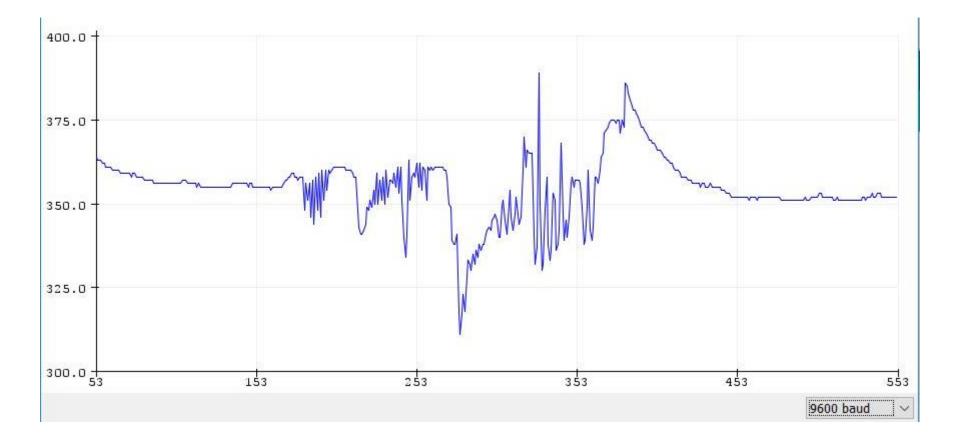
> JMP Discovered Webcast May 19, 2020


Tom Donnelly, PhD, CAP SAS Federal LLC/JMP Defense & Aerospace Team *Principal System Engineer & Co-Insurrectionist* <u>tom.donnelly@jmp.com</u> 302-489-9291 <u>www.jmp.com/fedgov</u>

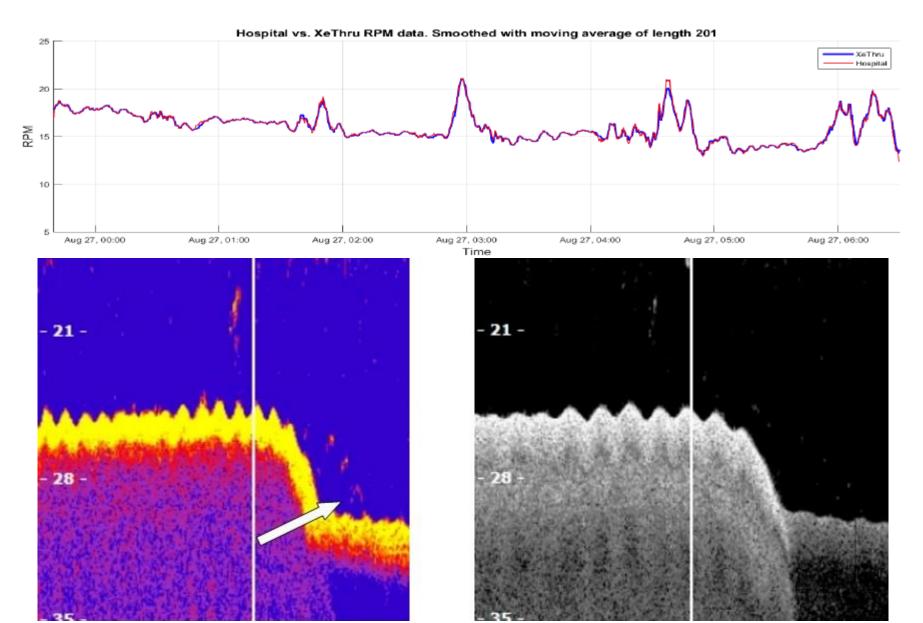
Outline

- My old Army problem
- What are Examples of Functional Data?
- What is Functional Data Analysis (FDA)?
- How do we analyze functional data?
- How do we use Functional Principal Component (FPC) scores to model responses?
- Simple case study with one FPC score use JMP
- More complex case study predicting wafer condition from 5 sensor streams & 12 FPC scores – use JMP
- My old Army problem solved
- Summary
- Additional Resources

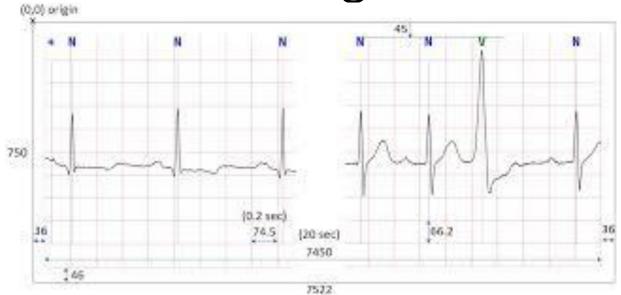
First ran into Functional Data 14 Years ago at the Army's Edgewood Chemical Biological Center

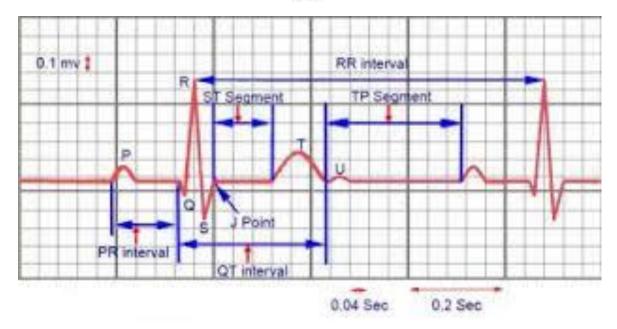

10-factor Agent Transport & Dispersion Simulation

- Able to model Concentration at a particular time,
- or Dosage *at end of time,*
- but *NOT* Concentration *shape over time*
- Prof. Jeff Wu suggested using Functional Data Analysis (See work by his former student, Prof. Ying Hung, Rutgers)


Examples of Functional Data

- Sensor streams
- Measurements taken over a range
- Vibration signals
- Spectral data
- Tool wear
- Gun barrel degradation
- Radar/sonar signatures
- Trajectories of flights between cities
- Tracking of surgeon hand movement
- Electrocardiograms (EKGs)
- Almost any response in a longitudinal order


Vibration Sensor



Radar and Sonar Data

Electrocardiograms

Remaining Useful Life Estimation Using Functional Data Analysis

Qiyao Wang, Shuai Zheng, Ahmed Farahat, Susumu Serita, Chetan Gupta Industrial AI Laboratory, Hitachi America, Ltd. R&D Santa Clara, CA, USA firstname.lastname@hal.hitachi.com

2019

Abstract—Remaining Useful Life (RUL) of an equipment or one of its components is defined as the time left until the equipment or component reaches its end of useful life. Accurate RUL estimation is exceptionally beneficial to Predictive Maintenance, and Prognostics and Health Management (PHM). Data driven contrary, when the end of the equipment's life is approaching, accurate RUL estimation provides early enough warning to the maintenance departments such that they can plan their actions in advance.

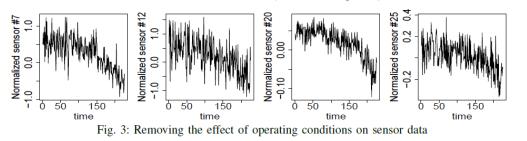
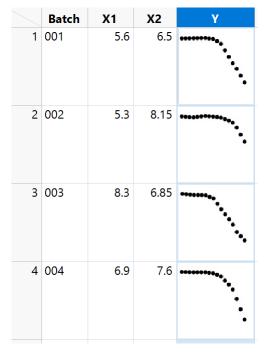


TABLE III: Score comparison on C-MAPSS data and improvement ('IMP') of functional MLP over LSTM [3]

Model	FD001	FD002	FD003	FD004
MLP [10]	1.8×10^{4}	$7.8 imes 10^6$	1.7×10^4	$5.6 imes 10^6$
SVR [10]	$1.4 imes10^3$	$5.9 imes 10^5$	$1.6 imes10^3$	$3.7 imes 10^5$
RVR [10]	$1.5 imes 10^3$	$1.7 imes 10^4$	$1.4 imes10^3$	$2.7 imes 10^4$
CNN [10]	$1.3 imes 10^3$	$1.4 imes 10^4$	$1.6 imes10^3$	$7.9 imes10^3$
LSTMBS [11]	$4.8 imes 10^2$	$8.0 imes10^3$	$4.9 imes10^2$	$5.2 imes10^3$
LSTM [3]	$3.4 imes 10^2$	$4.5 imes 10^3$	$8.5 imes 10^2$	$5.6 imes10^3$
FMLP	$2.0 imes10^2$	$9.0 imes10^2$	$1.8 imes10^2$	$1.0 imes10^3$
IMP	41.18%	80.00%	78.82%	82.14%


What is Functional Data Analysis?

Functional data analysis (FDA) is a branch of statistics that analyzes data providing information about **curves**, **surfaces** or anything else **varying over a continuum**. In its most general form, under an FDA framework each sample element is considered to be a **function**.

Traditional Rectangular Data

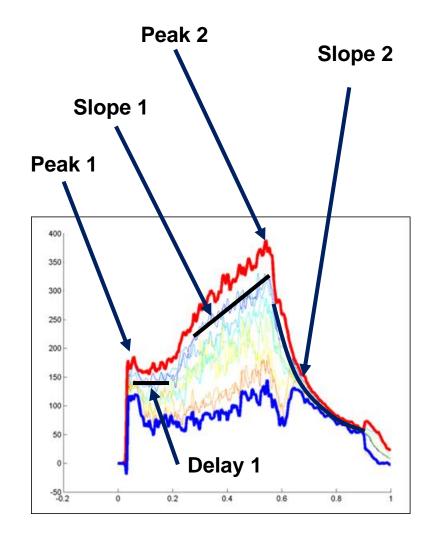
	Batch	X1	X 2	Y
1	001	1.00	1.00	2.17
2	002	0.94	1.01	0.00
3	003	1.06	1.01	2.70
4	004	0.94	0.99	0.26
5	005	1.06	0.99	2.87
6	006	1.00	1.00	1.97

Functional Data

The *curve* is the fundamental unit of observation

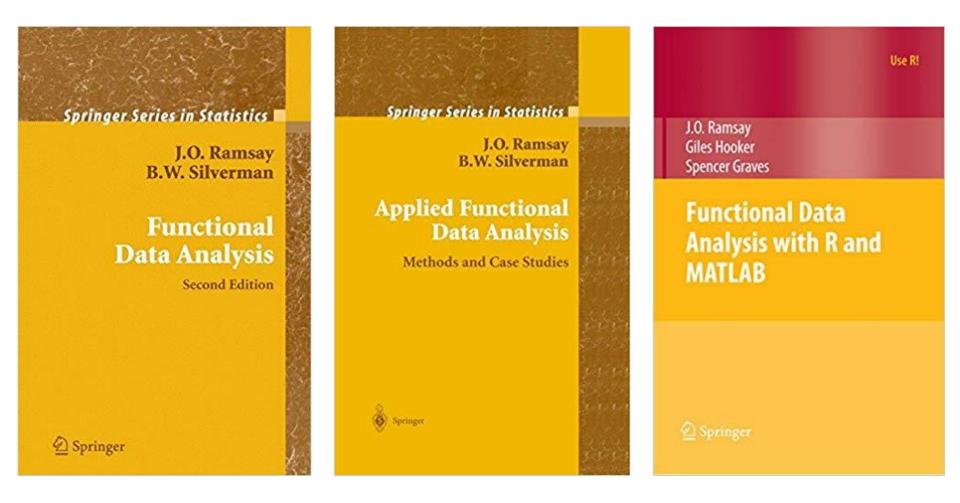
Functional Data can also be Xs. When one has curves as outputs of a DOE they are usually the Ys.

Analysis Method Overview: Data Landmarks


Curve was split into sections and key points and slopes were used as separate results

Standard statistical methods compared each landmark value

Landmarks from new tests were compared to previous runs

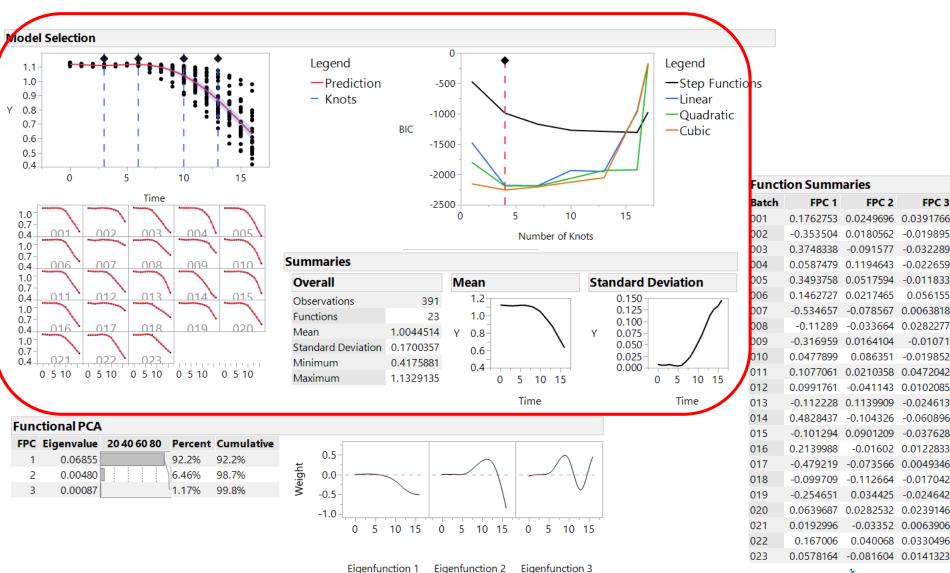

Most effective non-FDA option

Must perform statistical analysis on each landmark

Based on slide by David Harrison of Lockheed Martin Corporation

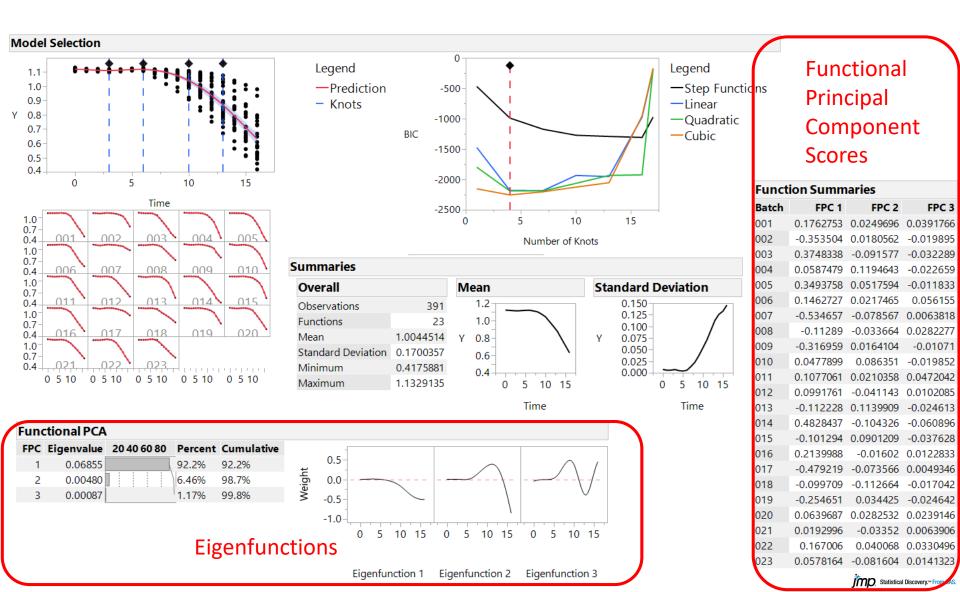
Functional Data Analysis seminal work by James O. Ramsay and Bernard W. Silverman

2005 (1e 1997) 2005

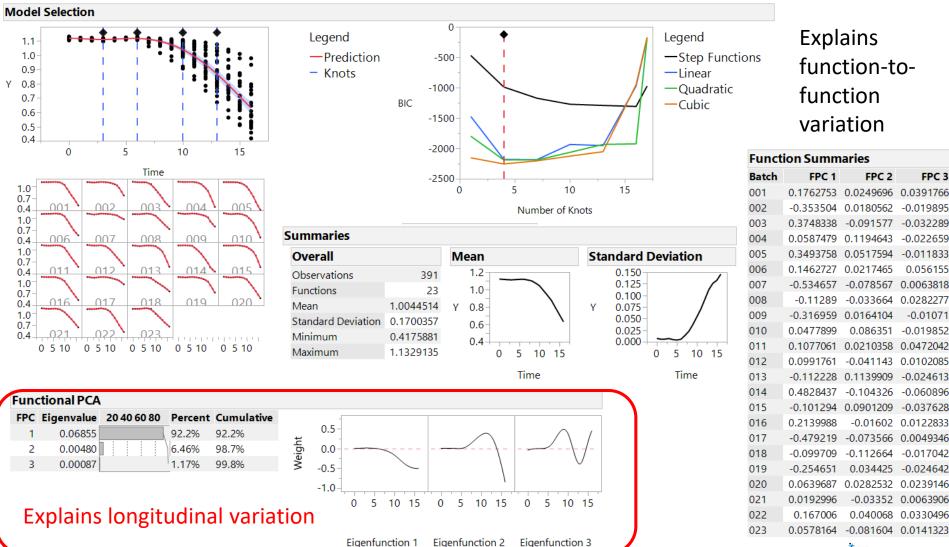

Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use the functional data – *i.e. the curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Functional Data Analysis

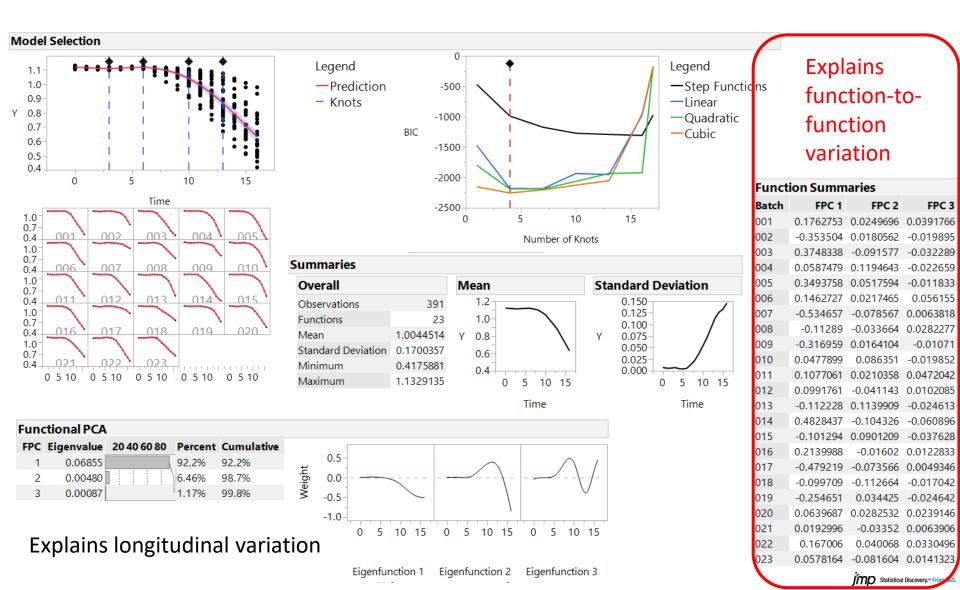

- F-DOE & F-ML use functional principal components analysis (F-PCA)
- F-PCA breaks the data into *FPC Scores* and *Eigenfunctions* in a dimension reduction that is closely analogous to classical PCA
- FPC Scores are scalars that explain *function-to-function variation*
- Eigenfunctions explain the *longitudinal variation* (e.g. time)
- We fit models with the FPC scores, cluster them, graph them, just like any other continuous data
- For F-DOE we *fit the FPC scores as functions of the DOE factors* using (FPC score) X (Eigenfunctions) as intermediate formulas, and (Modeled FPC score) X (Eigenfunctions) as final prediction formula

- 1. Convert streams of data into a function Fit Splines or Fourier basis functions
- 2. Create Functional Principal Components of the basis function do F-PCA

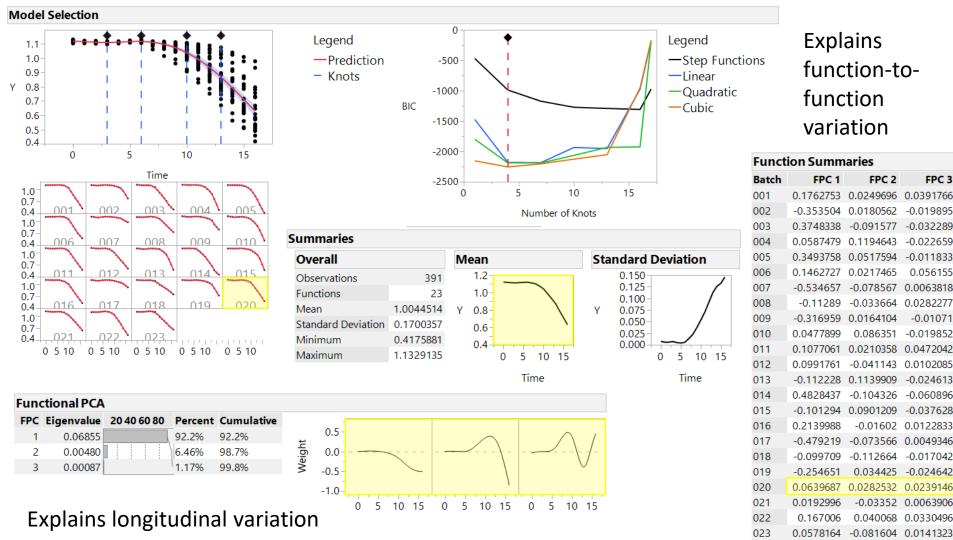


TIMD Statistical Discovery.™ From SAS

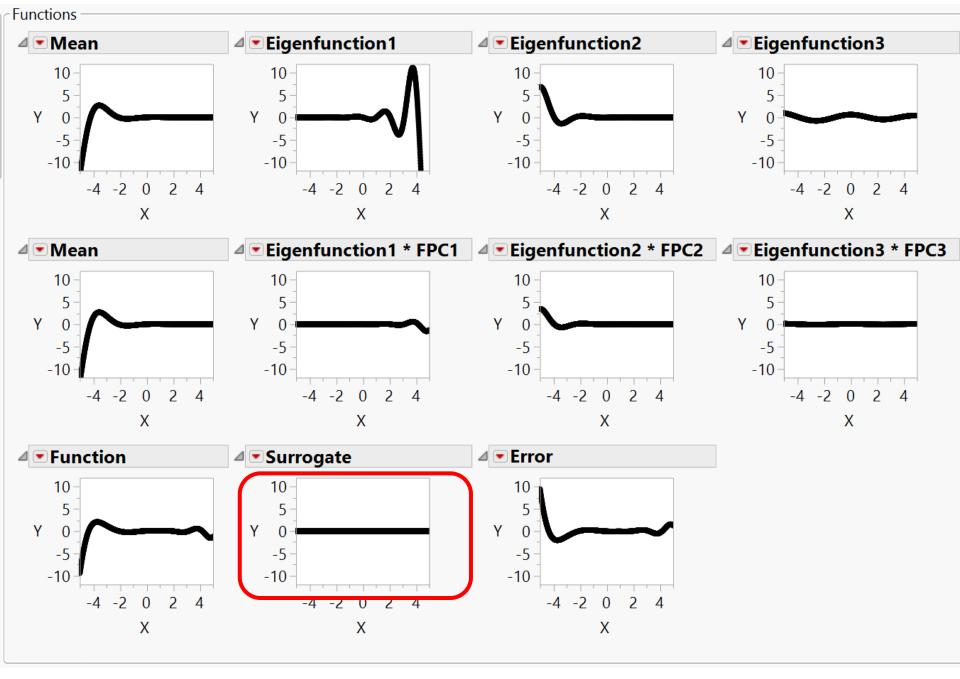
- 1. Convert streams of data into a function Fit Splines or Fourier basis functions
- 2. Create Functional Principal Components of the basis function do F-PCA

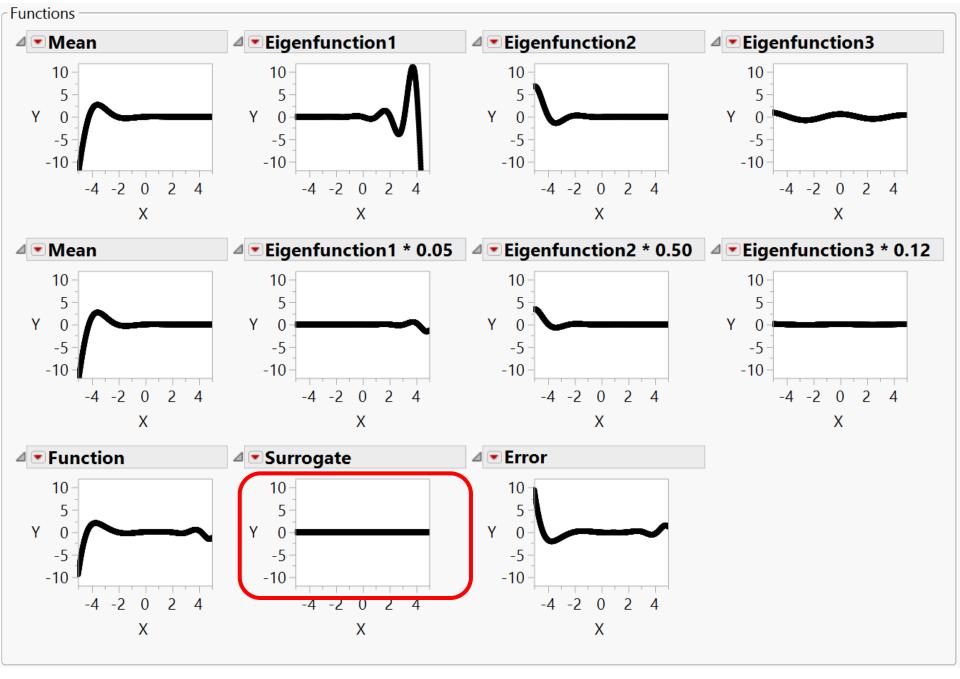


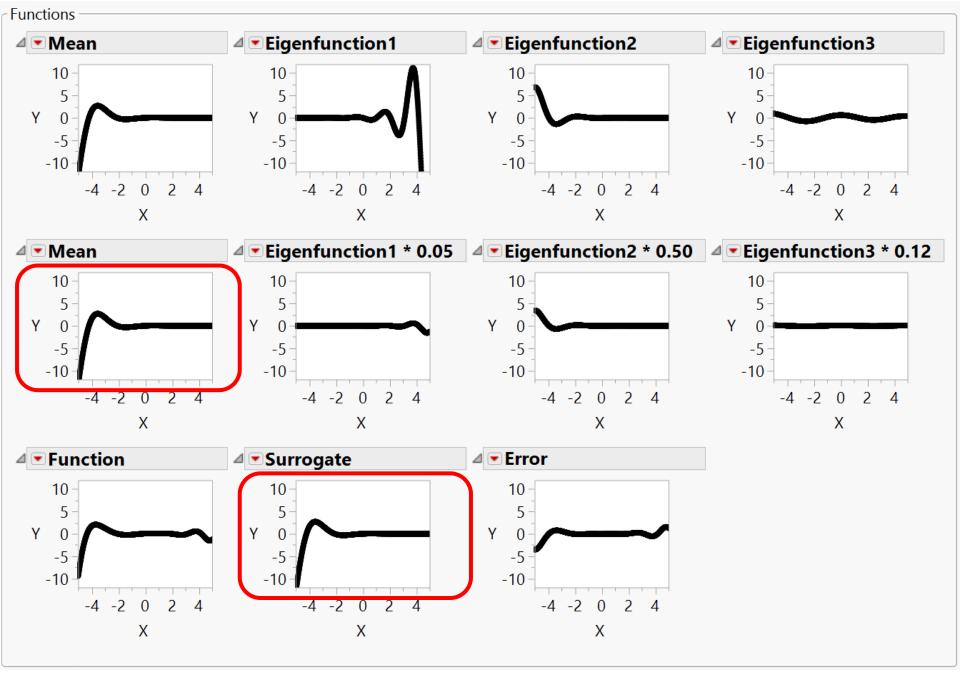
- 3. Eigenfunctions explain the longitudinal variation.
- 4. Function Summaries (FPC scores) explain function-to-function variation.

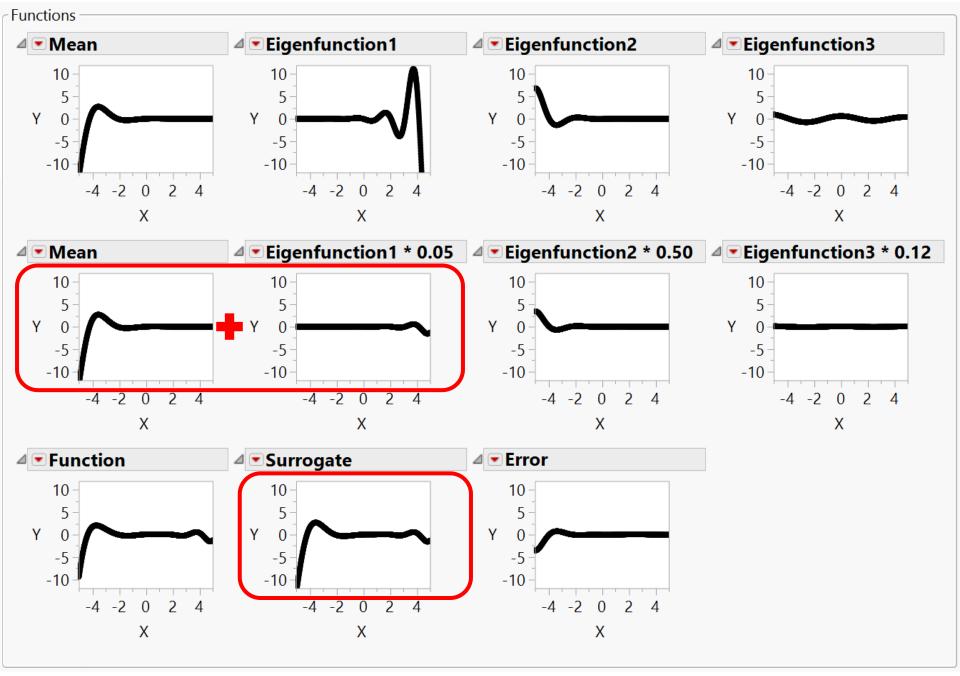


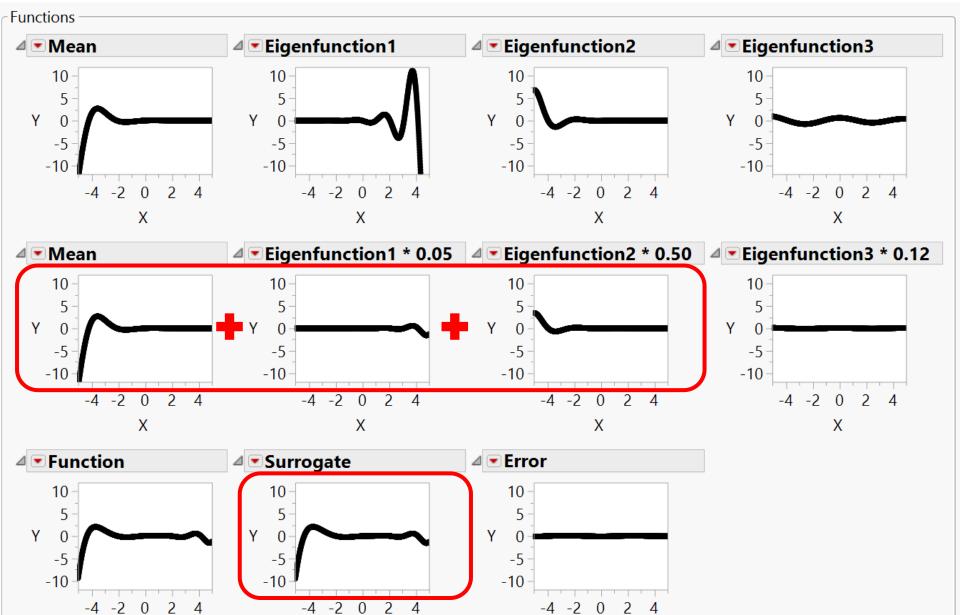
TIMD Statistical Discovery.™ From SAS


- 3. Eigenfunctions explain the longitudinal variation.
- 4. Function Summaries (FPC scores) explain function-to-function variation.



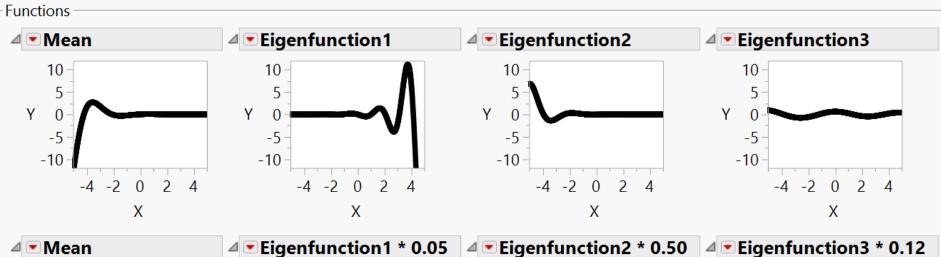

5. Products of FPC scores multiplying their corresponding eigenfunctions, when added to the Mean closely reproduce the individual function (batch) curves.

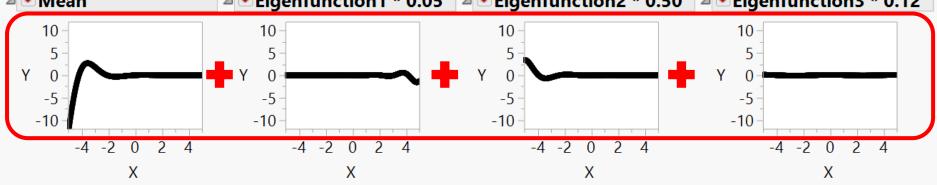

Eigenfunction 1 Eigenfunction 2 Eigenfunction 3

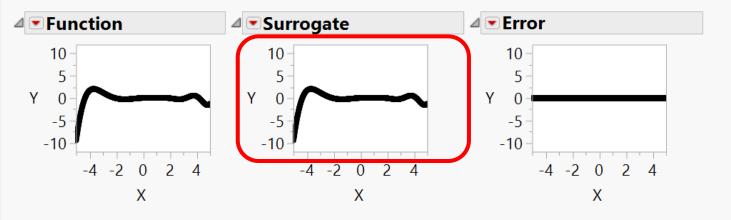


 $Y(X) = \mu(X)$

 $Y(X) = \mu(X) + 0.05 \cdot E_1(X)$

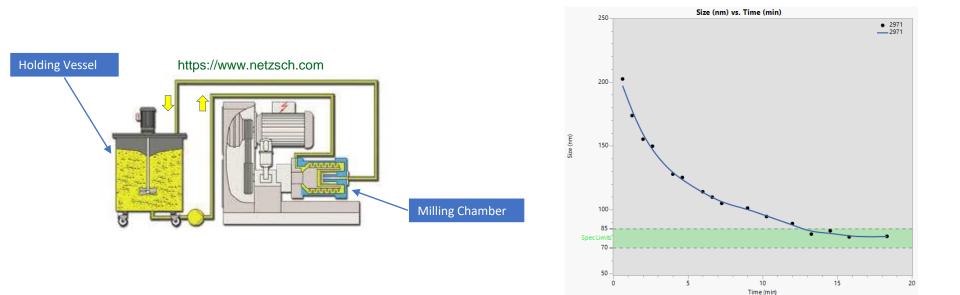



Х


 $Y(X) = \mu(X) + 0.05 \cdot E_1(X) + 0.50 \cdot E_2(X)$

Х

Х

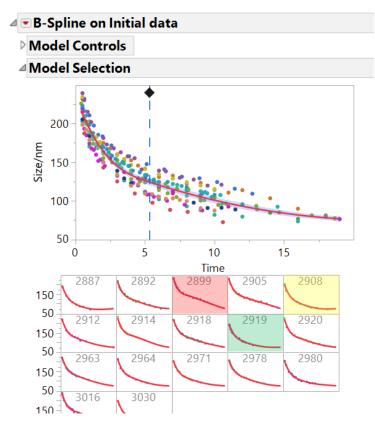


 $Y(X) = \mu(X) + 0.05 \cdot E_1(X) + 0.50 \cdot E_2(X) + 0.12 \cdot E_3(X)$

Simple Case Study Based on Real Data Using Functional Principal Components

FPCs efficiently summarize your functional data in a few components, but how do we use these to help analyze our data?

Example DoE response



Example DoE Response

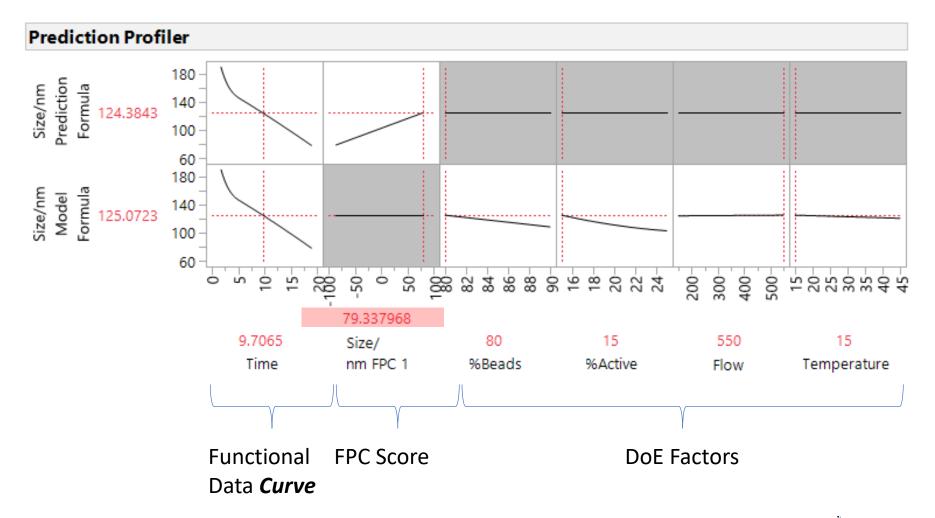
LEFT: Definitive Screening Design plus Confirmation Trials RIGHT: Measured Batch Profiles - Thick yellow line is "Ideal" response, aka "Golden Curve"

Batch	Run Order	% Read-	%Active	Flow	Temperature	Trial Type	Size (nm) vs. Time (min)	Batch
2887	Run Order	% beads 90		150	•	Design	250	2887
2892	2	80	25	350		Design		2892
2892	3	80		550		Design	- 💏	2899 2905
2905	4	80	15	150		Design	- 🔪	2908 2912
2903	5	90		150		Design		2914
2908	6	90		150		Design	200 -	2918 2919
2912	7	85	15	150		Design		2920
2914	8	90		550		Design		
2918	9	90		550		-		2971
2919	10	90		350		Design Design		
2920	10	80		150			Ê .	
						Design	(E) 150-	
2964 2971	12	85	20	350		Design	- ²	3045 3048
	13	80		150		Design		3049
2978 2980	14	80 85	25 25	550 550		Design		
3016	15					Design		3063
		80		550		Design	100-	5000
3030	17	90		550		Design		
3037	18	87.5	17.5	450		Confirmation	85	
3045	19	87.5	22.5	450		Confirmation	Spec Limits	
3048	20	87.5	17.5	250		Confirmation	70	
3049	21	82.5	17.5	450		Confirmation		
3054	22	82.5	22.5	250		Confirmation	50 -	
3060	23	90		550		Confirmation	0 5 10 15	20
3063	24	85		350		Confirmation	Time (min)	
5000	25	•	•	•	•	Confirmation		

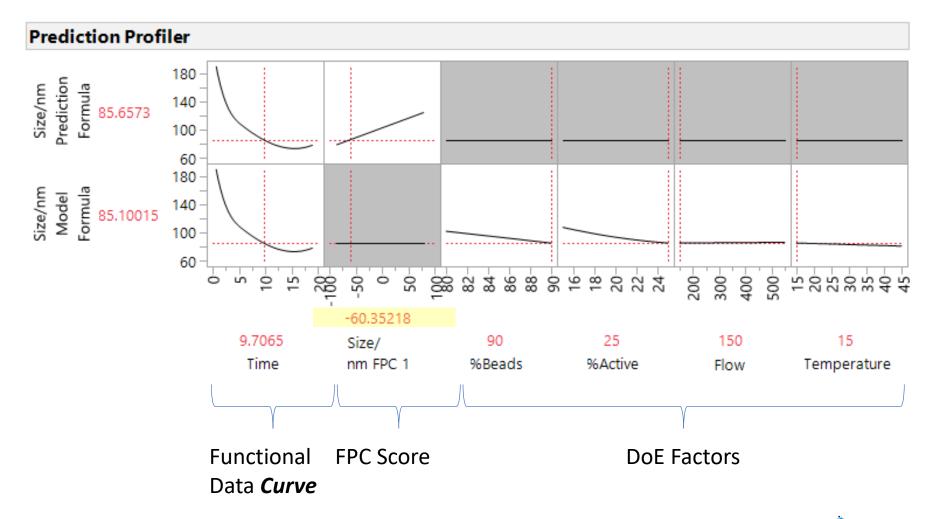
Single Eigenfunction and Associated FPC Scores for each Batch

✓ Functional P FDC Finance		00 D (Course Lat	
FPC Eigenval			Cumulative	
1 2122	2.9	99%	99%	
Function Sum	maries			
Batch of Mill				
DOE responses	FPC 1			
2887	-85.9675	ΝЛα	ore	
2892	2.2051353			
2899	79.337968	📛 Ditte	erent: +79	
2905	58.272695			
2908	-60.35218	-		
2912	7.7564941	\sim		
2914	49.652658	Simi	lar: -58 ± 2	2
2918	22.510929			
2919	-56.34453			
2920	9.1386688	Mean 250		
2963	29.363581			
2964	-13.79295	E 200 - 150 - 200		Weight
2971	-21.19822	نې ۱00 –		We
2978	-6.822422	50		
2980	-38.32591	0	5 10 15 20 Time	
3016	71.771035			
3030	-47.20546	V(V) =	$\mu(X) + F$	D/

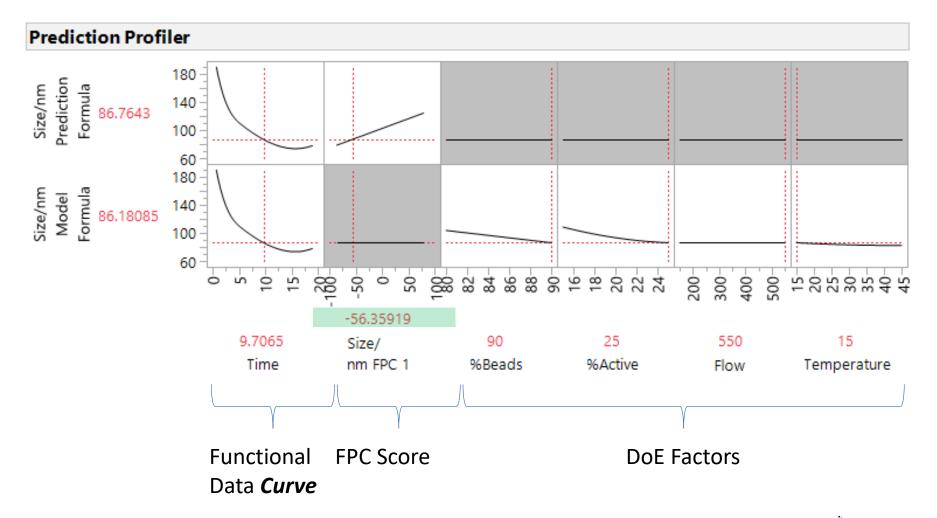
Copyright © 2018, SAS Institute, Inc. All rights reserved.

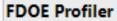

Statistical Discovery.™ From SAS.

0

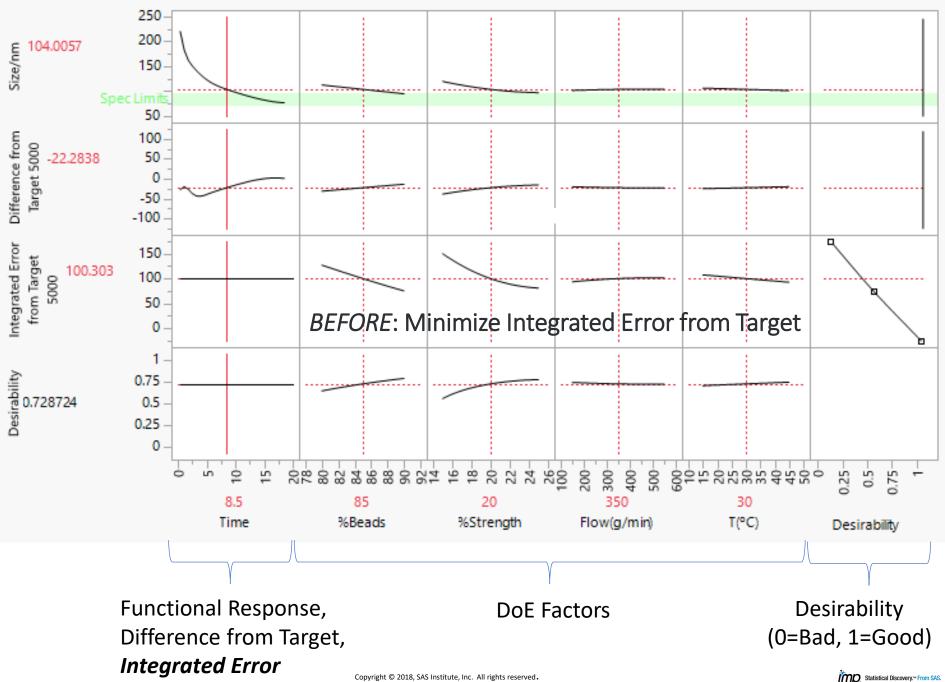

5 10 15 20 Eigenfunction 1

 $\cdot E_1(X)$

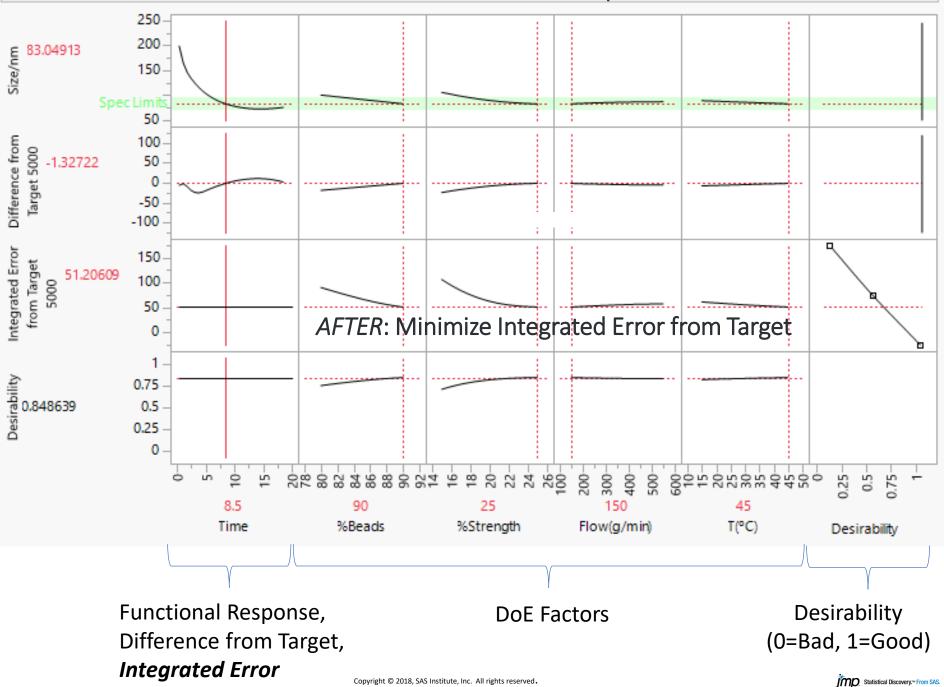

Model the FPC Scores as functions of the DOE factors Batch 2899



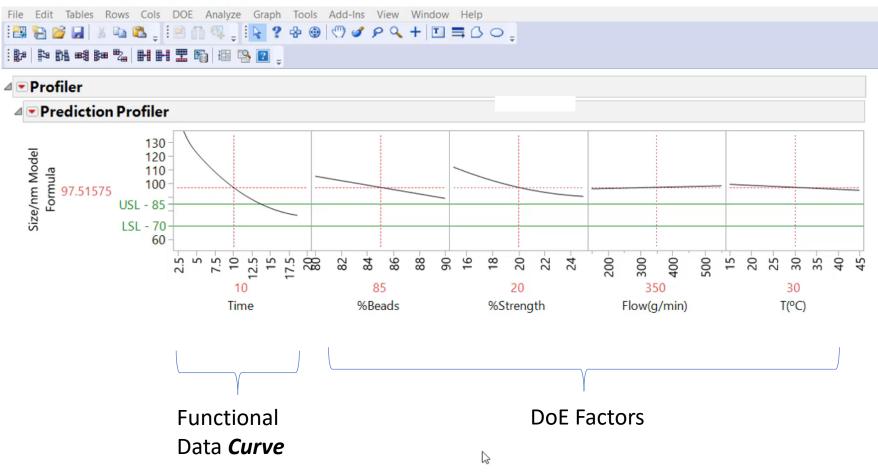
Model the FPC Scores as functions of the DOE factors Batch 2908



Model the FPC Scores as functions of the DOE factors Batch 2919



BEFORE: Golden Curve Optimization


FDOE Profiler

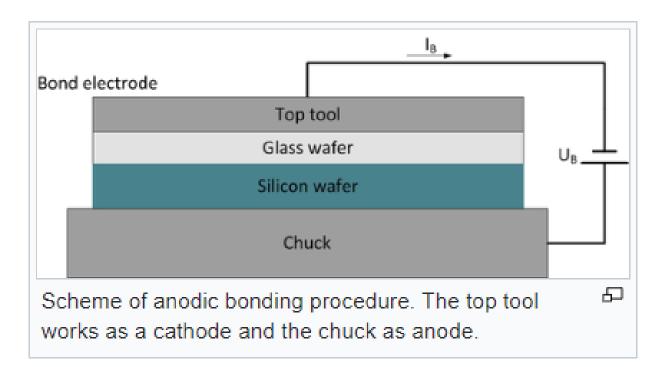
AFTER: Golden Curve Optimization

Final Prediction Model

* B-Spline Model Summaries (Degree=3, Knots=1) - Profiler of Size/nm Model Formula - JMP

Use JMP to analyze Mill_DOE.jmp data

- 1. Analyze > Specialized Modeling > Functional Data Explorer
- 2. Populate Dialog with Column Names > Click OK
- 3. Cleanup Data (Not required with these data)
- 4. Load Target Function Batch 5000
- 5. Add Spec Limits to Size axis
- 6. Hot Spot Functional Data explorer > Models > Model Controls > B-Spline Controls
- 7. Click Go
- 8. Inspect Function Summaries
- 9. Hot Spot Function Summaries > Customize Function Summaries > Deselect All > Check Save Formulas Click "OK" or "OK and Save"
- 10. Hot Spot B-Spline on Load Targets > Functional DOE Analysis
- 11. Hot Spot FDOE Profiler > Optimization and Desirability > Desirabilities Function
- 12. Hot Spot FDOE Profiler > Optimization and Desirability > Maximize Desirability
- 13. Hot Spot Customize Function Summaries > Deselect All > Check Save Formulas
- 14. Hot Spot Function Summaries > Save Summaries (If not done in step 9)
- 15. Hot Spot Functional Data Explorer > Save Script to Data Table


Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use functional data – the *curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use functional data – the *curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Case Study Using Five Sensor Streams of Functional Data to Predict Wafer Condition after Anodic Bonding of Glass to Wafer

Picture from Wikipedia...

Glass Bonded to Silicon Wafer ISSUE: 12% of Wafers become Defective BUT won't Know for Weeks which have Failed!

Anodic Bond Data: 2000 Wafers X 61 Time Steps = 122,000 Rows

The bonding tool has several sensors that take real-time measurements of *Charge, Flow, Piston Force, Vacuum, & Voltage*.


	Wafer Id	Condition	Validation	Order	Charge	Flow	Piston Force	Vacuum	Voltage
1	1		Training	1	0.00	0.3013	0	0.00	0.00
2	1	GOOD	Training	2	0.00	0.3013	0	0.00	0.00
3	1	GOOD	Training	3	0.00	0.3013	0	0.50	0.00
4	1	GOOD	Training	4	0.00	0.3013	0	0.50	0.00
5	1	GOOD	Training	5	0.00	0.3013	0	0.94	0.00
6	1	GOOD	Training	6	0.00	0.3013	0	0.94	0.00
7	1	GOOD	Training	7	0.00	0.0008	0	0.99	0.00
8	1	GOOD	Training	8	0.00	0.0008	0	1.00	0.00
9	1	GOOD	Training	9	0.00	0.0008	0	1.00	0.00
10	1	GOOD	Training	10	0.00	0.0008	0	0.99	0.00
11	1	GOOD	Training	11	0.00	0.0008	0	0.99	0.00

Can we use these sensor data to predict with high probability the wafers that were damaged by the bonding process – right now?

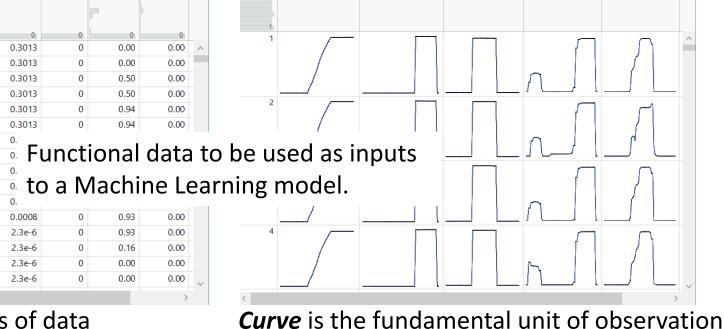
Anodic Bond Data: Discrete Observations

Anodic Bond Data: Smoothed Data Streams from 2000 Glass-to-Wafer Bonds

What is Functional Data Analysis?

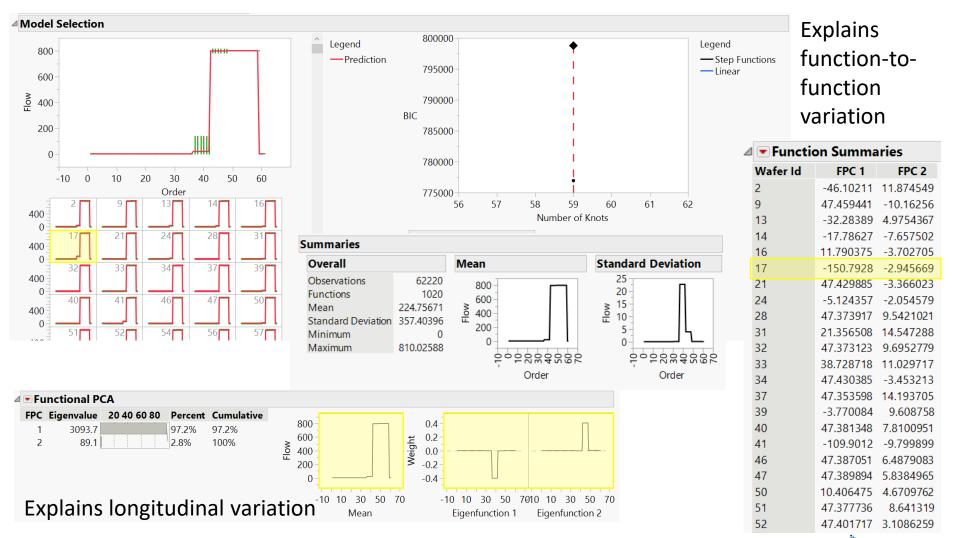
Functional data analysis (FDA) is a branch of statistics that analyzes data providing information about curves, surfaces or anything else varying over a continuum. In its most general form, under an FDA framework each sample element is considered to be a **function**.

2000 wafers X 61 rows/wafer

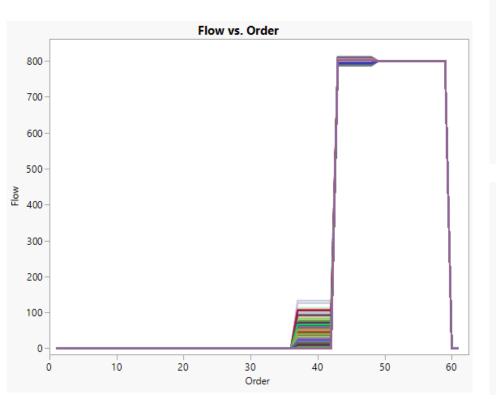

	Wafer Id	Order	Charge	Flow	Piston Force	Vacuum	Voltage			cl		
	vvaler iu	61	8073	813	2340	2.85	133	-	Wafer Id	Charge	Flow	Piston Force
	2		0015	015	2540	1	100					
	3											
	4											
	5								1			
	1,995 others	1	0	0	0	0	0		1		[]	[
1	1	1	0.00	0.3013	0	0.00	0.00	\sim				
2	1	2	0.00	0.3013	0	0.00	0.00			/		
3	1	3	0.00	0.3013	0	0.50	0.00					
4	1	4	0.00	0.3013	0	0.50	0.00		2	/	L	
2 3 4 5 6 7 8 9 10	1	5	0.00	0.3013	0	0.94	0.00		L			
6	1	6	0.00	0.3013	0	0.94	0.00			/		
7	1	7	0.00	0.		: I	ب ا م ا م					
8	1	8	0.00	0.	unct	ional	data	Jτ	o be u	sed as i	nputs	
9	1	9	0.00	0.							•	
10	1	10	0.00	0. to	o a IV	/lachi	ine L	ea	irning i	model.		
11	1	11	0.00	0.					Ŭ	1		
12	1	12	0.00	0.0008	0	0.93	0.00					
13	1	13	0.00	2.3e-6	0	0.93	0.00		4			
14	1	14	0.00	2.3e-6	0	0.16	0.00					
15	1	15	0.00	2.3e-6	0	0.00	0.00					
16 17	1	16	0.00	2.3e-6	0	0.00	0.00	\sim		/		
17	<)		<			
	122	000		ic of					Carro		fundar	

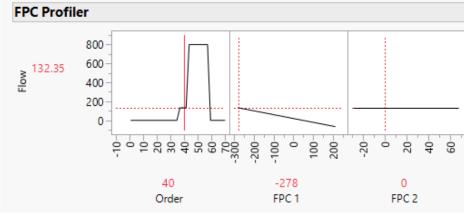
122,000 rows of data

2000 Functional Data Streams

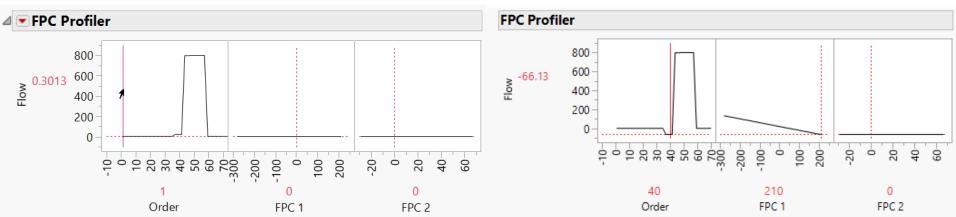

Vacuum

Voltage




How do we analyze Functional data?

5. Products of FPC scores multiplying their corresponding eigenfunctions, when added to the Mean closely reproduce the individual function (Flow) curves.



Flow FPC1

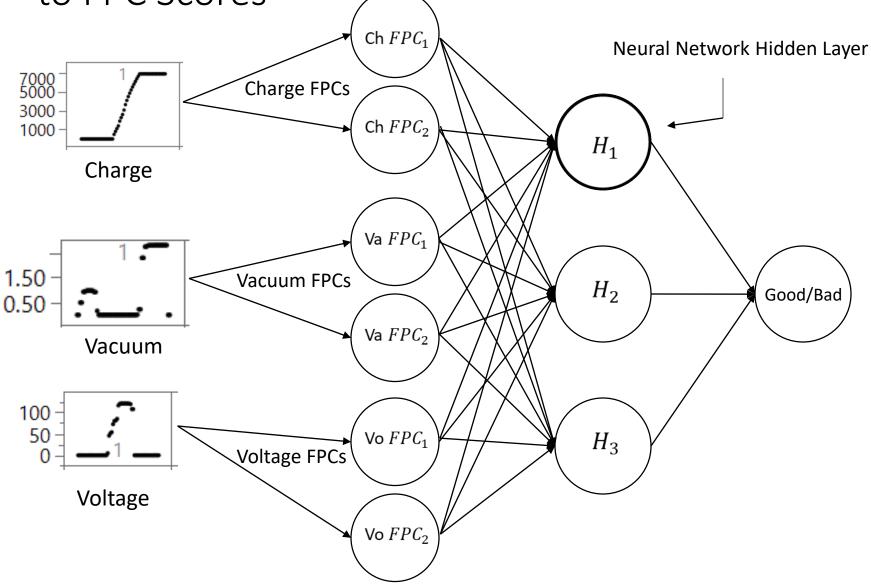
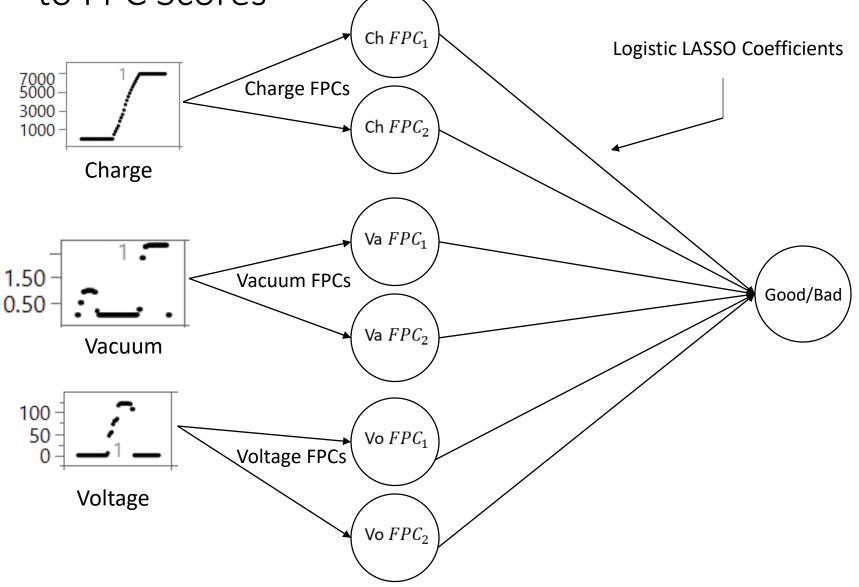


Table of 12* FPC Scores used to Model Condition


Wafer Id	Condition	Validation	Charge FPC 1	Flow FPC 1	Flow FPC 2	Piston Force FPC 1	Vacuum FPC 1	Vacuum FPC 2	Vacuum FPC 3
1	GOOD BAD	Training Validation	8295	45.7	34.7	1311	2.97	0.58	0.3
2	BAD	Test							
4									
5 1,995 others			-8903	-281	-28.6	-1442	-1.04	-0.72	-0.59
2	GOOD	Training	1939.8213944	-47.99467507	11.835188042	896.52111845	-1.01396436	-0.367923438	-0.296827224
	GOOD	Training	212.05037509	-25.13715846	-0.995827966	-84.14117634	0.5477329858	-0.345665597	-0.124382493
9		Training	-34.75688741	45.575552449	-10.16506939	315.25975102	-0.538688448	0.1508261265	0.1519855668
		5							
	BAD	Training	-1213.835105	45.495664474	6.680705469	50.911046557	-0.064379983	-0.01993877	0.0981726233
12		Training	-1013.153308	-39.90355163	2.3623655717	-340.5227485	0.9016693131	-0.178605516	0.0605873881
16	GOOD	Training	-3985.006867	9.903945259	-3.719261334	-587.5458989	0.7955624065	0.0297828066	0.042004684
17	GOOD	Training	1832.3340433	-152.6794891	-3.02626366	134.08863681	-0.621848953	-0.486645362	0.121393253
18	GOOD	Training	-340.0108681	-12.98109355	-16.7930519	-175.6851773	0.2920817989	0.0409672523	-0.004401981
20	GOOD	Training	1178.6360003	-114.1446381	-5.71271533	-81.37628428	0.0064651167	-0.318735656	-0.120126295
23	BAD	Training	-3015.826554	45.496077049	6.5969881112	-393.9696867	0.8434918197	0.2002559472	-0.0234644
27	BAD	Training	647.92427295	45.526409332	0.2060713613	-1.736804312	-0.087564419	0.3828626381	-0.076428983
28	BAD	Training	-2331.969564	45.482267145	9.539588982	149.29748575	-0.258712307	0.4084688316	-0.057425217
32	BAD	Training	1110.549478	45.481412652	9.692744135	173.94633371	-0.309896253	0.1897807551	0.1005481727
33	GOOD	Training	545.08163682	36.83648222	11.02376959	-68.08890553	0.3480580578	0.1435364586	-0.069774713
34	BAD	Training	1153.6816932	45.543853482	-3.455710358	2.0682952872	0.1741396938	0.3336479119	-0.056667203

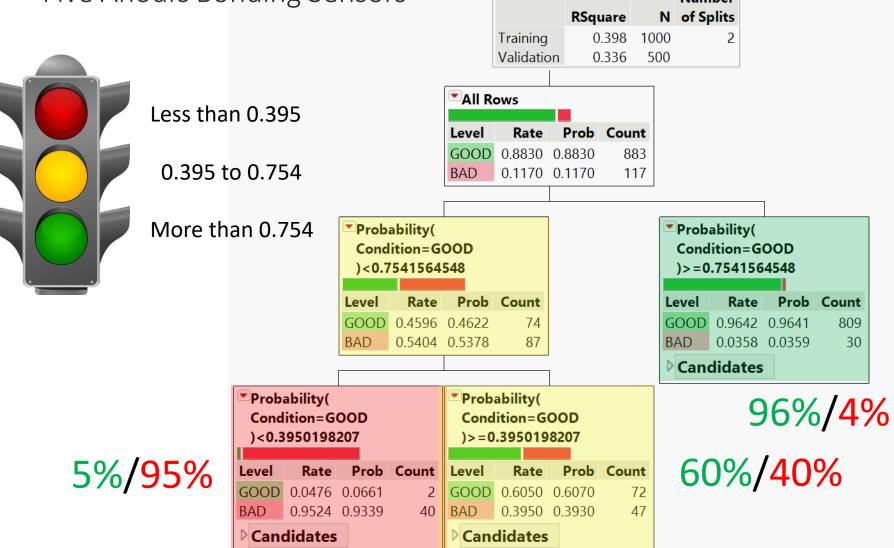
*5 Columns of FPC Scores NOT shown

Predict Wafer Condition by Fitting Neural Model to FPC Scores

Predict Wafer Condition by Fitting Logistic Model to FPC Scores

Results of Fitting Logistic and Neural Models

Binomial Logistic Regression with Validation Column


Model Summary							
Response	Condition						
Distribution	Binomial						
Estimation Method	Logistic Reg	ression					
Validation Method	Validation C	olumn	4 💌 N	eural			
Probability Model Link	Logit		Valida	ation Column: Validatio	on		
Measure	Training	Validation		odel Launch			
Number of rows	1000	500		ouer Launch			
Sum of Frequencies	1000	500		Model NTanH(1)N	lLinear(1)l	NGaussian(1)NBoost	(16)
-LogLikelihood	228.54132	114.45861	⊿⊤	raining		✓ Validation	
Number of Parameters	13	13		<u> </u>			
BIC	546.88346	309.70713	4	Condition		Condition	
AICc	483.45181	255.6662		Measures	Value	Measures	Valu
Generalized RSquare	0.4523866	0.4555533		Generalized RSquare	0.5325325	Generalized RSquare	0.560799
				Entropy RSquare	0.4432134	Entropy RSquare	0.470725
				RMSE	0.2428032	RMSE	0.242168
				Mean Abs Dev	0.1309093	Mean Abs Dev	0.128839
				Misclassification Rate	0.074	Misclassification Rate	0.07
				-LogLikelihood	200.94695	-LogLikelihood	96.04242
				Sum Freq	1000	Sum Freg	50

		GenReg Binom 3-way Mo	st Likely Condition		BN 1-1-1(16) Most Likel		
Validation	Condition	GOOD	BAD	Validation	Condition	GOOD	BAD
Training	GOOD	864	19	Training	GOOD	872	11
	BAD	74	43		BAD	63	54
Validation	GOOD	433	8	Validation	GOOD	437	4
	BAD	42	17		BAD	33	26
Test	GOOD	428	13	Test	GOOD	434	7
	BAD	37	22		BAD	42	17

Table of Neural Model Predictions of Condition

₫	18/0 Cols 💌 F	Condition	Validation	Probability(Condition=GOOD)	BN 1-1-1(16) Most Likely Condition	
		GOOD	Training	1	GOOD	Model these
		BAD	Validation		BAD	
			Test			probabilities
						to develop
				0.06		decision tree
0	1564	GOOD	Test	0.9961988532	GOOD	"stoplight."
0	1565	GOOD	Test	0.9415687312	GOOD	
0	1566	GOOD	Test	0.9670452594	GOOD	
0	1567	GOOD	Test	0.5550716285	GOOD	Just misses
+	1568	BAD	Test	0.4930775442	BAD	being "Good"
+	1569	BAD	Test	0.5335959152	GOOD	prediction
0	1570	GOOD	Test	0.6131324314	GOOD	[······
+	1571	BAD	Test	0.8668675093	GOOD	Not nearly
+	1572	BAD	Test	0.2583111765	BAD	a "Good"
0	1573	GOOD	Test	0.8699599618	GOOD	prediction
+	1574	BAD	Test	0.7201964039	GOOD	
0	1575	GOOD	Test	0.99613207	GOOD	
+	1576	BAD	Test	0.5647955597	GOOD	
0	1577	GOOD	Test	0.9891191688	GOOD	
0	1578	GOOD	Test	0.987960478	GOOD	
0	1579	GOOD	Test	0.9750283598	GOOD	

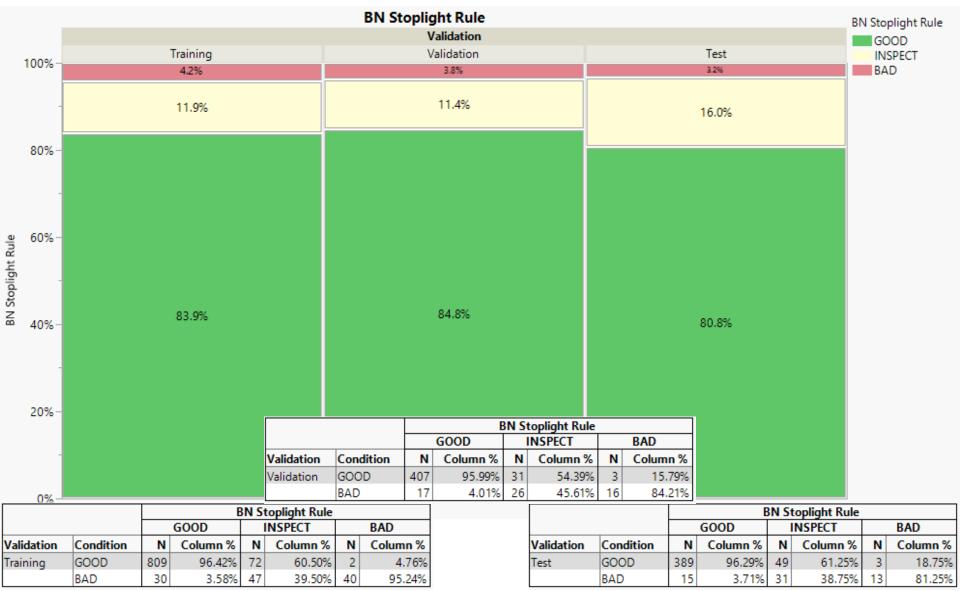

Want to Predict Likely Failed Wafers – Decision Tree Fit to Neural Network Probability Predictions Built from Functional Principal Component Scores for Five Anodic Bonding Sensors

Table of Model Predictions and Stoplight Rule

< ∕	18/0 Cols 💌	Condition	Validation	Probability(Condition=GOOD)	BN 1-1-1(16) Most Likely Condition	BN Stoplight Rule
		GOOD	Training	1	GOOD	GOOD
		BAD	Validation		BAD	INSPECT
			Test	0.06		BAD
0	1564	GOOD	Test	0.9961988532	GOOD	GOOD
0	1565	GOOD	Test	0.9415687312	GOOD	GOOD
0	1566	GOOD	Test	0.9670452594	GOOD	GOOD
0	1567	GOOD	Test	0.5550716285	GOOD	INSPECT
+	1568	BAD	Test	0.4930775442	BAD	INSPECT
+	1569	BAD	Test	0.5335959152	GOOD	INSPECT
0	1570	GOOD	Test	0.6131324314	GOOD	INSPECT
+	1571	BAD	Test	0.8668675093	GOOD	GOOD
+	1572	BAD	Test	0.2583111765	BAD	BAD
0	1573	GOOD	Test	0.8699599618	GOOD	GOOD
+	1574	BAD	Test	0.7201964039	GOOD	INSPECT
0	1575	GOOD	Test	0.99613207	GOOD	GOOD
+	1576	BAD	Test	0.5647955597	GOOD	INSPECT
0	1577	GOOD	Test	0.9891191688	GOOD	GOOD
0	1578	GOOD	Test	0.987960478	GOOD	GOOD
0	1579	GOOD	Test	0.9750283598	GOOD	GOOD

Percentage Wafers in Each Classification by Training-Validation-Test Group - AND Tabulation of Actual by Predicted Condition

Scatterplot Actual vs. Prediction in Test Group & Tabulation of Actual by Predicted Condition

Validation = Test

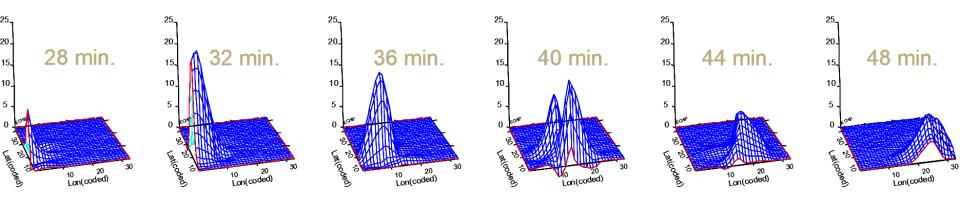
		BN S	toplight Ru	le	GR Stoplight Rule			
Validation	Condition	GOOD INSPECT BAD			GOOD	INSPECT	BAD	
Test	GOOD	389	49	3	393	37	11	
	BAD	15	31	13	17	21	21	

BN gets fewer correct, but also fewer wrong: 3.6% misclassified

GR gets more correct, but also more wrong: 5.6% misclassified

Use JMP to analyze Anodic_Bond.jmp data

- 1. Analyze > Specialized Modeling > Functional Data Explorer
- 2. Populate Dialog with Column Names > Click OK (NOTE: Demo only Flow Response)
- 3. Cleanup Data (Not required with these data)
- 4. Hot Spot Functional Data explorer > Models > Model Controls > P-Spline Controls Check Step Functions only - set knots to only 59 – Click Go
- 5. Inspect Function Summaries
- 6. Hot Spot Function Summaries > Customize Function Summaries > Deselect All > Check Save Formulas Click "OK" or "OK and Save"
- 7. Hot Spot Function Summaries > Save Summaries (If not done in step 6)
- 8. Hot Spot Functional Data Explorer > Save Script to Data Table

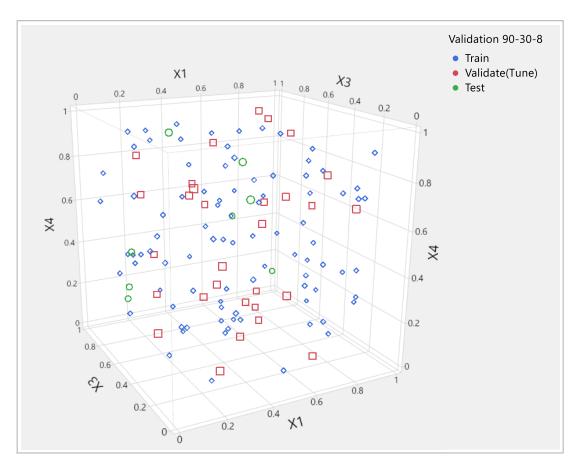

Functional Data Analysis Performance Tips

- When there are 1000s of batches with 1000s of measurements things can slow down quite a bit.
- Try using a Training set with dozens or a 100 or so batches.
 - Place the remaining batches in Validation.
 - You will still get FPC for all the batches, but the mixed model that is fit behind the scenes will only use the training batches.
- Try subsampling down to every 10th or 20th measurement. Often you have more measurements than you need.
- Use the subset of the data to 'fail fast' in the modeling process.
- You can always go back and refit the better models to a larger version of the data.

Summary

- Functional data shows up in many forms such as sensor data, spectral data, simulation data - almost any response in a longitudinal order
- These data are often summarized to allow for "landmark" analysis. This approach does not take advantage of all the data that has been collected and can lead to missing out on effects of the shape of data.
- When Functional Data Analysis of a response is combined with Design of Experiments one can model the shape of the data stream as a function of the design factors.
- One can use Machine Learning methods to fit the FPC scores derived from data streams (that characterize the run-to-run variation) to build predictive models.

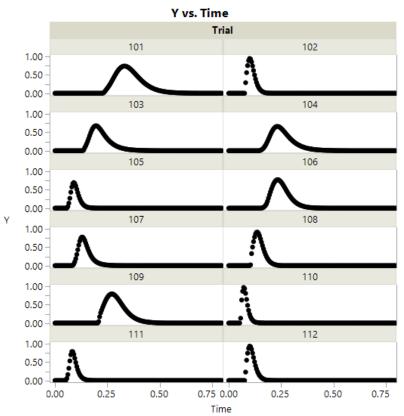
First ran into Functional Data 14 Years ago at the Army's Edgewood Chemical Biological Center

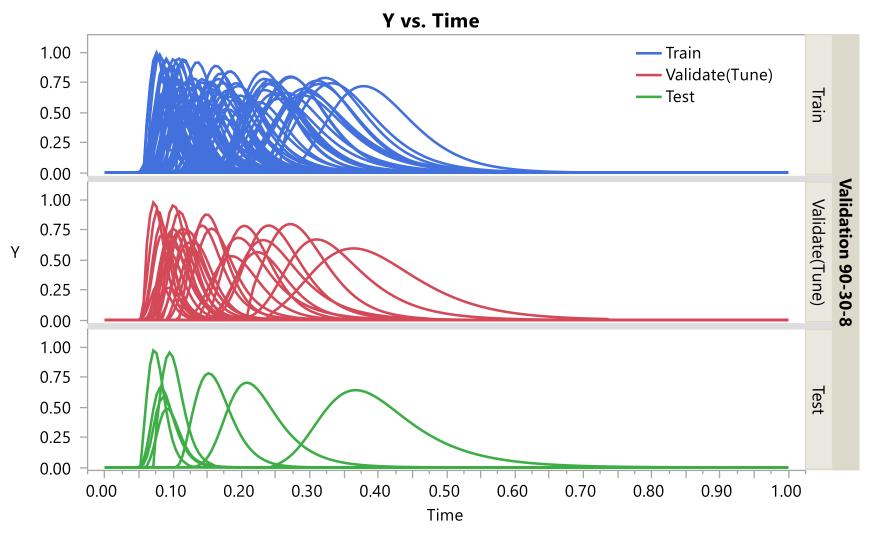


10-factor Agent Transport & Dispersion Simulation

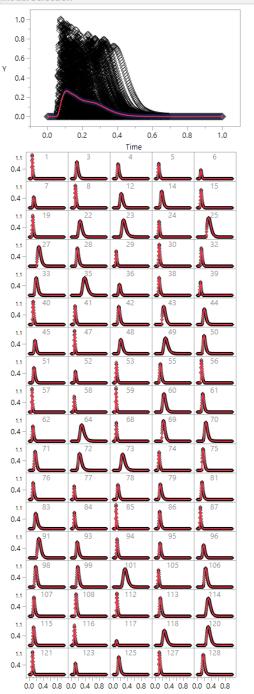
- Able to model Concentration at a particular time,
- or Dosage *at end of time,*
- but *NOT* Concentration *shape over time*
- Prof. Jeff Wu suggested using Functional Data Analysis (See work by his former student, Prof. Ying Hung, Rutgers)

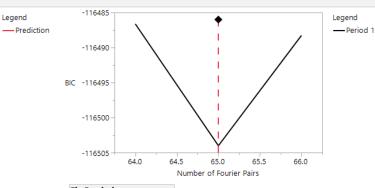
Complex Case Study using Simulation Data 128-Trial Space-Filling DOE in Six Factors + Time


128 Computer Simulations Split into 3 Subsets:90 Training, 30 Validation(Tune), and 8 Test


128 Unique-Trial Space-Filling Design of Experiments

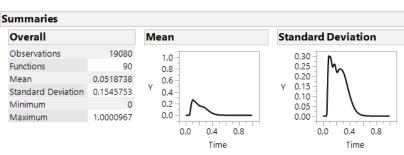
	Trial	X1	X2	Х3	X4	X5	X6
101	101	0.244	0.469	0.000	0.393	0.500	0.000
102	102	0.983	0.563	0.638	0.543	0.500	0.500
103	103	0.031	0.094	0.234	0.259	0.625	0.500
104	104	0.158	0.719	0.170	0.836	1.000	1.000
105	105	0.638	0.188	0.894	0.031	0.750	0.500
106	106	0.228	0.813	0.170	0.039	0.750	0.000
107	107	0.858	0.031	0.468	0.660	0.375	0.500
108	108	0.787	0.938	0.404	0.552	0.125	0.000
109	109	0.220	0.094	0.064	0.560	0.125	0.500
110	110	0.606	0.906	1.000	0.504	0.625	0.500
111	111	0.488	0.938	0.894	0.646	0.125	1.000
112	112	0.433	0.375	0.638	0.521	0.000	1.000


Y vs Time Data for Each Trial



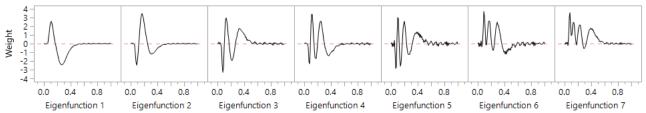
128 Simulations Split into 3 Subsets: 90 Training, 30 Validation(Tune), and 8 Test

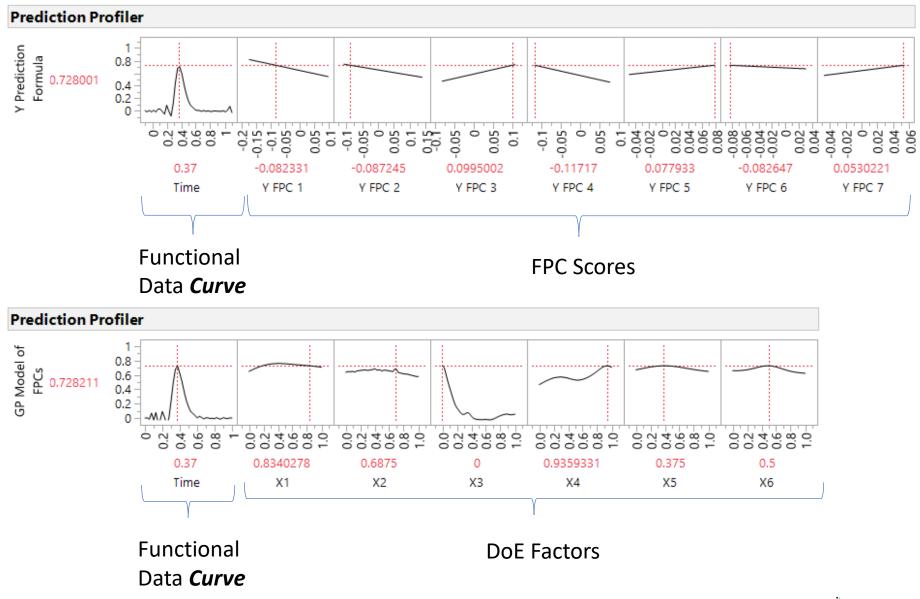
Model Selection

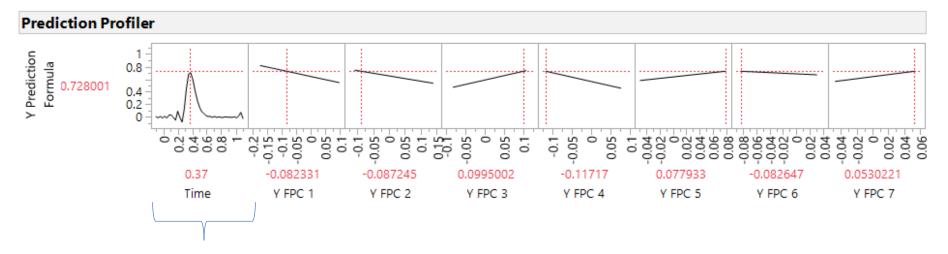


Fit Statistics	
Pairs	65
-2 Log Likelihood	-119076.5
AICc	-118547.3
BIC	-116504
GCV	0.0002135
Y Std Dev	0.003181

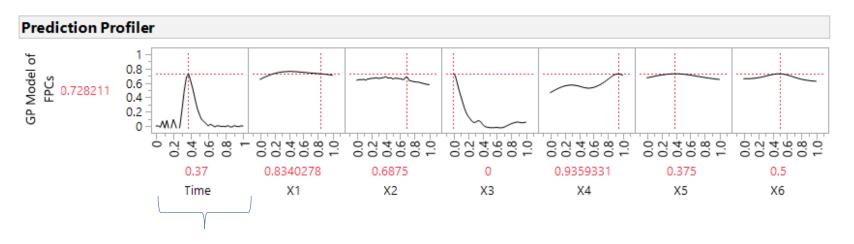
Legend

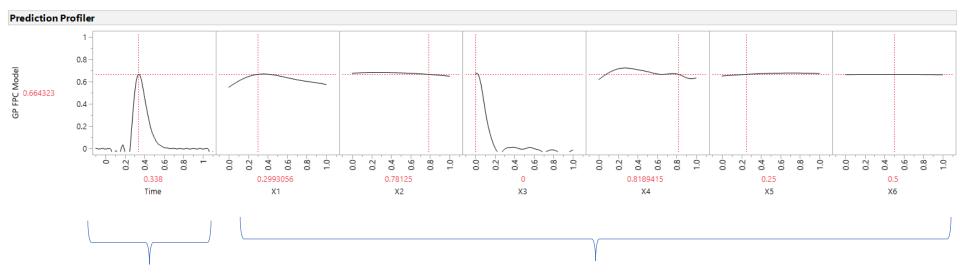

Fourier Basis Model on Initial Data

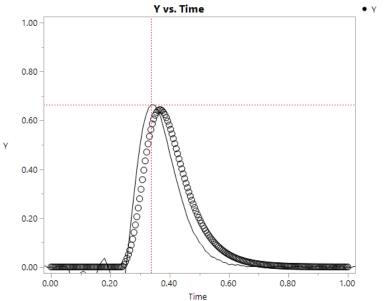

90 Training, 30 Validation, 8 Test



FPC	Eigenvalue	20	40 (50 8	0	Percent	Cumulative	Ł
1	0.00771					42.8%	42.8%	
2	0.00514			N		28.5%	71.3%	
3	0.00240					13.3%	84.6%	
4	0.00155				$ \rangle$	8.61%	93.2%	
5	0.00054					3.02%	96.2%	
6	0.00032					1.78%	98%	
7	0.00019					1.06%	99.1%	

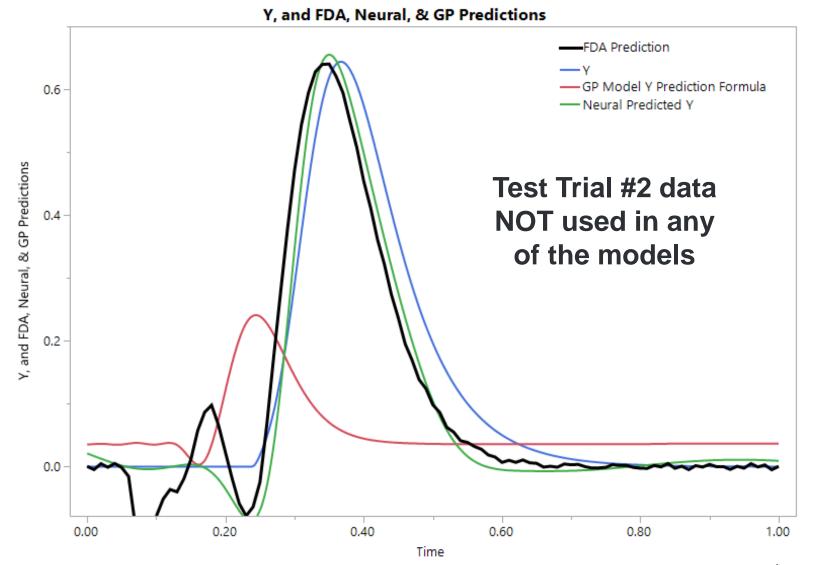

Function Summaries												
Trial	Validation	FPC 1	FPC 2	FPC 3	FPC 4	FPC 5	FPC 6	FPC 7				
1	Training	0.0643203	-0.079624	-0.076694	-0.044372	-0.022896	0.0048829	0.0191508				
3	Training	0.0132317	0.1034896	0.0192129	-0.027173	-0.016538	0.0118134	0.0020169				
4	Training	0.049788	0.0464589	0.0466466	0.0026321	-0.026482	-0.012951	-0.003611				
5	Training	0.065293	-0.053398	-0.022798	0.0007321	0.0107226	-0.00163	-0.008597				
6	Training	0.0397146	-0.036641	-0.011642	-0.00407	0.0077336	-0.028904	-0.036985				
7	Training	0.0466078	0.0049868	0.0310672	0.0081664	-0.015096	-0.031369	-0.021895				
8	Training	0.0940523	-0.004455	0.062271	0.060297	0.0065529	-0.00089	0.0111631				



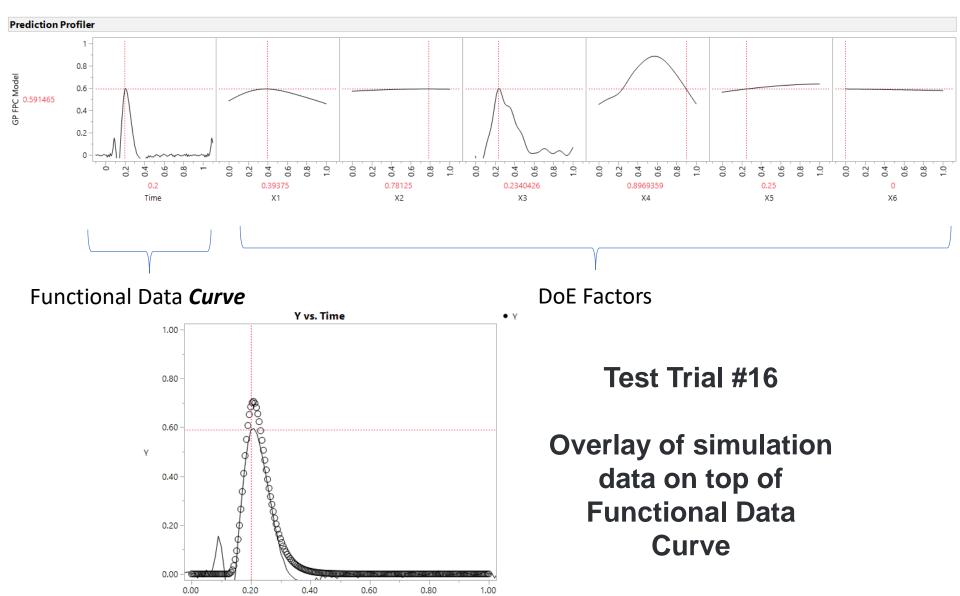

Functional Data *Curve* = Σ("Y_i FPC Score" * "Y_i Eigenfunction") + "Y Mean Formula"

Functional Data *Curve* = $\Sigma("Y_i FPC Score Prediction Formula" * "Y_i Eigenfunction") + "Y Mean Formula"$

Functional Data Curve



DoE Factors


Test Trial #2

Overlay of simulation data on top of Functional Data Curve

FDA, Neural, & Gaussian Process Model Predictions - All Fit to Same 90-Trial *Training* Subset -Overlaid on Y vs. Time

Copyright © 2018, SAS Institute, Inc. All rights reserved.

Time

erved.

Summary

- Functional data shows up in many forms such as sensor data, spectral data, simulation data - almost any response in a longitudinal order
- These data are often summarized to allow for "landmark" analysis. This approach does not take advantage of all the data that has been collected and can lead to missing out on effects of the shape of data.
- When Functional Data Analysis of a response is combined with Design of Experiments one can model the shape of the data stream as a function of the design factors.
- One can use Machine Learning methods to fit the FPC scores derived from data streams (that characterize the run-to-run variation) to build predictive models.

Additional JMP FDA Resources

Two Mastering JMP Recordings:

Using JMP[®] Pro 14 to Pre-Process Functional Data & Create Surrogate Models – Brady Brady https://www.jmp.com/en_us/events/ondemand/mastering-jmp/functional-data-explorer-part-1.html

Using JMP[®] Pro 15 to Model Functional Data – Pete Hersh https://www.jmp.com/en_us/events/ondemand/mastering-jmp/functional-data-explorer-part-2.html

Two Discovery Summit Tutorials:

Discovery Summit Tutorial w/JMP 14 – Video Recording & Slides Using Functional Data Explorer to Make Sense of Sensor Data – Chris Gotwalt & Ryan Parker <u>https://community.jmp.com/t5/Discovery-Summit-2018/Tutorial-Using-Functional-Data-Explorer-to-Make-Sense-of-Sensor/ta-p/81651</u>

Discovery Summit Tutorial w/JMP 15 – Slides Introduction to Functional Data Analysis – Chris Gotwalt & Ryan Parker <u>https://community.jmp.com/t5/Discovery-Summit-Tucson-2019/Introduction-to-Functional-Data-Analysis-2019-US-TUT-289/ta-p/225696</u>

Functional Data Analysis Workshop - Slides & Exercises – Phil Kay & Chris Gotwalt https://community.jmp.com/t5/Phil-Kay-s-Blog/Functional-Data-Analysis-Workshop-London-6th-and-7th-September/ba-p/72007? ga=2.135327857.1133803037.1589836203-173874835.1543351598

Short videos of the two featured case studies and copy of today's slides can be found at www.jmp.com/fedgov

Short videos recordings posted March 2020:

Summaries or case-studies from longer tutorials using JMP 15.

Functional Data Analysis - DOE

Case 1 - Predicting Shape of Sensor

Stream using DOE & Golden Curve Analysis (5-min)

Functional Data Analysis - ML

Case 2 - Using the Sensor Stream as an Input to a Machine Learning Model (7-min)

Link to 5-minute recording:

https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Functional-Data-Analysis-Predicting-Shape-of-Data-Stream-Using/ta-p/69525

Link to 7-minute recording:

https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Functional-Data-Analysis-Using-Data-Stream-as-Inputs-to-Machine/ta-p/255290

<u>Download Slides</u> for JMP Discovered webcast on May 19, 2020 on Modeling Streamed Sensor Data with Functional Data Analysis

SAS Education Offers Ending 31 May

50% Live Web discount on all 13 Public Live Web JMP courses July thru December, 2020. Register by the end of May and attend training by Dec 31 using Promo code LEARN50.

JMP[®] Pro: Analyzing Curves and Profiles Using the Functional Data Explorer 24-27 AUG 2020 : \$650 with 50% discount (reg \$1300)

<u>Learning Subscription</u> is free for 30 days. Note that the SAS Learning Subscription includes 7 JMP e-Learning courses, and these activations are being extended to 60 days on the backend. You need to register by the end of May to activate the offer.

Links to offers and detailed instructions can be found at <u>www.jmp.com/fedgov</u> <u>FREE & Discounted Training from SAS Education</u> <u>Registration DEADLINE is 31 May 2020</u>

FREE & Discounted Training from SAS Education -DEADLINE to Register is 31 May 2020

MAY 14, 2020 10:14 AM

🗞 SAS Education eLearning offer deadline 31 May 2020.pdf 🛛 🚣

SAS Education Live Web 50%Discount offer deadline 31 May 2020.pdf

FREE eLearning Offer - Registration Deadline is 31 May 2020

Download Offer Sheet PDF above with Detailed Instructions on How to Get eLearning for FREE.

Live Web Courses 50% Off - Register by 31 May and Take Training by 31 Dec.

Save 50%. Promo code LEARN50. Register by May 31. Take training by Dec 31.

Download Offer Sheet PDF above with Live Web Registration Links - use Promo Code LEARN50.

Thank You. Questions?

Webcast recordings at www.jmp.com/fedgov Thanks to my JMP colleagues upon whose work much of this presentation is based:

> Chris Gotwalt Ryan Parker Brady Brady Pete Hersh Phil Kay

Tom Donnelly, PhD, CAP Principal System Engineer & Co-Insurrectionist tom.donnelly@jmp.com 302-489-9291

ABSTRACT:

Sensors that record sequences of measurements are now embedded in many systems. There is information in the shapes of the sensor stream that is highly predictive of the likelihood of a system failure or performance. These data are often being used inefficiently due to lack of knowledge and tools for how to properly leverage it. In this presentation we will show how to fit splines to data streams and extract features called functional principal component scores. This method is called Functional Data Analysis. Then, we use these features as inputs into machine learning models like neural networks. Answering a wide variety of questions becomes a two-step process of functional feature extraction followed by modeling using those features as inputs. Additionally, it will be shown how when combined with Design of Experiments, one can then model the principal component scores to predict the shapes of data streams as functions of the factors in the design.

