	MORS Symposium 16-19 June 2014, Hill Fax completed form to 70	ton Mark Center, Alexandria, VA 03-933-9066 or email to <u>liz@mors.org</u>		Abstract 601
PART I Author Re with subseq	equest - The following autho	r(s) request authority to disclose the following Final Report, and posting on the MORS websit	presentat	ion at the MORS Symposium
Principal Author: Thomas A Donne	elly N/A	r(s):		
Principal Author's Organizati SAS Institute Inc.	on and complete mailing addr	ress: Principal Mithor's Signature X Showas U. D	Jourelly	E Date: 28 May 2014
27 Farmingdale Ln		Phone:302-489-929	1	FAX:919-677-4444
Newark, DE 19711		Email:tom.donnelly	@jmp.	com
Improving Prediction	of Cyber Attacks Us	sing Ensemble Modeling		TIAL /BELLTO EVEN
This presentation is: SECR	ET 🗖 SECRET//REL TO Other	FVEY CONFIDENTIAL CO	NFIDEN	HAL/KEL IOFVEI
This presentation is: SECR	ET D SECRET//REL TO Other	FVEY CONFIDENTIAL CO and will be presented in: ist all WG(s) #: WG-5	NFIDEN	HAL/KEL TO IVET
This presentation is: SECR UNCLASSIFIED Tutorial This work was performed in conne	ET SECRET//REL TO Other	o FVEY CONFIDENTIAL CO and will be presented in: ist all WG(s) #: WG-5		YES (Complete Parts I, II, & III)
This presentation is: SECR UNCLASSIFIED Tutorial This work was performed in conne This presentation is based on mate NOT done under a government con	ET SECRET//REL TO Other Section with a government contract.	FVEY CONFIDENTIAL CONFIDEN		YES (Complete Parts I, II, & III) YES (Complete Parts I, II & III)

IMPROVING PREDICTION OF CYBER ATTACKS USING ENSEMBLE MODELING

June 17, 2014 82nd MORSS Alexandria, VA

Tom Donnelly, PhD Systems Engineer & Co-insurrectionist JMP Federal Government Team

Copyright © 2013, SAS Institute Inc. All rights reserved

Improving Prediction of Cyber Attacks Using Ensemble Modeling

In 1998 DARPA developed a representative cyber-attack data set with over 20 attack types, 41 potentially causal factors, and nearly 5 million rows of data. These and derivative data are analyzed using a variety of predictive models, including nominal logistic, decision trees, and neural models. It will be shown that the ability to predict attacks can be further improved by averaging models. Both simple algebraic averaging of model probabilities as well "ensemble modeling" - where models are used as inputs to other models - will be demonstrated.

OUTLINE

- Goals
- Background
- Approaches and Strategies
- Model Averaging
- Visualize Results
- Summary

- Take "Data Mining Challenge" data set and develop best predictor model
- Learn about different approaches to data mining and model averaging

ORIGINAL KDD DATA SET

TABLE I

STATISTICS OF REDUNDANT RECORDS IN THE KDD TRAIN SET

	Original Records	Distinct Records	Reduction Rate
Attacks	3,925,650	262,178	93.32%
Normal	972,781	812,814	16.44%
Total	4,898,431	1,074,992	78.05%

TABLE III

STATISTICS OF RANDOMLY SELECTED RECORDS FROM KDD TRAIN SET

	Distinct Records	Percentage	Selected Records
0-5	407	0.04	407
6-10	768	0.07	767
11-15	6,525	0.61	6,485
16-20	58,995	5.49	55,757
21	1,008,297	93.80	62,557
Total	1,074,992	100.00	125,973

ATTACK TYPE BINNING

Distributions						
Attack Type		Attack	Type - 4 Class	+ normal	Attack C	lass Binary
warezmaster warezclient teardrop spy smurf satan rootkit portsweep pod	20 890 892 2 2646 3633 10 2931 201	u2r r2l	52 995		normal	67343
phf perl normal nmap neptune multihop	4 3 67343 1493 41214 7	probe	11656			
loadmodule land ipsweep imap	, 9 18 3599 11	normal	67343		anomaly	58630
guess_passwd ftp_write buffer_overflow back	53 8 30 956	dos	45927			

RANDOM HOLDBACK SUBSETS 60% TRAIN = 0, 20% VALIDATE = 1, AND 20% TEST = 2

The Elements of Statistical Learning – Data Mining, Inference, and Prediction Hastie, Tibshirani, and Friedman – 2001 (Chapter 7: Model Assessment and Selection)

HONEST ASSESSMENT APPROACH USING TRAIN, VALIDATE (TUNE), AND TEST SUBSETS

Test Data in Orange

ACTUAL VS. PREDICTED FOR TEST SUBSET FOR FOUR MODELS USING ALL 41 FACTORS

Copyright © 2013, SAS Institute Inc. All rights reserved.

THE POWER TO KNOW

Sas

ENSEMBLE MODELS BF AVG WGT Most Likely Attack Type - 4 Class + normal dos Attack Type - 4 Class + normal dos 13317 14 Attack Type - 4 Class + normal dos 9217 5 8 0 0 Scatterplot Matrix Holdback=2 0 0 0 0 0 0 0 0 0 0 0 or mormal probe 0 <th></th> <th>H</th> <th>oldbacl</th> <th>k</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														H	oldbacl	k						
BF AVG WGT Most Likely Attack Type - 4 Class + normal MODELS Attack Type - 4 Class + normal probe rel / 13317 18 41 2 Attack Type - 4 Class + normal go / 10		E	NSI	EMB	LE										2							
Attack Type - 4 Class + normal dos normal probe r2l u2r dos 9217 5 8 0 0 normal 6 13317 18 41 2 probe 0 10 2382 0 0 u2r 0 7 0 174 0 u2r 0 2 0 0 6 Scatterplot Matrix Holdback=2 dos			М	ODE							BF A	VG WG	T Most	Likely	Attack	Туре	- 4 Class	+ no	rma			
dos 9217 5 8 0 0 probe 6 13317 18 41 2 12 0 7 0 174 0 u2r 0 2 0 0 5 Scatterplot Matrix Holdback=2 0 0 2 0 0 5 12 0 0 2 0 0 5 1317 18 41 12 0 0 2 0 0 5 Scatterplot Matrix Holdback=2 0 -4++ -4++ -4+++ -4++++++++++++++++++++++++++++++++++++				UDE	LJ	Att	ack Ty	pe - 4	Class +	⊦ norma		dos	n	ormal		probe	r2l		u2r			
normal 6 13317 18 41 2 probe 0 10 2332 0 0 scatterplot Matrix Holdback=2 0 7 0 174 0 dos 6 0 7 0 174 0 ormal 6 0 2 0 0 6 Scatterplot Matrix Holdback=2 0 0 2 0 0 6 ormal ++ <t< td=""><td></td><td></td><td></td><td></td><td></td><td>dos</td><td>5</td><td></td><td></td><td></td><td></td><td>9217</td><td></td><td>5</td><td></td><td>8</td><td>0</td><td></td><td>0</td><td></td><td></td><td></td></t<>						dos	5					9217		5		8	0		0			
probe 0 10 2382 0 0 22 0 0 7 0 174 0 6 Scatterplot Matrix Holdback=2 dos 0 7 0 174 0 6 dos 0 2 0 0 2 0 0 2 0 <th0< th=""> 0 <th0< th=""></th0<></th0<>						nor	mal					6		13317		18	41		2			
Scatterplot Matrix Holdback=2						pro	be					0		10		2382	0		0			
Uzr U						r21						0		7		0	174		0			
Scatterplot Matrix Holdback=2						u2r	•					0		2	-	0	0		6			
dos improve	Scatt	erplot N	latrix	Holdba	ack=2																	
normal probe r2l u2r dos normal probe r2l u2r bF wgt Most Likely Attack Type - 4 Class + normal OUTPUTS OF FIRST TWO MODELS USED AS INPUTS FOR LAST TWO MODELS HOLD AS T TWO MODELS HOLD H		dos –		800	0 00 0 00 0 00					0		0		° ®	0 00 00 00 00				°°°	° 00		
grupper probe prob< probe probe <	 ma	normal –	+++++++++++++++++++++++++++++++++++++++		難	攡	幸幸+	轥					荐			轠	+ +	**		轠	轠	
Image: second	ack Type ss + nor	probe –				۰,		00	here			80		\$ ^				\$	¢ ₫₿ _↓			
u2r Image: Constraint of the second seco	Atta Cla	r2l –		×			×		×			×		×**					×			×
dos normal prober2lu2rdos normal prober2lu2rdos normal prober2lu2rdos normal prober2lu2rBF wgt Most Likely Attack Type - 4 Class + normalBN wgt Most Likely Attack Type - 4 Class + normalBF AVG WGT Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalOUTPUTS OF FIRST TWO MODELS USED AS INPUTS FOR LAST TWO MODELSBN AVG WGT Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalAttack Type - 4 Class + normalAttack Type - 4 Class + normaldosnormal prober2lu2rdos92225300000131325523662701017900012121200101791017910		u2r –												${\rm a}^{\!\Delta}$			\$\$					
BF wgt Most Likely Attack Type - 4 Class + normalBN wgt Most Likely Attack Type - 4 Class + normalBF AVG WGT Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normal 2OUTPUTS OF FIRST TWO MODELS USED AS INPUTS FOR LAST TWO MODELSBN wgt Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalAttack Type - 4 Class + normalAttack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalAttack Type - 4 Class + normaldosnormalprober2lU200000			dos	normal	probe	r2l	u2r	dos	norma	al probe	r2l	u2r	dos	normal	probe	r2l	u2r	dos	normal	probe	r2l	u2r
Type - 4 Class + normalType - 4 Class + normalAttack Type - 4 Class + normalType - 4 Class + normal 2OUTPUTS OF FIRST TWO MODELS USED AS INPUTS FOR LAST TWO MODELSHoldback2Attack Type - 4 Class + normaldosnormalprober2lu2dos92225300normal1313255236627probe26238400r2lu2r0101791				BF wgt M	lost Like	ely Attao	ck	E	3N wgt	Most Like	ely Atta	ck	В	۶ AVG	NGT Mo	ost Likel	у	BN A	VG WG	T Most	Likely A	ttack
HoldbackHoldbackENAVG WGT Most Likely Attack Type - 4 Class + normalMODELS USED MODELS FOR LAST TWO MODELSAttack Type - 4 Class + normaldos92225300normal1313255236627probe262384000r2l01017933				Type - 4	Class +	norma	I		Type -	4 Class +	norma	l	Atta	ck Type	- 4 Clas	ss + noi	rmal	T	ype - 4	Class +	normal	2
OUTPUTS OF FIRST TWO MODELS USED AS INPUTS FOR LAST TWO MODELS2Attack Type - 4 Class + normalBN AVG WGT Most Likely Attack Type - 4 Class + normalMODELS USED AS INPUTS FOR LAST TWO MODELSAttack Type - 4 Class + normaldosnormalprober2lu201313255236627010179101210179101791																	ŀ	loldba	aci			
FIRST TWOBN AVG WGT Most Likely Attack Type - 4 Class + normalMODELS USEDAttack Type - 4 Class + normaldosnormalprober2lu2dos922253000 <td></td> <td>007</td> <td>ΓΡυ</td> <td>JTS (</td> <td>OF</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>		007	ΓΡυ	JTS (OF													2				
MODELS USED AS INPUTS FOR LAST TWO MODELSAttack Type - 4 Class + normal dosdosnormalprober2lu2dos9222530000normal1313255236627probe262384000MODELSu2r00000		FI	IRS	т ти	VO									BN /	AVG W	GT Mo	st Likely	Atta	ck Type	e - 4 Cla	ass + n	ormal
AS INPUTS FOR dos 9222 5 3 0 0 LAST TWO normal 13 13255 23 66 27 MODELS r2l 0 11 0 179 12		MOD	ELS	USI	ED				A	ttack Ty	vpe - 4	Class +	• norma		dos		norma	I	prol	oe 📃	r2l	u2
LAST TWO normal 13 13255 23 66 27 MODELS probe 2 6 2384 0 0 u2r 0 1 0 179 2	Δ	S INF	PUT	'S FC	DR				d	los					9222		!	5		3	0	(
Image: Constraint of the second sec				T T M					n	ormal					13		1325			23	66	27
			.43						p	robe					2			1	23	84	170	(
			M	UDE	LS					21 2r					0		. (ר ר		0	1/9	-

SSAS THE FOWER TO KNOW.

APPROACHES & STRATEGIES

- "Honest Assessment" Approach Divide Data into Train, Validate, & Test Sets
- Model 4 Largest of 22 Attack Types plus Normal
- Weight attack types by the inverse of their probability of occurrence so that rare events get more weight than common attacks
- Initial Analyses Model with ALL 41 factors
- Use many types of models and select better ones to average
 - Partition and Bootstrap Forest decision trees (BF was better)
 - Single-Layer, Dual-Layer, and Boosted (sequential) Neural Nets (BN was best)
- Later Analyses Down select to more critical few factors 11 chosen using Bootstrap Forest decision tree method
- Add 3 factors consisting of random data (Normal, Uniform, Integer)
- Stratify attack Types by Train-Validate-Test subsets
- Model the Bias increase weight of misclassified cases ("Nate Silver" approach)

DECISION TREES

- Also known as Recursive Partitioning, CHAID, CART
- Models are a series of nested IF() statements, where each condition in the IF() statement can be viewed as a separate branch in a tree.
- Branches are chosen so that the difference in the average response (or average response rate) between paired branches is maximized.
 - For all factors bin factor values or levels into two buckets such that the means of the two buckets are as far apart as possible.
 - Split on factor with the biggest difference in bucket means.
- Tree models are "grown" by adding more branches to the tree so the more of the variability in the response is explained by the model

DECISION TREE STEP-BY-STEP

Goal is to predict "Rejects" & "Accepts""

Overall Accept Rate is 84.44% Overall Reject Rate is 15.56%

Candidates

	Candidate			-	
Term	G^2		LogWorth	Cut Point	
API Particle Size	4.04050319		0.986886932	Small,Large	
Mill Time	10.63219688		1.912625603	11	
Screen Size	11.59780917	>	2.750476973	3,4]
MgSt Supplier	1.99715970		0.802459554	Jones Inc	
Lactose Supplier	1.07597470		0.523458492	James Ind	
Sugar Supplier	3.99502860		1.340705011	Sour	
Talc Supplier	0.00000000		0.000000000	Rough	
Blend Time	2.46622023		0.066048548	15.887	
Blend Speed	6.86574102		0.717212865	60.772	
Compressor	0.00153207		0.013776004	COMPRESS	
Force	7.53188562		0.855446810	24.691	
Coating Supplie	0.82675321		0.217072294	Mac	
Coating Viscosit	4.66879353		0.322714711	96.413	
Inlet Temp	7.28399996		0.803171227	106.39	
Exhaust Temp	7.17119361		0.779703315	68.592	
Spray Rate	15.01998363	<	2.736639439	403.26	
Atom. Pressure	3.36570749		0.149475063	58.787	

Candidate "X's"

- Search through each of these
- Examine Splits for each unique level in each X
- Find Split that maximizes "LogWorth"
 - Will find split that maximizes difference in proportions of the target variable

DECISION TREE STEP-BY-STEP

Repeat "Split Search" across both "Partitions" of the data. Find optimal split across both branches.

DECISION TREE (STEP BY STEP)

2nd split on Mill Time (< 11 vs. >= 11)

Notice variation in proportion of "1" in each branch

DECISION TREE (STEP BY STEP)

3rd split on Spray Rate (>= 404.1 vs. < 404.1))

Notice variation in proportion of "1" in each branch

THE POWER TO KNOW

imp

DECISION TREE (STEP BY STEP)

Crossvalidation

k-fold		-2LogLike	RSquare
5	Folde	37.3288048	0.5202
	Overa	30.4046577	0.5825

Split History

K-Fold in Green

Column Contributions

	Number		
Term	of Splits	G^2	Portion
Mill Time	1	14.7130695	0.3104
Spray Rate	1	11.9395178	0.2519
Screen Size	1	11.5978092	0.2447
Exhaust Temp	1	5.8676817	0.1238
Force	1	3.2779318	0.0692
API Particle Size	0	0	0.0000
MgSt Supplier	0	0	0.0000
Lactose Supplier	0	0	0.0000
Sugar Supplier	0	0	0.0000
Talc Supplier	0	0	0.0000
Blend Time	0	0	0.0000
Blend Speed	0	0	0.0000
Compressor	0	0	0.0000
Coating Supplie	0	0	0.0000
Coating Viscosit	0	0	0.0000
Inlet Temp	0	0	0.0000
Atom. Pressure	0	0	0.0000

			Number
	RSquare	Ν	of Splits
Training	0.949	75582	31
Validatio	0.815	25194	
Test	0.634	25197	

Split History

Validation Data in Red Test Data in Orange

Column Contributions

	Number		
Term	of Splits	G^2	 Portion
service	5	630992.402	0.5475
dst_bytes	4	128894.607	0.1118
dst_host_diff_srv_rate	3	115626.455	0.1003
src_bytes	8	97103.0428	0.0843
dst_host_count	2	71772.3696	0.0623
count	3	68716.3668	0.0596
dst_host_same_src_port_rat	3	19974.724	0.0173
dst_host_srv_count	1	10836.2482	0.0094
duration	1	5450.42578	0.0047
flag	1	3066.0292	0.0027
srv_count	0	0	0.0000

DECISION TREE - 11 FACTORS BOOTSTRAP FOREST

Measure	Training	Validation	Test
Entropy RSquare	0.9816	0.9798	0.9807
Generalized RSquar	0.9975	0.9972	0.9974
Mean -Log p	0.0296	0.0324	0.0312
RMSE	0.0834	0.0888	0.0868
Mean Abs Dev	0.0235	0.0253	0.0247
Misclassification Rat	0.0042	0.0055	0.0048

DECISION TREE - 11 FACTORS

Measure	Training	Validation	Test
Entropy RSquare	0.9486	0.8149	0.6335
Generalized RSquar	0.9925	0.9661	0.9061
Mean -Log p	0.0828	0.2979	0.5898
RMSE	0.1426	0.2127	0.2811
Mean Abs Dev	0.0387	0.0637	0.0969
Misclassification Rat	0.0230	0.0495	0.0821

Column Contributions

	Number		
Ferm	of Splits	G^2	 Portion
service	313	6647269.76	0.3546
dst_bytes	318	2378144.67	0.1269
src_bytes	642	2343701.45	0.1250
dst_host_srv_count	545	1371395.91	0.0732
count	384	1361411.35	0.0726
dst_host_diff_srv_rate	435	988535.468	0.0527
lag	190	889445.342	0.0475
dst_host_same_src_port_rat	402	881707.319	0.0470
dst_host_count	435	700494.072	0.0374
srv_count	287	669775.801	0.0357
duration	222	511537.238	0.0273

Column Contributions

	Number		
Term	of Splits	G^2	 Portion
service	5	630992.402	0.5475
dst_bytes	4	128894.607	0.1118
dst_host_diff_srv_rate	3	115626.455	0.1003
src_bytes	8	97103.0428	0.0843
dst_host_count	2	71772.3696	0.0623
count	3	68716.3668	0.0596
dst_host_same_src_port_rat	3	19974.724	0.0173
dst_host_srv_count	1	10836.2482	0.0094
duration	1	5450.42578	0.0047
flag	1	3066.0292	0.0027
srv_count	0	0	0.0000

- Bootstrap Forest
 - For each tree, take a random sample of the predictor variables (*with replacement*) e.g. pick half of the variables. Build out a decision tree on that subset of variables.
 - Make many trees and average their predictions (bagging)
 - This is also know as a random forest technique
 - Works very well on wide tables.
- Can be used for *both* predictive modeling and variable selection.
- Allows for dominant variables to be excluded from some trees giving less dominant – but still important – variables a chance to be selected.
- Valuable approach for screening variables for use with other modeling methods – e.g. neural networks.

SEE THE TREES IN THE FOREST

COLUMNS CONTRIBUTIONS – VARIABLE SELECTION W/44 FACTORS ORIGINAL 41 FACTORS + RANDOM (NORMAL, UNIFORM & INTEGER)

Column Contributions

	Number		
Term	of Splits	G^2	 Portion
service	450	10603400.8	0.2831
dst_bytes	382	5308498.33	0.1417
src_bytes	820	4771327.16	0.1274
count	337	2700247.28	0.0721
dst_host_srv_count	528	1990388.66	0.0531
dst_host_diff_srv_rate	415	1575488.06	0.0421
flag	168	1153015.42	0.0308
srv_count	238	1115688.05	0.0298
dst_host_serror_rate	175	1060259.19	0.0283
duration	276	991351.909	0.0265
dst_host_count	499	714300.159	0.0191
dst_host_same_src_port_rat	389	616742.634	0.0165
hot	159	535399.996	0.0143
same_srv_rate	103	422795.794	0.0113
dst_host_same_srv_rate	334	421699.768	0.0113
diff_srv_rate	145	382986.204	0.0102
serror_rate	65	365667.013	0.0098
dst_host_rerror_rate	233	318445.492	0.0085
dst_host_srv_serror_rate	117	308717.284	0.0082
logged_in	40	305603.637	0.0082
srv_serror_rate	30	219339.913	0.0059
root_shell	32	203921.266	0.0054
dst_host_srv_diff_host_rate	253	196905.011	0.0053
Random Uniform	228	195145.878	0.0052
dst_host_srv_rerror_rate	81	153228.513	0.0041
protocol_type	53	152857.046	0.0041
is_guest_login	12	137886.036	0.0037
Random Normal	194	110253.474	0.0029
num_compromised	39	76703.4706	0.0020
num_file_creations	20	75279.6937	0.0020
wrong_fragment	29	72313.7688	0.0019
rerror_rate	45	59525.1111	0.0016
num_root	23	41990.5367	0.0011
Random Integer	146	21117.3276	0.0006
srv_diff_host_rate	33	17448.0232	0.0005
num_failed_logins	7	17407.5895	0.0005
srv_rerror_rate	30	16080.2873	0.0004
num_access_files	11	11528.8834	0.0003
num_shells	11	8067.77994	0.0002
urgent	4	3131.15585	0.0001
su_attempted	1	42.7170189	0.0000
land	0	0	0.0000
num_outbound_cmds	0	0	0.0000
is_host_login	0	0	0.0000

Column Contributions

	Number			
Term	of Splits	G^2		Portion
service	450	10603400.8		0.2831
dst_bytes	382	5308498.33		0.1417
src_bytes	820	4771327.16		0.1274
count	337	2700247.28		0.0721
dst_host_srv_count	528	1990388.66		0.0531
dst_host_diff_srv_rate	415	1575488.06		0.0421
flag	168	1153015.42		0.0308
srv_count	238	1115688.05		0.0298
dst_host_serror_rate	175	1060259.19		0.0283
duration	276	991351.909		0.0265
dst_host_count	499	714300.159	10p 11 01 44	0.0191
dst_host_same_src_port_rat	389	616742.634		0.0165
hot	159	535399.996		0.0143
same_srv_rate	103	422795.794		0.0113
dst_host_same_srv_rate	334	421699.768		0.0113
diff_srv_rate	145	382986.204		0.0102

Model Validation-Set Summaries

The fit below was the best of these models fit.

		Entropy	Misclassification			Avg Abs
N Terms	N Trees	RSquare	Rate	Avg -Log p	RMS Error	Error
11	200	0.9786	0.0040	0.0336	0.0856	0.0279
14	53	0.9811	0.0040	0.0297	0.0816	0.0243
18	48	0.9831	0.0039	0.0265	0.0770	0.0215

BOOSTED TREE

- Beginning with the first tree (layer) build a small simple tree.
- From the residuals of the first tree, build another small simple tree.
- This continues until a specified number of layers has been fit, or a determination has been made that adding successive layers doesn't improve the fit of the model.
- The final model is the weighted accumulation of all of the model layers.

BOOSTED TREE ILLUSTRATED

Final Model $M = M1 + \varepsilon \cdot M2 + \varepsilon \cdot M3 + \dots + \varepsilon \cdot M49$

 ε is the learning rate

NEURAL NETWORKS

- Neural Networks are highly flexible nonlinear models.
- A neural network can be viewed as a weighted sum of nonlinear functions applied to linear models.
 - The nonlinear functions are called activation functions. Each function is considered a (hidden) node.
 - The nonlinear functions are grouped in layers. There may be more than one layer.
- Consider a generic example where there is a response Y and two predictors X1 and X2. An example type of neural network that can be fit to this data is given in the diagram that follows

EXAMPLE NEURAL NETWORK DIAGRAM

NEURAL NETWORKS

- Big Picture
 - Can model:
 - » Continuous and categorical predictors
 - » Continuous and categorical responses
 - » Multiple responses (simultaneously)
 - Can be numerically challenging and time consuming to fit
 - NN models are very prone to overfitting if you are not careful
 - » There are several ways to help prevent overfitting
 - » Some type of validation is required

NEURAL NET - 11 FACTORS SINGLE-LAYER

Measures Value Value Value Generalized RSquar 0.9814778 0.9764849 0.9805001 Entropy RSquare 0.8857414 0.8610009 0.8807691 RMSE 0.2171407 0.2374758 0.2165633 Mean Abs Dev 0.0928858 0.1022572 0.0937134 Misclassification Rat 0.0567399 0.0656212 0.0555819 -LogLikelihood 69405.509 27962.025 24450.71 Sum Freq 377425.96 125001.47 127437.57

NEURAL NET - 11 FACTORS BOOSTED

Measures	Value	Value	Value
Generalized RSquar	0.995034	0.9928519	0.9891299
Entropy RSquare	0.9650193	0.9508193	0.9280062
RMSE	0.11682	0.1384119	0.1827829
Mean Abs Dev	0.0364505	0.0414955	0.0632023
Misclassification Rat	0.0162761	0.0227104	0.0573684
-LogLikelihood	21248.789	9893.5268	14763.782
Sum Freq	377425.96	125001.47	127437.57

NEURAL MODEL PREDICTION PROFILER TOP 10 FACTORS

NEURAL MODEL PREDICTION PROFILER TOP 5 FACTORS

USE OPTIMIZATION TO FIND MOST PROBABLE CAUSE OF ATTACK TYPE

BOOTSTRAP FOREST PREDICTION PROFILER TOP 10 FACTORS

TOP – FIT 41 FACTORS | BOTTOM - FIT 11 FACTORS | RESULTS COMPARABLE

Sas HE HOWER

- Add a column of data that weights the misclassified cases differently than the correctly classified cases.
- More heavily penalize errors in predicting Normal than errors in predicting wrong Attacks
- If prediction worsens, then invert bias correction

ACTUAL VS. PREDICTED FOR TEST SUBSET FOR FOUR MODELS USING 11 FACTORS, ENSEMBLE MODELS AND BIAS

	TVT 60/20/20 Stratified							
2								
	Most Likely Attack Type - 4 Class + no							
Attack Type - 4 Class + normal	l dos normal probe r2l ι							
dos	9176	0	10	0	0			
normal	4	13448	10	6	1			
probe	5	1	2326	0	0			
r2l	2	0	2	194	1			
u2r	3	0	1	0	7			

Sas He HOWER TO KNOW.

Most Likely Attack	Most Likely Attack	Most Likely Attack Most Likely Attack		1	Most Likely A	Attack	
Type - 4 Class + normal	Type - 4 Class + normal 2 Type - 4 Class + norm		rmal 3 Type - <u>4</u> Class + norm			normal	4
				TVT 60/2	rati	fied	
			Most Lil	ely Attack 1	ype - 4 Cla	iss + ne	ormal
	Attack	Type - 4 Class + normal	dos	normal	probe	r2l	u2r
	dos		9175	1	10	0	0
	norma	l	7	13454	4	3	1
	probe		1	1	2330	0	0
	r2l		0	1	3	194	1
	u2r		0	0	5	1	5

HOW WOULD ONE USE THIS MODEL?

- Monitor factor settings by capturing 1 million rows of traffic
- Drop into proper columns as inputs
- Have model predict Attack Type
- If prediction is NOT Normal, then investigate further
- Repeat process and automate

IMPORTANT ISSUE

- Attackers are adaptive adversaries
- Must regularly update models

SUMMARY

- · Fit several data mining models to historic cyber attack data
- Used Honest Assessment Approach of dividing data into Train, Validate and Test subsets to prevent overfitting of models
- Used "Ensemble" model averaging to improve prediction
- Used bias weighting of misclassified cases to further improve prediction

Thanks. Questions or comments?

TOM.DONNELLY@JMP.COM

Copyright © 2010 SAS Institute Inc. All rights reserved.