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Outline

= Qverview of Design of Experiments (DOE)

« Slides 1 to 27 — background — many may be skipped
If most people have an understanding of DOE

= Efficient M&S Using DOE

« Sequential traditional DOE
« Sequential space-filling DOE



My Background

. Design of Experiments (DOE) for 29 Years

= ‘83-'87 Honeywell, Inc., Engineer
First saw the power of DOE in 1984 — career changing event
= ‘87-99 ECHIP, Inc., Partner & Technical Director

200+ DOE courses, on-site at 40+ companies - many
chemical/food/pharma - requiring mixture/formulation DOE

= ‘99-05 Peak Process, LLC, Consultant

= ‘05-08 US Army, Edgewood Chemical Biological Center (ECBC),
Physicist, Analyst, & Co-insurrectionist
DOE with Real data and Modeling & Simulation data

= Dec.’08 Joined the SAS Institute Inc., Customer Advocate

Work in DOE and Federal Government domains
— Data Visualization, Data Mining and their synergy with DOE
— Support DoD sites, National Labs, & Gov’t Contractors



Projects Using DOE at U.S. Army ECBC CY05-08

SR

Detection, Decontamination & Protection

JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live
Agent Test (WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

Agent Fate wind tunnel experiments
Decontamination Sciences Team

« Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment
(CREATIVE) - real and simulation data

« Modified vaporous hydrogen peroxide (mVHP) decontamination — real data
Smoke and Target Defeat Team

» Pepper spray characterization — real data

« Obscurant material evaluation (with OptiMetrics, Inc.) — simulation data

U.S. Army Independent Laboratory In-house Research (ILIR) on novel experimental designs
used with simulations

* Re-analysis of U.S. Air Force Kunsan Focused Effort BWA simulation data
« CB Sim Suite used for sensitivity analysis of atmospheric stability

U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology
Demonstration (ATD)

« Chamber testing of detectors — real data

* CB Sim Suite sensor deployment studies — simulation data
U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)

« Swatch and chamber testing — real data

« Computational Fluid Dynamics (CFD) — simulation data



Take Away Materials

= PDFs avalilable
* Today’s Slides

« White Paper - “Efficient Modeling & Simulation of
Biological Warfare Using Innovative Design of
Experiments Methods”

« MORSS Tutorial Summary 11 X 17 Handout
“DOE for Real-World Problems”



Why Use Design of Experiments
Methods with Simulation Experiments?

*~~" Quicker answers, lower costs, solve bigger problems

= QObtain a fast surrogate model of the simulation

 Individual simulations can run for hours, days, weeks
— Computational Fluid Dynamics (CFD)
— Simulation runs in real-time

* Numbers of factors can be very large (40+)
* Numbers of simulations needed can be large (thousands in many cases)
« Simulations can be stochastic requiring many replications

= Surrogate model yields a fast approximation of the simulation
« more rapidly answer “what if?” questions
 do sensitivity analysis of the control factors
« optimize multiple responses and make trade-offs

= By running efficient subsets of all possible combinations, one can —
for the same resources and constraints — solve bigger problems

= By running sequences of designs one can be as cost effective as

possible & run no more trials than are needed to get a useful answer
:



/ Long Running Physics-Based Simulations

| . Detailed Physics Models can require a great deal of runtime
N — to generate a short period of simulation time.

Lagrangian-Particle

Developed for Interior Developed for Exterior Developed for Exterior

Moving Man in Simulation Stationary Grids Stationary Grids

8M cells 1.5M Cells TBD Cells

10 Seconds of Simulation 30 Seconds of Simulation Min-Hours of Simulation

64 CPUs — 4K slower Single CPU — 20K slower Single CPU

12 Hours of Runtime 7 Days of Runtime Minutes-Days of Runtime
Detailed Ingress/Egress, External CW Deposition/ Speed, Flexibility, More User
Internal Airflow and Evaporation, Vegetation, Friendly, V&V

Convection Solar Heating
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Stochastic Simulations with Many Replicates

PRSSSF- Sy

Discrete Event Simulations
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What is Design of Experiments?

—

S Classic Definition of DOE

= Purposeful control of the inputs (factors) in such
a way as to deduce their relationships (if any)
with the output (responses).

Suppl. Mg St
Suppl. Lactose . _
Suppl. Sugar Coating Supplier
APl Lot Suppl. Talc Coating Viscosity

Uncontrolled Factors
e.g. . Humidity

2

APl Part. Dissolution
Friability Coat Uniformity
Noise
Mill Time Blend Time Compressor Inlet Temp
Screen Size Blend Speed Force Exhaust Temp
Spray Rate

Atom. Pressure 11



Here are 4 Controls (inputs) & 2 Responses
(outputs) and their empirical relationships (model)

[Prediction Profiler ]
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Get this Prediction Profiler as result of analyzing data collected for a DOE
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What is a Design of Experiments (DOE)?

p————

Alternative Definition

= A DOE is the specific collection of trials run to support
a proposed model.

* If proposed model is simple, e.g. just main or 18t order effects
(x,, X5, X3, €tc.), the design is called a screening DOE

— Goals include rank factor importance or find a “winner” quickly
- Used with many (> 67?) factors at start of process characterization

« |If the proposed model is more complex, e.g. the model is 2"
order so that it includes two-way interaction terms (x;X, , X,X;, X,Xj,
etc.) and in the case of continuous factors, squared terms
(x4 X, x452, etc.), the design is called a response-surface DOE

- Goal is generally to develop a predictive model of the process
- Used with a few (< 67?) factors after a screening DOE

13



Can fit data

from bIocks

Response Surface
DOE in a Nutshell

Fi‘t requires
data from
blocks 1&2

-

Eit requires
ata from all
“3blocks =

LI e 7 Qa
x1

E
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Expensive Experimentation?
Sequential DOE is Often Used

Block 2
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X4 X4
y=agtaX,taX;*aX; y=agtaX,taX,*a; y=agtaX,+aX,ta,
Run this block 1st to: + 205X Xy + 843X X5 F @p5X,X;5 + 20X Xy F 83X X5 F @p5X X5
(i) estimate the main effects* Run this block 2nd to: + a,X 2+ @y X2 + a5y,
M USDERI? T Chia (i) repeat main effects estimate, Run this block 3rd to:

for curvature. (ii) check if process has shifted

“May be all that are needed with (iii) add interaction effects to
appropriate physics-based scaling  model if needed.

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add curvature effects to

Also called non-linear modeling model if needed.
15



Why is Using DOE Important?

“One thing we have known for many months is that the
spigot of defense funding opened by 9/11 is closing.”

“In the past, modernization programs have sought a 99
percent solution over a period of years, rather than a 75
percent solution over a period of weeks or months.”

« Two quotes from the January 27, 2009 submitted statement
of Secretary of Defense Robert M. Gates to the Senate

Armed Services Committee.

DOE is one of the more powerful tools we can use to

efficiently accomplish our goals.
» DOE vyields the maximum information from the fewest experiments.

» DOE often yields an 80% solution in less than 20% of the work.

16



~ Response Surface & Contour Plot
— (four control var. iables)

HorizVert Fact Curren t X
O Ot 320
O orat | 115
O @ rpm | 255
) (O viscosi ty 80
3- D Response Contour Curren tY LolLimit Hi Limit
— melt I © Il 250| 305.35337
r e S p O n S e — tensile (0 | I 20000| 41081.766
=17

surface

ensie

2-D
contour
plot

=\
5 T R 150 i i i i i i T T T T
' 100 110 120 130 140 150 160 170 180 190 200
I

rate

17



Response Surfaces & Contour Plots

(four control variables & two responses)

— ‘ Contour Profiler
HorizVert Factor Current X
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—

~~1-D Prediction Profiles are a Way to View Higher
— Dimensionality as “Interactive Small Multiples” -
Here 4 Controls & 2 Responses

[Prediction Profiler
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~1-D Prediction Profiles are a Way to View Higher
Dimensionality as “Interactive Small Multiples” -
Here 4 Controls & 2 Responses

[Prediction Profiler
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" Interaction Profiles are Another Way to
— View Higher Dimensionality -
Here 4 Controls and 1 Response

[Interaction Profiles ]
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For non-stochastic simulations for which a surrogate model has
been created, Monte Carlo simulations can be run using

assumed distributions for inputs to better assess transmitted

variation about the model point estimate.

Prediction Profiler
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The Power of Predictive Modeling

= System with 2 primary MoPs and Cost

= Management wants to lower cost but maintain
performance

= Multi-response and multi-factor process characterized
using a JMP Custom DOE that supports interactive
optimization — the trading off of performance and cost

= Management provided with visually interactive process
knowledge that makes their decision making easier

23
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Leading Design of Experiments Texts

PRSSSF- Sy

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (2005), Statistics for Experimenters, 2"d ed., Wiley,
New York
- The classic 1978 text recently revised

Wu, C. F. J. and Hamada, M. (2009), Experiments, Planning, Analysis and Parameter Design
Optimization, , 2" ed., Wiley, New York
- Both classic DOE approaches and orthogonal arrays & orthogonal main effects plans

Montgomery, D. C. (2009), Design and Analysis of Experiments, 7 ed., Wiley, New York
- Popular text, solution book available, examples illustrated with DOE software.

- 8t Edition includes newly developed screening approaches

- All problems worked in JMP software due out this year

Texts Specifically on DOE for Computer Experiments:

Kleijnen, J. P. C. (2008), DASE: design and analysis of simulation experiments. Springer, New
York.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and Analysis of Computer
Experiments, Springer, New York

Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design and Modeling for Computer Experiments,

Chapman & Hall/CRC Press, New York e
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— # Unique Trials for 3 Response-Surface Designs

and # Quadratic Model Terms
VS.
# Continuous Factors

Y  Unique Trials in Central Composite Design
“~ Unique Trials in Box-Behnken Design

*Unique Trials in Custom Design with 5 df for Model Error

~~ Terms in Quadratic Model = Minimum # of Trials

If generally running 3, 4 or 5-factor fractional-factorial designs...

A‘f ;, é 7' é 9' 1. How many interactions are you NOTinvestigating?
2. How many more trials needed to fit curvature?
Number of 3. Consider two stages — Definitive Screening + Augmentation

Continuous Factors
26



Create a More Complex “Real-World” DOE

How many folks have any of these issues?

= Work with these different kinds of control variables/factors:
« Continuous/quantitative? (Finely adjustable like temperature, speed, force)

« Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel
with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)

\‘_‘__;\_“ ) __;7"'

« Mixture/formulation? (Blend different amounts of ingredients and the process
performance is dependent on the proportions more than on the amounts)

* Blocking? (e.g. “lots” of the same raw materials, multiple “same” machines, samples
get processed in “groups” — like “eight in a tray,” run tests over multiple days — i.e.
variables for which there shouldn’t be a causal effect

=  Work with combinations of these four kinds of variables?

= Certain combinations cannot be run? (too costly, unsafe, breaks the process)
= Certain factors are hard-to-change (temperature takes a day to stabilize)

= Would like to add onto existing trials? (really expensive/time consuming to run)

= Characterize process or run experiments using computer simulations?
(war gaming, agent-based, discrete event, computational fluid dynamics (CFD))

= Measure response data in vicinity of physical limits? (counts, hardness,
resistivity can’t fall below zero, or percentage yield or killed can’'t exceed 100%) .,



Two Classes of Designs for
Two Types of Surrogate Modeling of Simulations

= “Traditional factorial/response surface” designs for polynomial modeling
with categorical (qualitative) and continuous (quantitative) variables

» Designs can be sequentially constructed to support increasingly complex models

« Example featured here reanalyzes a simulation case matrix in which all combinations
of 6 variable settings were originally run- atotal of 648 =6 X 3 X3 X3 X2 X 2
» References on Resolution V, Fractional-Factorial Designs for many (40+) factors

- Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-
Factor Interactions, Journal of Quality Technology, 36, 400-412.

- Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central
Composite Designs, ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4,
October 2005, Pages 362—-377.

- Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with
Large Run Sizes, Technometrics, (in press) http://www.stat.ucla.edu/~hqgxu/pub/ffd2r3.pdf

= “Space-filling” designs primarily for use with continuous variables AND
non-stochastic/deterministic responses

» These designs can support “Gaussian Process” or “Kriging” spatial regression analysis

— an interpolation technique, as well as linear regression — an approximation method
28



How are Space-Filling Designs
Different from Traditional Designs?

Response-Surface Design

Space-Filling Design
for 3 Variables with 17 Unique Trials for 3-Variables with 15 Unique Trials
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Rather than emphasizing high leverage trials (“corners”) for a simple polynomial
model, space-filling designs “spread” their trials more uniformly through the

space to better capture the local complexities of the simulation model.
29



Traditional Designs for Polynomial Modeling

SR

"= |used to say “If a “textbook” fractional-factorial, orthogonal
array or response-surface design is available, then use it.”
Now | say, “If Definitive Screening or Minimal Alias design is
available, then use it.”

= Textbooks and web site catalogs do not always contain
designs for categorical variables with:

« all combinations of mixed numbers of levels (e.g. 3, 4, 5, and 21)

 large numbers of levels for variables (e.g. 5+)

= Algebraic (Orthogonal Array) and algorithmic (D-optimal) computer
generated designs can often be used
» Orthogonal Arrays are good at yielding analysis with un-

confounded estimates of the “main effects” when variables have
many different levels

» D-optimal designs are good for adding on the fewest additional
trials to support higher order “interaction” terms in the model



Sequential Designs

SR

Simulation experiments — Sequential designs are easily
employed because “restricted randomization” is not an issue

* Many simulations are deterministic

« Even if stochastic (random), correlation with unknown factors is not
possible

 All factors are generally just as easy to change
« Can still inexpensively add a blocking variable to test if “the code
has been changed!”

Real experiments — The issue of “restricted randomization” does
arise making sequential experimentation a bit more complicated
— but still possible to employ

» Groups of trials run at different (even widely spaced) periods of time
— Addressed using a blocking factor

« Sometimes there are factors that are harder to change than others,
e.g. Oven Temperature

— Addressed using split-plot designs -



Case Matrix as Used in Study of the Observed
Response “Probability of Casualty” (PCAS)

Variable # Levels Levels

Agent Codes (X1) 6 A, N, T,H, R, Y (categorical)

Season 3 Winter, Summer, Spring/Fall (categorical)
Time of Attack (Hour) 3 0500, 1200, 2200 Local Time (continuous)
No. of TBMs & Spread .
Radius (X2) 2 1TBM & 1m, 2 TBMs & 1000 m (categorical)
Mass (relative) 3 1.00, 1.57, 2.00 (continuous)

Height of Burst (X3) 2 0, 10 m (continuous)

Total Cases 648




~” All 48 Possible Combinations of Settings
for 6 Variables (6 X2 X2 X3 X3 X 3)
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tage 1

T —_— —
— ——

36 Total
Simulations

Four Stage Design Sequence

Stage 2

108 Total
Simulations

Stage 3

324 Total
Simulations

'/

Stage 4

ALL 648
Simulations

Design 1, 36 trials

Design 1, 36 trials

Design 1, 36 trials

Design 1, 36 trials

Main effects only
for ALL variables
+ some 2-way
interactions

5.6% of 648

324 trials in Design 4 used as checkpoints for Designs 1,2 & 3 —>

Design 2, 72 trials

Design 2, 72 trials

Design 2, 72 trials

Stage 1 effects
plus all 2-way
interactions

+ some 3-way
interactions

16.7% of 648

Design 3, 216 trials

Stage 2 effects
plus all 3-way
interactions

Design 3, 216 trials

Stage 3 effects
plus ALL
remaining 4-way,
5-way and 6-way
Interactions

50% of 648

Design 4, 324 trials
NOTE: Length of this
green box should be
longer than shown 34




Z 36 of All 648 Possible Combinations of Settings
for 6 Variables (6 X2 X2 X3 X3 X 3)
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Red.Dots Mark the 36 Trials (an Orthogonal Array) Analyzed for Stage 1



Locations of Trials for a
4-variable, 9-trial Orthogonal Array Design
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X'Ll’ X-I» X: Delete X1 and View
5 o o Locations of Trials for a
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--/I'/Drojection of Trial Locations

for a 3-variable OA9 Design -,
for All Pairs of Variables T

S S
O @ o
O il O
»X2

All projections have 9
unique trials that can
be used to fit a 2-
variable quadratic
model with 6 terms
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Can Get Designs from Different Sources

SE— T

- ——

= Textbook

= Limited number of catalogued solutions — experimenters frequently
change their problem to match available designs

= Variable settings are in coded units

Web sites of designs
= Greater number of catalogued solutions — but never all

= Variable settings are in coded units

Custom computer code
= Can find solutions for previously un-catalogued cases

= Variable settings are in coded units (-1, 0, 1)
COTS Solution

» Textbook and algorithmic code for generating custom designs

= Variable settings in natural or laboratory units (120, 150, 180)
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Predictions (w/95% Pred. Limits) of PCAS vs. Nested Mass and
MunCnt_Spread for 1-way, reduced 2-way and reduced 3-way models

S

” Predicted Probability of Casualty (PCAS) vs. Mass — with Mass Treated as a

PCAS

0.75 |

Model has 24 terms and fit
data from 36 simulations

1-way model w/nesting |

0.70

1.0

12 14 1.6 1.8
Mass

2.0

1.00

0.95 |

0.90 |

1-way model w/nesting
+ some 2-way terms

v) 0.85 |-~

@)

0.75 |

Q- 0.80

Model has 31 terms and fit
data from 36 simulations

0.70

1.0

1.2 14 1.6 1.8
Mass

2.0

Continuous Variable — for 5 Different Models Fit to 3 Sets of Simulation Data
| | | |

1.00

0.95 |

0.90 |

1.00
Reduced 2-way model |

0.95

0.90 |

Model has 36 terms and fit

Reduced 3-way model |

//

Model has 178 terms and fit

0.75 | — 075 | —
data from 108 simulations data from 324 simulations
0.70 \ \ \ \ 0.70 \ \ \ \
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 14 1.6 1.8 2.0
Mass Mass
1.00 | | | | Five other variables
Reduced 2-way model | were helq constant at
0.95 these settings:
+ some 3-way terms
0.90 | . Agent=R
// Season = F
I «xn0.85 | — Time =12
S HOR =0
B 080 I #TBM &
Spread Radius = 1
o0.75-1 Model has 66 terms and fit —
data from 108 simulations
0.70 ‘ ‘ ‘ ‘ —— Predicted Mass
~~~~~~~~~~~~~~ 95% Prediction Limits
10 12 14 16 18 20
Mass



/ “Factor Sparsity” and “Effect Heredity”
: // Used to Enhance Model Complexity

36 trials 108 trials 324 trials
18 7 . 150 150
1-way w/nesting model Reduced 2-way model Reduced|3-way model
§ 100 Elm i 5 100
o o o
S0 “0 <

‘ 37 .93
PR YPr | o foeexpis = L

) I;uu.nl (;'H Targ gu‘ 1'. ! .I’guln ((;ﬂ T ni.u ' ) 'l."clccnl (tﬂ‘ I.ugci '
Worst Case = 3.7% Worst Case = -0.93% Worst Case = -0.0081%
Half of Cases < 0.37% Half of Cases < 0.11% Half of Cases < 0.0007%
|
1% 150 + i
1-way + some 2-way ; 2-way[l+ some 3-way Factor Sparsity states only a few
5, termsmodel £,  termspnodel variables will be active in a
- . factorial DOE
‘ Effect Heredity states significant
Lt e . gr oo t : * interactions will only occur if at
Percent Off I'mgc{ ‘ Percent ﬁ”lal‘ch Ieast one parent |S actlve
Worst Case = -2.5% Worst Case = -0.0251%
Half of Cases < 0.16% Half of Cases < 0.0010%

See Wu & Hamada, p. 112
Qct. 1,.2007,visit.by Profs. Wu & Joseph of GA Tech ISyE 41



/ Only a Fraction of All Possible Trials
May be Required to Provide an Answer

108 trials

324 trials

Higher Resolution (100X) Histograms of the “Percent Off Target” that
Response Predictions Fell Relative to 324 Checkpoint Observations

200 T Histogram of “% Off Target” for 324 checkpoints
| for “reduced 2-way + some 3-way” model that
! has 66 terms and fit data from 108 simulations
150 T
Worst Case = -0.0251%
Half of Cases < 0.0010%
+—
g 100 T
U -
50 T
-0. ozs I
0 1 |5 ] e Jl‘ l‘ [ B | | |
-0.04 -0.02 0 ) 0.02 0.04
Percent Off Target

Count

200 T Histogram of “% Off Target” for 324 checkpoints

| for “reduced 3-way” model that has 178 terms
. and fit data from 324 simulations
150 T
Worst Case = -0.0081%
Half of Cases < 0.0007%

100

How far off is good enough?

50 7
| -0. 008 h
0 L | u -I l'- | |
-0.04 -0.02 0.02 0.04
Percent Off Target 2



/) More Complexity - Better Fit
// Fewer “Extraneous” Terms - Better Fit

Error Estimates for 8 Models Fit to Data Sets of 36, 108, & 324 Observations
Number Residual SD Cross-Validation Checkpoint RMS

Number of (model error  RMS ("one-left  (model error from
of Model Used Model from data out" error from 324 data values  Adjusted
Trials to Fit Data Terms  used in fit data used in fit NOT used in fit) R-squared

108 2-way 79 0.011197 0.022207 0.010772 0.998
108 reduced 2-way 36 0.008469 0.010933 0.008612 0.999

reduced 2Way 65 0000045 0000132 0.000179 1.000
+ some 3-wav

Higher Cross-Validation RMS May Be an Indicator of “Over Fitting”

Copyright © 2008, SAS Institute Inc. All rights reserved



Conclusions
Sequential Traditional Designs

PRSSSF- Sy

Possible to get the 80% to 95% solution with less than 20% of the
brute force running of all factor combinations

Use of “factor sparsity” and “effect heredity” principles can help to get
more information than the design was originally built to support

Next stage trials can first be used as checkpoints for previous stages

With improved efficiency over running all combinations, more factors
can be studied with the same resources
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How are Space-Filling Designs
Different from Traditional Designs?

Response-Surface Design

Space-Filling Design
for 3 Variables with 17 Unique Trials for 3-Variables with 15 Unique Trials
174 SO 17 -{_O-—__
16 4 \ e s = by S - ] ] == o ol
154 ~Q o ) | l I
14 - ™~ __%:7_?::?:7 | [ |
13 i sy | l' | - '|
124 = o) | o
114 =1\ Q £ H | | o) ? |
104 SO ‘ e ? i ‘| Il | O ||
X3 91 f T S X3 91
811 ‘; R Ol bl ‘l ST |I , o ‘1
7 | | A»-"H: 41 | |
67 l R o] | ' I
l ™ L = g | ' O o
I e 2 S B =S N | | o |
e R PR CE e et N | | - |
21'3 B N o E i) 15’ e : II L L o II
171%- [i 1 B 1] | 9 : | 73R © o/
| ‘o | ~J ' J
141315" ' o w Y i ~ 17 17
11,05 | A { <415 16
9N | o < 13 9=
*e ’ - | < 8‘.; 10 112 42) = T 9
Bl e 5,‘6 ! : =
2% "lﬂ__l_.<-2‘3 4 4" 1\”_*__1.-—"" 3

Rather than emphasizing high leverage trials (“corners”) for a simple polynomial
model, space-filling designs “spread” their trials more uniformly through the

space to better capture the local complexities of the simulation model.
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17-trial Orthogonal Latin
Hypercube (OLH) space-
filling design settings
used for creating the
metamodel

12-trial Plackett-Burman
screening design settings
used as checkpoints —
half just inside and half
just outside design
boundary (convex hull)

29 CFD Simulations Run — 17 Used to
Metamodel & 12 Used as Checkpoints

Time of Temperature Wind Wind Relative Cloud
Day Speed Direction Humidity  Cover

1 505 37 5.3 247.5 30 0.92
2 165 13 5.6 281.25 0.32
3 250 19 1.7 225 0.8
4 335 25 2.9 360 0.14
5 1100 35 3.5 202.5

6 1440 15 3.2 326.25

7 930 11 6.2 236.25 80 0.44
8 845 33 5 348.75 75 0.62
9 760 21 3.8 270 50 0.5
10 1015 2.3 292.5 70 0.08
11 1355 2 258.75 90 0.68
12 1270 5.9 315 40 0.2
13 1185 4.7 45 0.86
14 420 4.1 337.5 65 0.98
15 4.4 213.75 85 0.26
16 590 31 . 303.75 20 0.56
17 675 9 2.6 191.25 25 0.38
18 972.5 26 3.05 298.125 62.5 0.65
19 547.5 16 4.55 241.875 62.5 0.65
20 972.5 26 3.05 241.875 37.5 0.65
21 547.5 26 4.55 298.125 375 0.35
22 972.5 16 4.55 298.125 62.5 0.35
23 547.5 16 3.05 241.875 37.5 0.35
24 547.5 26 4.55 241.875 62.5 0.65
25 972.5 16 4.55 298.125 37.5 0.65
26 547.5 26 3.05 298.125 62.5 0.35
27 547.5 16 3.05 298.125 37.5 0.65
28 972.5 16 3.05 241.875 62.5 0.35
29 972.5 26 4.55 241.875 37.5 0.35

- Min

- Mid

- Max

Inside
Outside
Outside
Outside

Inside

Inside
Outside

Inside

Inside
Outside
Outside

Inside
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/ Kriging Fit in 1-D Showing Interpolation
/" and Confidence Intervals on Prediction
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Off-Axis Variable Settings

Time wrt Sunset = 360
Wind Speed = 3.8

Wind Direction = 270
Humidity = 50

Cloud Cover = 0.50
Log,q(Duration) = 1.0
Latitude (coded) =17
Longitude (coded) = 17

NOTE: This is a plot of Kriging analysis
of the 100 integers between 0 and 99
randomly assigned to 100 space-filling
design trials.

The “noise” has been fit perfectly!

This is why one should only use this
technigue with non-stochastic or nearly
non-stochastic data!



Seminal Paper on “Space-Filling”
DOE for Computer Experiments

SR

= Design and Analysis of Computer Experiments
Sacks, J., Welch, W.J., Mitchell, T.J. and
Wynn, H.P.
Statistical Science 4. 409-423, 1989

vaufiory ¥

sjuawusadxy sendwosy |

10j Buyjepowy pue ubisag
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« Textbooks on this topic include:

— Santner, T. J., Williams, B. J., and Notz, W. I. (2003),
The Design and Analysis of Computer Experiments,
Springer, New York

- Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design
and Modeling for Computer Experiments, Chapman &
Hall/CRC Press, New York

- Kleijnen, J. P. C. (2008), DASE: design and analysis of
simulation experiments. Springer, New York.

(A —: '-.;‘l- # 'N"uv pm us’saa aq‘l' 108 ; .

nipng pue
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Software Tools for Kriging Analysis
(that | know about...)

PRSSSF- Sy o

JMP® (called Gaussian Process modeling)
ECHIP® (called Smoothing analysis)
SYSTAT® (called Kriging analysis)

Matlab® Toolbox Modules
« Design and Analysis of Computer Experiments (DACE)
« SUrrogate MOdeling (SUMO)

— Contains DACE as well as another Kriging tool and many other
surrogate modeling methods

PErK (code available from authors of 2003 text by Santner, et. al.)
“Blind” Kriging — R code potentially available from GA Tech
The Gaussian Processes Website: http://www.gaussianprocess.org

Code to do Bayesian Hierarchical Gaussian Process (BHGP) modeling
by combining simulation and real experimental data is available from
Prof. Peter Qian of the University of Wisconsin

Code for Nested and Sliced Latin Hypercube Designs also available

from Prof. Qian..
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Websites for Designs, Software & Publications

SE— T

|
\

— http://harvest.nps.edu/
The Simulation Experiments & Efficient Design (SEED) Center
for Data Farming at Naval Postgraduate School

» Designs
— Nearly Orthogonal Latin Hypercubes (NOLH) and
— Resolution V, Fractional Factorials for many factors
« Agent-Based Simulation Software
- Pythagoras
- MANA (Map Aware Non-uniform Automata)
« Many Papers for Download and Links to INFORMS and WSC

http://www.research.att.com/~njas/oadir/index.htmi
Library of Orthogonal Arrays maintained by Neil J.A. Sloane

http://support.sas.com/techsup/technote/ts723.html
Library of Orthogonal Arrays maintained by Warren F. Kuhfield
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Publications Discussing Recent Advances in
Metamodeling Simulations

Blind Kriging: A New Method for Developing Metamodels,
Joseph, V.R., Hung, Y., and Sudjianto, A.,
ASME Journal of Mechanical Design, 130, 031102-1-8, 2008

Gaussian Process Models for Computer Experiments
With Qualitative and Quantitative Factors,
Qian, P.Z.G., Wu, H., and Wu, C.F.J.,
Technometrics, 50 (4), 383-396, 2008

Bayesian Hierarchical Modeling for Integrating Low-Accuracy
and High-Accuracy Experiments,
Qian, P. Z. G. and Wu, C. F. J.,
Technometrics, 50 (2), 192-204, 2008

Regression-Based Inverse Distance Weighting for Multivariate
Interpolation,
Joseph, V.R., and Kang, L.,
(submitted) Preprint May 2009

Nested Latin Hypecube Designs,
Qian, P. Z. G.
Biometrika, 96, 957-970, 2008
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Publications listed on web page of Prof. Peter Qian

2011

19. Zhou, Q., Qian, P. Z. G. and Zhou, S (2010), A Simple Approach to Emulation for Computer Models With
Qualitative and Quantitative Factors, Technometrics, Accepted.

18. He, X. and Qian, P. Z. G. (2010), Nested orthogonal array based Latin hypercube designs, Biometrika,
Accepted.

17. Xu, X., Haaland, B. and Qian, P. Z. G. (2010), Sudoku based space-filling designs, Biometrika, Accepted.

2010

16. Tang, Q. and Qian, P. Z. G. (2010), "Enhancing the Sample Average Approximation Method with U
Designs,"Biometrika, 97, 947-960.

15. Haaland, B., Min, W., Qian, P. Z. G. and Amemiya, Y. (2010), A Statistical Approach to Thermal Management
of Data Centers under Steady State and System Perturbations,"Journal of the American Statistical Association,
105, 1030-1041.

14. Qian, P. Z. G. and Ai, M. (2010), "Nested Lattice Sampling: A New Sampling Scheme Derived by Randomizing
Nested Orthogonal Arrays,"Journal of the American Statistical Association, 105, 1147-1155.

13.Haaland, B. and Qian, P. Z. G. (2010), "An Approach to Constructing Nested Space-Filling Designs for Multi-
Fidelity Computer Experiments,"Statistica Sinica, 20, 1063-1075.

12. Wang, F., Hwang, Y., Qian, P. Z. G. and Wang, X. (2010), A Statistics-Guided Approach to Precise
Characterization of Nanowire Morphology,” American Chemical Society Nano , 4, 855-862.

2009
11. Qian, P. Z. G. and Wu, C. F. J. (2009), “Sliced Space-Filling Designs,” Biometrika, 96, 945-956.

10. Qian, P. Z. G.(2009), “Nested Latin Hypercube Designs,’Biometrika, 96, 957-970. -


http://www.stat.wisc.edu/~zhiguang/GPQQ2.pdf
http://www.stat.wisc.edu/~zhiguang/nU-final.pdf
http://www.stat.wisc.edu/~zhiguang/Sudoku_final.pdf

Publications listed on web page of Prof. Peter Qian

—

2009 (continued)

9. Qian, P. Z. G., Ai, M. and Wu, C. F. J. (2009), “Construction of Nested Space-Filling Designs,”Annals of
Statistics, 37, 3616-43.

8. Qian, P. Z. G., Tang, B. and Wu, C. F. J. (2009), “Nested Space-Filling Designs for Experiments with Two Levels
of Accuracy,” Statistica Sinica, 19, 287-300.

2008

7. Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008), “Gaussian Process Models for Computer
Experiments with Qualitative and Quantitative Factors,” Technometrics, 50, 383-396.

6. Qian, P. Z. G. and Wu, C. F. J. (2008), “Bayesian Hierarchical Modeling for Integrating Low-

accuracy and High-accuracy Experiments,” Technometrics, 50, 192-204.
5. Mukerjee, R., Qian, P. Z. G. and Wu, C. F. J. (2008), “On the Existence of Nested Orthogonal Arrays,” Discrete
Mathematics, 308, 4635-4642.

2007 and Earlier

4. Negrut, D., Qian, P. Z. G., and Khude, N. (2007), "Building Gaussian Process Based Metamodels Using
Variable-fidelity Experiments for Dynamic Analysis of Mechanical Systems,"Proceedings of the 2007 ASME
International Mechanical Engineering Congress and Exposition, Seattle, WA.

3. Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2006), “Building Surrogate Models with Detailed
and Approximate Simulations,” ASME Journal of Mechanical Design, 128, 668-677.

2. Qian, Z., Jiang, W. and Tsui, K. (2006), “Churn Detection via Customer Profile Modeling,” International Journal
of Production Research, 44, 2913-2933.

1. Qian, Z. and Shapiro, A. (2006), “Simulation-based Approach for Estimation in Latent Variable Models,”
Computational Statistics and Data Analysis, 51, 1243-12509. 54



http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMDEDB000128000004000668000001&idtype=cvips&gifs=Yes
http://www.journalsonline.tandf.co.uk/(gug0fj55rvx1ufepwljatz55)/app/home/contribution.asp?referrer=parent&backto=issue,12,13;journal,12,187;linkingpublicationresults,1:100666,1
http://www.sciencedirect.com/science/journal/01679473

Submitted
Xu, X., Hwang, Y., Kim, T., Wang, F., Wang, X. and Qian, P. Z. G. (2011), Sequential Synthesis of Nanomaterials

via Level-expansion.

Hwang, Y., Khude, N., Qian, P. Z. G. and Negrut, D. (2010), Statistical Emulation of Multi-fidelity Simulations of
Mechanical Dynamics Systems.

Xiong, S., Qian, P. Z. G. and Wu, C. F. J. (2010), Sequential Design and Analysis of High-accuracy and Low-
accuracy Computer Codes.

Deng, X., Lin, C. and Qian, P. Z. G. (2010), Designs for the Lasso.

Zhou, Q., Qian, P. Z. G. and Zhou, S. (2010), Surrogate Modeling of Multistage Assembly Processes Using
Integrated Emulation.

Haaland, B. and Qian, P. Z. G. (2010), Accurate Emulators for Large-Scale Computer Experiments.
Deng, X. and Qian, P. Z. G. (2010), Sliced Cross-validation for Efficient Estimation of the Error Rate of a
Classification Rule.

Qian, P. Z. G. and Amemiya, Y. (2010), A Structural Equation Method for Modeling Multivariate Temperature Data
from Data Center Computer Experiments.

Qian, P. Z. G. (2010), Sliced Latin Hypercube Designs.

Li, J. and Qian, P. Z. G. (2010), Construction of Nested (Nearly) Orthogonal Designs for Computer Experiments.
Qian, P. Z. G. and Ai, M. (2010), Nested Asymmetric Lattice Samples.
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http://www.stat.wisc.edu/~zhiguang/NNOD-rev.pdf
http://www.stat.wisc.edu/~zhiguang/anls.pdf

Example Latin Hypercube Design and Data Calculated with

Branin Function from Santner, Williams and Notz (2003)

S— .

C.3 Examples

The following examples demonstrate many possible uses of PErK. The re-
sponses for these examples are based on the Branim function. The Branin 15

function is the real-valued function of two variables
Bl - & R |
yp(zy 2) = (J-2 = = )+ — 3 ()) 10 (I :) cos(ary ) + 10
4 m , ST

Trial x1 X2 Y B 12
1 7.75 6 35.80951
2 1 3.75 14.86287
3 10 8.25 31.41880 9
4 4.75 4.5 19.87899 N
5 2.5 15 141.88566 <
6 -3.5 2.25 99.43335
7 3.25 0 3.88973 6
8 -5 6.75 97.47380
9 -4.25 12.75 6.27060
10 6.25 1.5 19.85914 3
11 8.5 11.25 95.50587
12 7 14.25 181.74214
13 -0.5 0.75 49.39445
14 -2 5.25 23.13762 O
15 0.25 10.5 43.09524 '5
16 9.25 3 2.82392
17 -2.75 9.75 3.61474
18 55 9 75.79100
19 4 12 104.11175
20 -1.25 13.5 43.33586
21 1.75 7.5 23.39797




Example Latin Hypercube Design, Data Calculated

with Branin Function and Plots from Kriging Analysis

PRSSSF- Sy

C.3 Examples
- . | - Plot from textbook of Branin Function
I'he following examples demonstrate many possible uses of PErK. The re-
sponses for these examples are based on the Branim function. The Branin
function is the real-valued function of two variables

|
} ll)(l IA) cos(ay) + 10
BT

)

o1 5, b6 )
ys(zy,22) = |22 — — i+ - — 6
4= e

B
0 S0 00 150 200 250 300 WO

Trial x1 X2 Y B

1 7.75 6 35.80951 B

’y S

2 1 3.75 14.86287 4 ?}}%ﬁﬁ

3 10 8.25 31.41880 o
4 4.75 45 19.87899 T T T *

5 25 15 141.88566 ol R

6 35 2.25 99.43335 o *

7 3.25 0 3.88973 FIGURE C.1, The Branin function on =58, 10] x [0, 15

8 -5 6.75 97.47380
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(414 29
0 525 e 985914 " |Plot from software of “Kriging” fit
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Comparing Surfaces for Increasingly Complex Polynomial

Models Fit to Data from the Branin Function

Linear
Y =ag T quX; + aX,

600

400

o Partial Cubic
y = Quadratic
40+ AyqpX1 %Xy F AgpoX Xo?

6

o

260

"'z"" 0 OSSO ’:‘ SO0
S S SRR
S e S SIS OSSO
e
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6

o

40

600

4060

0

Interaction
y = Linear + a;,X;X,

Cubic

3 3
T A111X17 T Agp0Xy

0

The full cubic model closely approximates the Branin function, but still
cannot capture the ripples seen in the fit using the Kriging method.

s Quadratic
y = Interaction
ap T A;X" + ApX5°

<SS
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so0 “‘Gaussian Process”
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Simulations Being Used had at Least 10 Variables

= Branin function example is trivial. With 2 control
variables the full cubic model has 10 terms.

= What if your simulation has 10 control variables?

* Full cubic model has 166 terms!

« And still may not be complex enough to accurately
approximate the simulation



Why Is a Sequential Approach So Useful?

——

———"  We wanted to not just do sensitivity analysis of the factors, but provide
an interactive surrogate model of the long-running simulation so
that analysts could evaluate “what if?” scenarios.

The problem was that the Computational Fluid Dynamics models we
were looking to run could take a week on a single CPU or 12 hours on
50 CPU cluster. With on the order of 10 factors we expected to need
to run on the order of 100 simulations. This meant it could be
weeks or months before we could start our analysis.

Nested Latin Hypercube Designs gave us a way to start analyzing
data after about the first 20% of the simulations were run. We also
wanted to be able to run just enough simulations to achieve a surrogate
model accuracy of 90%.
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blocks are also Latin
Hypercube Designs

rojections of Trial Locations in 2 factors for a 10-factor, 128-trial,
Nested Latin Hypercube Design™ (NLHD) with 4 Blocks
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*Generated with Matlab Code Received from Prof. Peter Qian of U of Wi.
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Projections of Trial Locations in 3 factors for a 10-factor. 128-trial,

Nested Latin Hypercube Design (NLHD) in 4 Blocks

| Scatterplot 3D | | Scatterplot 3D
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Why Run Simulations in Sequential Blocks?

SE— T

\\:‘:} The point of running this sequence of blocks is to be able to evaluate the
surrogate model after each stage to see how accurately it is predicting
observed values of 3 sets of checkpoint trials. If it proves to be sufficiently
accurate, then subsequent blocks of simulation trials need not be run.

Without the NLHD approach one has to choose the “right” size space-
filling design in order to get useful results. If you choose too small a
design, one has to start over with a larger design.

[ Scatterplot 3D

Scatterplot 3D [ Scatterplot 3D

i %

< P
109 .;*__ "f-':_'_"’- 1032 s m 100 K
= =T T —— | e
| } [|.*r1 T
| Tt Tl | -
MO I A 8 [ | | I—"’ 310 M
— . | |
"l g ’_'3 I | 1 _“‘a ,,!_ 4 | | |.|
n']" | \7_“7 ! "‘B‘_T J | I | ""-‘1\.‘{ lxn-i’
e -~ | |
‘-.,_l | T | |
T T i - o
& [ \ ’l
[ BT /= ot
= | |

Data Columns rate pm

Data Columns rate pm



Relative Ranges for 3 Sets of 12 Checkpoints Shown in a

3-factor Space and Superimposed on Block 1 & 2 trials

Scatterplot 3D
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In the full design space over 10 factors there are 10 dimensions and 1024 corners.

The 12 trials in a Plackett-Burman design populate only about 0.1% of these
combinations of settings.

Today, | would use Definitive Screening Design with 21 trials for 10 factors but also
get information at midpoints of each factor. ”



rpm

tensile<S> x 1013

Used 10-factor Process Based on a Transcendental Function
as the “Simulation” to Evaluate Improvement in Accuracy

30
280
260
240
220
200
180—]

16072

——

The 10-dimensional design space is only sparsely
covered by the initial 16-trial NLHD Block. As a
result only a small fraction of the full design region
is valid for interpolation with the Kriging analysis.

Red polygon marks boundary between regions of
interpolation (inside) and extrapolation (outside).
Statistical name for the design boundary is the

“Convex Hull.”
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tensile<S> X 10"3

Qutside Design

tensile<S> X 10"3

<«— Note that this entire plot is extrapolation.

NLHD, 16 trials
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Inclusion of checkpoints — here the 12 over the full range of
the factors — increases the size of the design boundary and
the volume: of interpolation-region.
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'/ Compare Response Surfaces for fit of 16 vs. fit of 128

trials (left) and for fit of 64 vs. fit of 128 trials (right)

Stage 1 fit of16 trials colored green
Stage 4 fit 128 trials colored brown
Stage 3 fit 64 trials colored purple
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Tensil

/Plots of Actual vs. Predicted (Simulation vs. Surrogate)

by Checkpoint Group for 4 Stages of Analysis of NLHD

Checkpoint Groups A & B show diminishing return
in prediction improvement for running past stage 3
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Accuracy of Surrogate Predictions for 3 Groups of Check-
points Yielding Marginal, Moderate and Extreme Extrapolation

| Overlay Plot
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Percent Off Target - Root Mean Square of 12 Checkpoints
Blocks 1 1 &2 1, 2 & 3 1, 2, 3 &4
5/16 range 9.39 2.08 1.72 1.53
1/2 range 14.94 3.33 1.79 1.27
full range 87.16 17.17 21.96 6.72
Percent Off Target - Worst Case of 12 Checkpoints
Blocks 1 1 &2 1, 2 & 3 1, 2, 3 &4
5/16 range 17.13 4.52 3.48 2.74
1/2 range 33.74 7.11 -3.38 2.31
full range 225.70 34.69 46.98 16.66

Each checkpoint group consisted of a 12-trial Plackett-Burman DOE. The ranges
of the factors relative to the ranges used for the NLHD were 5/16ths (marginal
extrapolation), half (moderate extrapolation) and full (extreme extrapolation). 70



/ Accuracy of Surrogate Predictions for 3 Groups of Check-
points Yielding Marginal, Moderate and Extreme Extrapolation
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Conclusions
Sequential Space-Filling Designs

" NLHD designs can be run sequentially so that surrogate model
accuracy can be evaluated after each block and decision made as to
whether or not to move forward with the next block

Generally as more NLHD blocks are run, the surrogate model
accuracy increases

Inclusion of extreme (full range) extrapolation checkpoints will
expand interpolation volume of Kriging analysis — assuming Kriging
analysis remains stable

Caveat: These conclusions were reached using a moderately
complex transcendental function in lieu of a CFD simulation model
that Is believed to do a good job of stressing extrapolation with the
surrogate model..
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Why Use Design of Experiments
Methods with Simulation Experiments?

*~~" Quicker answers, lower costs, solve bigger problems

= QObtain a fast surrogate model of the simulation

 Individual simulations can run for hours, days, weeks
— Computational Fluid Dynamics (CFD)
— Simulation runs in real-time

* Numbers of factors can be very large (40+)
* Numbers of simulations needed can be large (thousands in many cases)
« Simulations can be stochastic requiring many replications

= Surrogate model yields a fast approximation of the simulation
« more rapidly answer “what if?” questions
 do sensitivity analysis of the control factors
« optimize multiple responses and make trade-offs

= By running efficient subsets of all possible combinations, one can —
for the same resources and constraints — solve bigger problems

= By running sequences of designs one can be as cost effective as

possible & run no more trials than are needed to get a useful answer
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