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Outline

 Overview of Design of Experiments (DOE)

• Slides 1 to 27 – background – many may be skipped 
if most people have an understanding of DOE

 Efficient M&S Using DOE

• Sequential traditional DOE

• Sequential space-filling DOE
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Design of Experiments (DOE) for 29 Years

 ‘83-’87 Honeywell, Inc., Engineer

First saw the power of DOE in 1984 – career changing event

 ‘87-’99 ECHIP, Inc., Partner & Technical Director

200+ DOE courses, on-site at 40+ companies - many 

chemical/food/pharma - requiring mixture/formulation DOE

 ‘99-’05 Peak Process, LLC, Consultant

 ‘05-’08 US Army, Edgewood Chemical Biological Center (ECBC), 
Physicist, Analyst, & Co-insurrectionist

DOE with Real data and Modeling & Simulation data

 Dec. ’08 Joined the SAS Institute Inc., Customer Advocate

Work in DOE and Federal Government domains  

– Data Visualization, Data Mining and their synergy with DOE 

– Support DoD sites, National Labs, & Gov’t Contractors
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Projects Using DOE at U.S. Army ECBC CY05-08

 JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live 
Agent Test (WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

 Agent Fate wind tunnel experiments

 Decontamination Sciences Team

• Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment 
(CREATIVE)  - real and simulation data

• Modified vaporous hydrogen peroxide (mVHP) decontamination – real data

 Smoke and Target Defeat Team

• Pepper spray characterization – real data

• Obscurant material evaluation (with OptiMetrics, Inc.) – simulation data

 U.S. Army Independent Laboratory In-house Research (ILIR) on novel experimental designs 
used with simulations

• Re-analysis of U.S. Air Force Kunsan Focused Effort BWA simulation data

• CB Sim Suite used for sensitivity analysis of atmospheric stability

 U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology 
Demonstration (ATD)

• Chamber testing of detectors – real data

• CB Sim Suite sensor deployment studies – simulation data

 U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)

• Swatch and chamber testing – real data

• Computational Fluid Dynamics (CFD) – simulation data
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Detection, Decontamination & Protection
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 PDFs available

• Today’s Slides

• White Paper - “Efficient Modeling & Simulation of 
Biological Warfare Using Innovative Design of 
Experiments Methods”

• MORSS Tutorial Summary 11 X 17 Handout
“DOE for Real-World Problems”
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Why Use Design of Experiments
Methods with Simulation Experiments?

Quicker answers, lower costs, solve bigger problems

 Obtain a fast surrogate model of the simulation
• Individual simulations can run for hours, days, weeks

− Computational Fluid Dynamics (CFD)

− Simulation runs in real-time

• Numbers of factors can be very large (40+)

• Numbers of simulations needed can be large (thousands in many cases)

• Simulations can be stochastic requiring many replications

 Surrogate model yields a fast approximation of the simulation

• more rapidly answer “what if?” questions 

• do sensitivity analysis of the control factors

• optimize multiple responses and make trade-offs

 By running efficient subsets of all possible combinations, one can –
for the same resources and constraints – solve bigger problems

 By running sequences of designs one can be as cost effective as 
possible & run no more trials than are needed to get a useful answer
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Long Running Physics-Based Simulations

Detailed Physics Models can require a great deal of runtime 

to generate a short period of simulation time.

Computational Fluid Dynamics (CFD) Models Lagrangian-Particle

Developed for Interior

Moving Man in Simulation

8M cells

10 Seconds of Simulation

64 CPUs – 4K slower

12 Hours of Runtime

Detailed Ingress/Egress, 

Internal Airflow and 

Convection

Developed for Exterior

Stationary Grids

1.5M Cells

30 Seconds of Simulation

Single CPU – 20K slower

7 Days of Runtime

External CW Deposition/ 

Evaporation, Vegetation, 

Solar Heating

Developed for Exterior

Stationary Grids

TBD Cells

Min-Hours of Simulation

Single CPU

Minutes-Days of Runtime

Speed, Flexibility, More User 

Friendly, V&V



Copyright © 2008, SAS Institute Inc. All rights reserved.

Stochastic Simulations with Many Replicates

Red-Blue Force Agent Based Simulation

Agent-Based Simulations
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Stochastic Simulations with Many Replicates

Discrete Event Simulations
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Classic Definition of DOE

 Purposeful control of the inputs (factors) in such 
a way as to deduce their relationships (if any) 
with the output (responses).

11

Noise

Uncontrolled  Factors 

e.g. . Humidity

What is Design of Experiments?
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Here are 4 Controls (inputs) & 2 Responses 
(outputs) and their empirical relationships (model)

12

Get this Prediction Profiler as result of analyzing data collected for a DOE
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Alternative Definition

 A DOE is the specific collection of trials run to support    

a proposed model.

• If proposed model is simple, e.g. just main or 1st order effects   

(x1 , x2 , x3, etc.), the design is called a screening DOE

− Goals include rank factor importance or find a “winner” quickly

− Used with many (> 6?) factors at start of process characterization

• If the proposed model is more complex, e.g. the model is 2nd

order so that it includes two-way interaction terms (x1x2 , x1x3, x2x3, 

etc.) and in the case of continuous factors, squared terms       

(x1
2, x2

2, x3
2 , etc.), the design is called a response-surface DOE

− Goal is generally to develop a predictive model of the process

− Used with a few (< 6?) factors after a screening DOE

13

What is a Design of Experiments (DOE)?
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Response Surface
DOE in a Nutshell

14

Fit requires 

data from all 

3 blocks

Can fit data 

from blocks 

1, 2 or 3

Fit requires 

data from 

blocks 1 & 2

Lack-of-fitLack-of-fit

Block 3Block 1 Block 2

x1

x3 x3x3

x1x1
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Expensive Experimentation? 
Sequential DOE is Often Used

Block 3Block 1 Block 2

y = a0 + a1x1 + a2x2 + a3x3

Run this block 1st to: 

(i) estimate the main effects*                                      

(ii) use center point to check 

for curvature.

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

Run this block 2nd to:

(i) repeat main effects estimate,                                

(ii) check if process has shifted 

(iii) add interaction effects to 

model if needed.

y = a0 + a1x1 + a2x2 + a3x3 

+ a12x1x2 + a13x1x3 + a23x2x3

+ a11x1
2 + a22x2

2 + a33x3
2

Run this block 3rd to:

(i) repeat main effects estimate, 

(ii) check if process has shifted 

(iii) add curvature effects to 

model if needed.

*May be all that are needed with
appropriate physics-based scaling

Also called non-linear modeling

x1

x3 x3x3

x1x1
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Why is Using DOE Important?

 “One thing we have known for many months is that the 
spigot of defense funding opened by 9/11 is closing.”

 “In the past, modernization programs have sought a 99 
percent solution over a period of years, rather than a 75 
percent solution over a period of weeks or months.”

• Two quotes from the January 27, 2009 submitted statement 
of Secretary of Defense Robert M. Gates to the Senate 
Armed Services Committee.

 DOE is one of the more powerful tools we can use to 
efficiently accomplish our goals. 

• DOE yields the maximum information from the fewest experiments.

• DOE often yields an 80% solution in less than 20% of the work.
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Response Surface & Contour Plot

(four control variables)
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Response Surfaces & Contour Plots

(four control variables & two responses)
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1-D Prediction Profiles are a Way to View Higher 
Dimensionality as “Interactive Small Multiples” -
Here 4 Controls & 2 Responses
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1-D Prediction Profiles are a Way to View Higher 
Dimensionality as “Interactive Small Multiples” -

Here 4 Controls & 2 Responses

20
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Interaction Profiles are Another Way to 
View Higher Dimensionality -
Here 4 Controls and 1 Response
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Assess Uncertainty in Surrogate Model Predictions Even 
for a Non-Stochastic Simulation with No Replications

For non-stochastic simulations for which a surrogate model has 

been created, Monte Carlo simulations can be run using 

assumed distributions for inputs to better assess transmitted 

variation about the model point estimate.
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 System with 2 primary MoPs and Cost

 Management wants to lower cost but maintain 
performance

 Multi-response and multi-factor process characterized 
using a JMP Custom DOE that supports interactive 
optimization – the trading off of performance and cost

 Management provided with visually interactive process 
knowledge that makes their decision making easier

23

The Power of Predictive Modeling
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3 responses and 4 control factors

24

Multiple Response Optimization
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Box, G. E. P., Hunter, W. G., and Hunter, J. S. (2005), Statistics for Experimenters, 2nd ed., Wiley, 

New York  

- The classic 1978 text recently revised

Wu, C. F. J. and Hamada, M. (2009), Experiments, Planning, Analysis and Parameter Design 

Optimization, , 2nd ed., Wiley, New York 

- Both classic DOE approaches and orthogonal arrays & orthogonal main effects plans

Montgomery, D. C. (2009), Design and Analysis of Experiments, 7th ed., Wiley, New York 

- Popular text, solution book available, examples illustrated with DOE software. 

- 8th Edition includes newly developed screening approaches

- All problems worked in JMP software due out this year

Texts Specifically on DOE for Computer Experiments:

Kleijnen, J. P. C. (2008), DASE: design and analysis of simulation experiments. Springer, New 

York. 

Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and Analysis of Computer 

Experiments, Springer, New York 

Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design and Modeling for Computer Experiments, 

Chapman & Hall/CRC Press, New York
25

Leading Design of Experiments Texts
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# Unique Trials for 3 Response-Surface Designs 
and # Quadratic Model Terms  

vs.
# Continuous Factors

26

Unique Trials in Central Composite DesignY

Terms in Quadratic Model = Minimum # of Trials

Unique Trials in Custom Design with 5 df for Model Error

Unique Trials in Box-Behnken Design

0

10

20

30

40

50

60

70

80

Y

2 3 4 5 6 7 8 9

Number of

Continuous Factors

90 

If generally running 3, 4 or 5-factor fractional-factorial designs…

1. How many interactions are you NOTinvestigating?

2. How many more trials needed to fit curvature?

3. Consider two stages – Definitive Screening  + Augmentation
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 Work with these different kinds of control variables/factors:

• Continuous/quantitative? (Finely adjustable like temperature, speed, force)

• Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel 
with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials…)

• Mixture/formulation? (Blend different amounts of ingredients and the process 
performance is dependent on the proportions more than on the amounts)

• Blocking? (e.g. “lots” of the same raw materials, multiple “same” machines, samples 
get processed in “groups” – like “eight in a tray,” run tests over multiple days – i.e. 
variables for which there shouldn’t be a causal effect

 Work with combinations of these four kinds of variables?

 Certain combinations cannot be run? (too costly, unsafe, breaks the process)

 Certain factors are hard-to-change (temperature takes a day to stabilize)

 Would like to add onto existing trials? (really expensive/time consuming to run)

 Characterize process or run experiments using computer simulations?      
(war gaming, agent-based, discrete event, computational fluid dynamics (CFD))

 Measure response data in vicinity of physical limits? (counts, hardness, 
resistivity can’t fall below zero, or percentage yield or killed can’t exceed 100%)

27

Create a More Complex “Real-World” DOE

How many folks have any of these issues?
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Two Classes of Designs for 
Two Types of Surrogate Modeling of Simulations

 “Traditional factorial/response surface” designs for polynomial modeling 

with categorical (qualitative) and continuous (quantitative) variables

• Designs can be sequentially constructed to support increasingly complex models

• Example featured here reanalyzes a simulation case matrix in which all combinations 

of 6 variable settings were originally run- a total of 648 = 6 X 3 X 3 X 3 X 2 X 2

• References on Resolution V, Fractional-Factorial Designs for many (40+) factors 

− Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-

Factor Interactions, Journal of Quality Technology, 36, 400-412.

− Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central 

Composite Designs, ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, 

October 2005, Pages 362–377.

− Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with 

Large Run Sizes, Technometrics, (in press) http://www.stat.ucla.edu/~hqxu/pub/ffd2r3.pdf

 “Space-filling” designs primarily for use with continuous variables AND 

non-stochastic/deterministic responses

• These designs can support “Gaussian Process” or “Kriging” spatial regression analysis 

– an interpolation technique, as well as linear regression – an approximation method

28
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How are Space-Filling Designs
Different from Traditional Designs?
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Rather than emphasizing high leverage trials (“corners”) for a simple polynomial 

model, space-filling designs “spread” their trials more uniformly through the 

space to better capture the local complexities of the simulation model.
29
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Traditional Designs for Polynomial Modeling

 I used to say “If a “textbook” fractional-factorial, orthogonal 

array or response-surface design is available, then use it.”  

Now I say, “If Definitive Screening or Minimal Alias design is 

available, then use it.”

 Textbooks and web site catalogs do not always contain 

designs for categorical variables with:

• all combinations of mixed numbers of levels (e.g. 3, 4, 5, and 21)

• large numbers of levels for variables (e.g. 5+) 

 Algebraic (Orthogonal Array) and algorithmic (D-optimal) computer 

generated designs can often be used

• Orthogonal Arrays are good at yielding analysis with un-

confounded estimates of the “main effects” when variables have 

many different levels

• D-optimal designs are good for adding on the fewest additional 

trials to support higher order “interaction” terms in the model
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Sequential Designs

 Simulation experiments – Sequential designs are easily 
employed because “restricted randomization” is not an issue

• Many simulations are deterministic

• Even if stochastic (random), correlation with unknown factors is not 
possible

• All factors are generally just as easy to change

• Can still inexpensively add a blocking variable to test if “the code 
has been changed!”

 Real experiments – The issue of “restricted randomization” does 
arise making sequential experimentation a bit more complicated 
– but still possible to employ

• Groups of trials run at different (even widely spaced) periods of time

− Addressed using a blocking factor

• Sometimes there are factors that are harder to change than others, 
e.g. Oven Temperature

− Addressed using split-plot designs
31
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Case Matrix as Used in Study of the Observed 
Response “Probability of Casualty” (PCAS)

Variable # Levels Levels

Agent Codes (X1) 6 A, N, T, H, R, Y  (categorical)

Season 3 Winter, Summer, Spring/Fall  (categorical)

Time of Attack (Hour) 3 0500, 1200, 2200 Local Time  (continuous)

No. of TBMs & Spread 

Radius (X2)
2 1 TBM & 1 m, 2 TBMs & 1000 m  (categorical)

Mass (relative) 3 1.00, 1.57, 2.00 (continuous)

Height of Burst (X3) 2 0, 10 m (continuous)

Total Cases 648
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X2 = 100, 

X3 = ALPHA

X2 = 100, 

X3 = BETA

X2 = 200, 

X3 = ALPHA

X2 = 200, 

X3 = BETA

X1 = RED X1 = ORANGE X1 = YELLOW X1 = GREEN X1 = BLUE X1 = INDIGO

All 648 Possible Combinations of Settings
for 6 Variables (6 X 2 X 2 X 3 X 3 X 3)

33
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Four Stage Design Sequence

Stage 1 Stage 2 Stage 3 Stage 4

Design 1, 36 trials Design 1, 36 trialsDesign 1, 36 trialsDesign 1, 36 trials

Design 3, 216 trials

Design 4, 324 trials

36 Total

Simulations 

ALL 648

Simulations 

324 Total

Simulations 

108 Total

Simulations

Design 2, 72 trials Design 2, 72 trials

Design 3, 216 trials

Design 2, 72 trials

5.6% of 648 16.7% of 648 50% of 648

NOTE:  Length of this 

green box should be  

longer than shown

Main effects only 

for ALL variables

+ some 2-way 

interactions

Stage 3 effects 

plus ALL 

remaining 4-way, 

5-way and 6-way 

interactions

Stage 2 effects 

plus all 3-way 

interactions

Stage 1 effects 

plus all 2-way 

interactions

+ some 3-way 

interactions

324 trials in Design 4 used as checkpoints for Designs 1, 2 & 3

34
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X2 = 100, 

X3 = ALPHA

X2 = 100, 

X3 = BETA

X2 = 200, 

X3 = ALPHA

X2 = 200, 

X3 = BETA

X1 = RED X1 = ORANGE X1 = YELLOW X1 = GREEN X1 = BLUE X1 = INDIGO

36 of All 648 Possible Combinations of Settings 
for 6 Variables (6 X 2 X 2 X 3 X 3 X 3)

Red Dots Mark the 36 Trials (an Orthogonal Array) Analyzed for Stage 1 35
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X1 X2 X3 X4

1  1  1  1

1  2  2  2

1  3  3  3

2  1  2  3

2  2  3  1

2  3  1  2

3  1  3  2

3  2  1  3

3  3  2  1 X2

X4
X3

X1 = 1 X1 = 3X1 = 2

Locations of Trials for a

4-variable, 9-trial Orthogonal Array Design

36



Copyright © 2008, SAS Institute Inc. All rights reserved.

Delete X1 and View 

Locations of Trials for a  

3-Variable OA9 Design

X1 = 1 X1 = 3X1 = 2

X2

X4

X3

X1 X2 X3 X4

1 1  1  1

1 2  2  2

1 3  3  3

2 1  2  3

2 2  3  1

2 3  1  2

3 1  3  2

3 2  1  3

3 3  2  1

37
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Projection of Trial Locations

for a 3-variable OA9 Design 

for All Pairs of Variables

All projections have 9 

unique trials that can 

be used to fit a 2-

variable quadratic 

model with 6 terms

X2

X4

X3

X4

X3

X2

X3

X2

X4
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Can Get Designs from Different Sources

 Textbook

 Limited number of catalogued solutions – experimenters frequently 
change their problem to match available designs

 Variable settings are in coded units

 Web sites of designs

 Greater number of catalogued solutions – but never all

 Variable settings are in coded units

 Custom computer code

 Can find solutions for previously un-catalogued cases

 Variable settings are in coded units (-1, 0, 1)

 COTS Solution

 Textbook and algorithmic code for generating custom designs

 Variable settings in natural or laboratory units (120, 150, 180)
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Model has 24 terms and fit 

data from 36 simulations
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Predicted Probability of Casualty (PCAS) vs. Mass – with Mass Treated as a 

Continuous Variable – for 5 Different Models Fit to 3 Sets of Simulation Data  

Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Five other variables 

were held constant at 

these settings:

95% Prediction Limits

Predicted Mass
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Predicted Probability of Casualty (PCAS) vs. Mass – with Mass Treated as a 

Continuous Variable – for 5 Different Models Fit to 3 Sets of Simulation Data  

Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Agent = R

Season = F

Time = 12

HOR = 0

#TBM &

Spread Radius = 1

Five other variables 

were held constant at 

these settings:

95% Prediction Limits

Predicted Mass

95% Prediction Limits

Predicted Mass

1-way model w/nesting Reduced 2-way model Reduced 3-way model

1-way model w/nesting

+ some 2-way terms

Reduced 2-way model

+ some 3-way terms

Predictions (w/95% Pred. Limits) of PCAS vs. Nested Mass and 
MunCnt_Spread for 1-way, reduced 2-way and reduced 3-way models
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“Factor Sparsity” and “Effect Heredity” 
Used to Enhance Model Complexity 

Factor Sparsity states only a few 

variables will be active in a 

factorial DOE

Effect Heredity states significant 

interactions will only occur if at 

least one parent is active

See Wu & Hamada, p. 112

Worst Case = 3.7%

Half of Cases < 0.37%

Worst Case = -0.0081%

Half of Cases < 0.0007%

Worst Case = -0.93%

Half of Cases < 0.11%

Worst Case = -2.5%

Half of Cases < 0.16%

Worst Case = -0.0251%

Half of Cases < 0.0010%

324 trials36 trials 108 trials

Oct. 1, 2007 visit by Profs. Wu & Joseph of GA Tech ISyE

1-way w/nesting model

2-way + some 3-way

terms model

Reduced 3-way modelReduced 2-way model

1-way + some 2-way

terms model

41
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Higher Resolution (100X) Histograms of the “Percent Off Target” that 

Response Predictions Fell Relative to 324 Checkpoint Observations 

Only a Fraction of All Possible Trials 
May be Required to Provide an Answer

Worst Case = -0.0081%

Half of Cases < 0.0007%

Worst Case = -0.0251%

Half of Cases < 0.0010%

324 trials108 trials

How far off is good enough?

42
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More Complexity - Better Fit
Fewer “Extraneous” Terms - Better Fit

Error Estimates for 8 Models Fit to Data Sets of 36, 108, & 324 Observations

Number

of

Trials

Model Used

to Fit Data

Number

of

Model

Terms

Residual SD

(model error

from data

used in fit)

Cross-Validation

RMS ("one-left

out" error from

data used in fit)

Checkpoint RMS

(model error from

324 data values

NOT used in fit)

Adjusted

R-squared

36 1-way 14 0.043623 0.055802 0.037217 0.977

36 1-way w/nesting 24 0.026557 0.047269 0.035424 0.992

36
1-way w/nesting

+ some 2-way
31 0.008212 0.025188 0.016153 0.999

108 2-way 79 0.011197 0.022207 0.010772 0.998

108 reduced 2-way 36 0.008469 0.010933 0.008612 0.999

108
reduced 2-way

+ some 3-way
66 0.000045 0.000132 0.000179 1.000

324 3-way 242 0.000039 0.000078 0.000083 1.000

324 reduced 3-way 178 0.000037 0.000058 0.000064 1.000

Higher Cross-Validation RMS May Be an Indicator of “Over Fitting”
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Conclusions 
Sequential Traditional Designs

 Possible to get the 80% to 95% solution with less than 20% of the 
brute force running of all factor combinations

 Use of “factor sparsity” and “effect heredity” principles can help to get 
more information than the design was originally built to support

 Next stage trials can first be used as checkpoints for previous stages

 With improved efficiency over running all combinations, more factors 
can be studied with the same resources

44
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How are Space-Filling Designs
Different from Traditional Designs?

1

2

3

4

5
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7
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9
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15
16

17

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

X3

X1

X2

Space-Filling Design
for 3 Variables with 17 Unique Trials

1

9

17

1

9

17

1

9

17

X3

X1

X2

Response-Surface Design
for 3-Variables with 15 Unique Trials

1

9

17

1

9

17

1

9

17

X3

X1

X2

Response-Surface Design
for 3-Variables with 15 Unique Trials

Rather than emphasizing high leverage trials (“corners”) for a simple polynomial 

model, space-filling designs “spread” their trials more uniformly through the 

space to better capture the local complexities of the simulation model.
45
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29 CFD Simulations Run – 17 Used to 
Metamodel & 12 Used as Checkpoints

17-trial Orthogonal Latin 

Hypercube (OLH) space-

filling design settings 

used for creating the 

metamodel

12-trial Plackett-Burman 

screening design settings 

used as checkpoints –

half just inside and half 

just outside design 

boundary (convex hull)

Trial
Time of 

Day
Temperature

Wind 

Speed

Wind 

Direction

Relative 

Humidity

Cloud 

Cover

1 505 37 5.3 247.5 30 0.92

2 165 13 5.6 281.25 10 0.32

3 250 19 1.7 225 60 0.8

4 335 25 2.9 360 55 0.14

5 1100 35 3.5 202.5 35 0.02

6 1440 15 3.2 326.25 15 0.74

7 930 11 6.2 236.25 80 0.44

8 845 33 5 348.75 75 0.62

9 760 21 3.8 270 50 0.5

10 1015 5 2.3 292.5 70 0.08

11 1355 29 2 258.75 90 0.68

12 1270 23 5.9 315 40 0.2

13 1185 17 4.7 180 45 0.86

14 420 7 4.1 337.5 65 0.98

15 80 27 4.4 213.75 85 0.26

16 590 31 1.4 303.75 20 0.56

17 675 9 2.6 191.25 25 0.38

18 972.5 26 3.05 298.125 62.5 0.65  Inside

19 547.5 16 4.55 241.875 62.5 0.65  Outside

20 972.5 26 3.05 241.875 37.5 0.65  Outside

21 547.5 26 4.55 298.125 37.5 0.35  Outside

22 972.5 16 4.55 298.125 62.5 0.35  Inside

23 547.5 16 3.05 241.875 37.5 0.35  Inside

24 547.5 26 4.55 241.875 62.5 0.65  Outside

25 972.5 16 4.55 298.125 37.5 0.65  Inside

26 547.5 26 3.05 298.125 62.5 0.35  Inside

27 547.5 16 3.05 298.125 37.5 0.65  Outside

28 972.5 16 3.05 241.875 62.5 0.35  Outside

29 972.5 26 4.55 241.875 37.5 0.35  Inside

- Min

- Max

- Mid
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Kriging Fit in 1-D Showing Interpolation
and Confidence Intervals on Prediction

47
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Kriging Analysis of Random Data!

100

80

60

40

20

0

10-Variable Metamodel Prediction
Off-Axis Variable Settings

Time wrt Sunset = 360 

Wind Speed = 3.8  

Wind Direction = 270 

Humidity = 50   

Cloud Cover = 0.50

Log10(Duration) = 1.0  

Latitude (coded) = 17   

Longitude (coded) = 17   

NOTE: This is a plot of Kriging analysis 

of the 100 integers between 0 and 99 

randomly assigned to 100 space-filling 

design trials.

The “noise” has been fit perfectly!  

This is why one should only use this 

technique with non-stochastic or nearly 

non-stochastic data!
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Seminal Paper on “Space-Filling” 
DOE for Computer Experiments

 Design and Analysis of Computer Experiments
Sacks, J., Welch, W.J., Mitchell, T.J. and 
Wynn, H.P. 
Statistical Science 4. 409-423, 1989

• Textbooks on this topic include:

− Santner, T. J., Williams, B. J., and Notz, W. I. (2003),
The Design and Analysis of Computer Experiments,
Springer, New York

− Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design
and Modeling for Computer Experiments, Chapman &
Hall/CRC Press, New York

− Kleijnen, J. P. C. (2008), DASE: design and analysis of
simulation experiments. Springer, New York.
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Software Tools for Kriging Analysis
(that I know about…)

 JMP® (called Gaussian Process modeling)

 ECHIP® (called Smoothing analysis)

 SYSTAT® (called Kriging analysis)

 Matlab® Toolbox Modules

• Design and Analysis of Computer Experiments (DACE)

• SUrrogate MOdeling (SUMO)

− Contains DACE as well as another Kriging tool and many other 
surrogate modeling methods

 PErK (code available from authors of 2003 text by Santner, et. al.)

 “Blind” Kriging – R code potentially available from GA Tech

 The Gaussian Processes Website: http://www.gaussianprocess.org

 Code to do Bayesian Hierarchical Gaussian Process (BHGP) modeling 
by combining simulation and real experimental data is available from 
Prof. Peter Qian of the University of Wisconsin

 Code for Nested and Sliced Latin Hypercube Designs also available 
from Prof. Qian..
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Websites for Designs, Software & Publications

 http://harvest.nps.edu/

The Simulation Experiments & Efficient Design (SEED) Center 

for Data Farming at Naval Postgraduate School

• Designs 

− Nearly Orthogonal Latin Hypercubes (NOLH) and

− Resolution V, Fractional Factorials for many factors

• Agent-Based Simulation Software 

− Pythagoras 

− MANA (Map Aware Non-uniform Automata) 

• Many Papers for Download and Links to INFORMS and WSC

 http://www.research.att.com/~njas/oadir/index.html

Library of Orthogonal Arrays maintained by Neil J.A. Sloane

 http://support.sas.com/techsup/technote/ts723.html

Library of Orthogonal Arrays maintained by Warren F. Kuhfield
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Publications Discussing Recent Advances in 
Metamodeling Simulations

 Blind Kriging: A New Method for Developing Metamodels,

Joseph, V.R., Hung, Y., and Sudjianto, A., 

ASME Journal of Mechanical Design, 130, 031102-1-8, 2008 

 Gaussian Process Models for Computer Experiments 

With Qualitative and Quantitative Factors,

Qian, P.Z.G., Wu, H., and Wu, C.F.J., 

Technometrics, 50 (4), 383-396, 2008

 Bayesian Hierarchical Modeling for Integrating Low-Accuracy 

and High-Accuracy Experiments,

Qian, P. Z. G. and Wu, C. F. J.,

Technometrics, 50 (2), 192-204, 2008

 Regression-Based Inverse Distance Weighting for Multivariate

Interpolation,

Joseph, V.R.,  and Kang, L.,

(submitted) Preprint May 2009

 Nested Latin Hypecube Designs,
Qian, P. Z. G.
Biometrika, 96, 957-970, 2008
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2011

19. Zhou, Q., Qian, P. Z. G. and Zhou, S (2010), A Simple Approach to Emulation for Computer Models With 

Qualitative and Quantitative Factors, Technometrics, Accepted. 

18. He, X. and Qian, P. Z. G. (2010), Nested orthogonal array based Latin hypercube designs, Biometrika, 

Accepted. 

17. Xu, X., Haaland, B. and Qian, P. Z. G. (2010), Sudoku based space-filling designs, Biometrika, Accepted. 

2010 

16. Tang, Q. and Qian, P. Z. G. (2010), ``Enhancing the Sample Average Approximation Method with U 

Designs,''Biometrika, 97, 947-960. 

15. Haaland, B., Min, W., Qian, P. Z. G. and Amemiya, Y. (2010), ``A Statistical Approach to Thermal Management 

of Data Centers under Steady State and System Perturbations,''Journal of the American Statistical Association, 

105, 1030-1041.

14. Qian, P. Z. G. and Ai, M. (2010),``Nested Lattice Sampling: A New Sampling Scheme Derived by Randomizing 

Nested Orthogonal Arrays,''Journal of the American Statistical Association, 105, 1147-1155. 

13.Haaland, B. and Qian, P. Z. G. (2010), ''An Approach to Constructing Nested Space-Filling Designs for Multi-

Fidelity Computer Experiments,''Statistica Sinica, 20, 1063-1075.

12. Wang, F., Hwang, Y., Qian, P. Z. G. and Wang, X. (2010), ``A Statistics-Guided Approach to Precise 

Characterization of Nanowire Morphology,'' American Chemical Society Nano , 4, 855-862. 

2009 

11. Qian, P. Z. G. and Wu, C. F. J. (2009), “Sliced Space-Filling Designs,” Biometrika, 96, 945-956.

10. Qian, P. Z. G.(2009), “Nested Latin Hypercube Designs,”Biometrika, 96, 957-970.

Publications listed on web page of Prof. Peter Qian

http://www.stat.wisc.edu/~zhiguang/GPQQ2.pdf
http://www.stat.wisc.edu/~zhiguang/nU-final.pdf
http://www.stat.wisc.edu/~zhiguang/Sudoku_final.pdf
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2009 (continued)

9. Qian, P. Z. G., Ai, M. and Wu, C. F. J. (2009), “Construction of Nested Space-Filling Designs,”Annals of 

Statistics, 37, 3616-43.

8. Qian, P. Z. G., Tang, B. and Wu, C. F. J. (2009), “Nested Space-Filling Designs for Experiments with Two Levels 

of Accuracy,” Statistica Sinica, 19, 287-300.

2008 

7. Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008), “Gaussian Process Models for Computer 

Experiments with Qualitative and Quantitative Factors,” Technometrics, 50, 383-396. 

6. Qian, P. Z. G. and Wu, C. F. J. (2008), “Bayesian Hierarchical Modeling for Integrating Low-

accuracy and High-accuracy Experiments,” Technometrics, 50, 192-204.
5. Mukerjee, R., Qian, P. Z. G. and Wu, C. F. J. (2008), “On the Existence of Nested Orthogonal Arrays,” Discrete 

Mathematics, 308, 4635-4642.

2007 and Earlier 

4. Negrut, D., Qian, P. Z. G., and Khude, N. (2007),``Building Gaussian Process Based Metamodels Using 

Variable-fidelity Experiments for Dynamic Analysis of Mechanical Systems,''Proceedings of the 2007 ASME 

International Mechanical Engineering Congress and Exposition, Seattle, WA. 

3. Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2006), “Building Surrogate Models with Detailed 

and Approximate Simulations,” ASME Journal of Mechanical Design, 128, 668-677.

2. Qian, Z., Jiang, W. and Tsui, K. (2006), “Churn Detection via Customer Profile Modeling,” International Journal 

of Production Research, 44, 2913-2933.

1. Qian, Z. and Shapiro, A. (2006), “Simulation-based Approach for Estimation in Latent Variable Models,” 

Computational Statistics and Data Analysis, 51, 1243-1259.

Publications listed on web page of Prof. Peter Qian

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMDEDB000128000004000668000001&idtype=cvips&gifs=Yes
http://www.journalsonline.tandf.co.uk/(gug0fj55rvx1ufepwljatz55)/app/home/contribution.asp?referrer=parent&backto=issue,12,13;journal,12,187;linkingpublicationresults,1:100666,1
http://www.sciencedirect.com/science/journal/01679473
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Submitted 

Xu, X., Hwang, Y., Kim, T., Wang, F., Wang, X. and Qian, P. Z. G. (2011), Sequential Synthesis of Nanomaterials

via Level-expansion. 

Hwang, Y., Khude, N., Qian, P. Z. G. and Negrut, D. (2010), Statistical Emulation of Multi-fidelity Simulations of 

Mechanical Dynamics Systems. 

Xiong, S., Qian, P. Z. G. and Wu, C. F. J. (2010), Sequential Design and Analysis of High-accuracy and Low-

accuracy Computer Codes. 

Deng, X., Lin, C. and Qian, P. Z. G. (2010), Designs for the Lasso.

Zhou, Q., Qian, P. Z. G. and Zhou, S. (2010), Surrogate Modeling of Multistage Assembly Processes Using 

Integrated Emulation. 

Haaland, B. and Qian, P. Z. G. (2010), Accurate Emulators for Large-Scale Computer Experiments. 
Deng, X. and Qian, P. Z. G. (2010), Sliced Cross-validation for Efficient Estimation of the Error Rate of a 

Classification Rule. 

Qian, P. Z. G. and Amemiya, Y. (2010), A Structural Equation Method for Modeling Multivariate Temperature Data 

from Data Center Computer Experiments. 

Qian, P. Z. G. (2010), Sliced Latin Hypercube Designs. 

Li, J. and Qian, P. Z. G. (2010), Construction of Nested (Nearly) Orthogonal Designs for Computer Experiments.

Qian, P. Z. G. and Ai, M. (2010), Nested Asymmetric Lattice Samples. 

Publications listed on web page of Prof. Peter Qian

http://www.stat.wisc.edu/~zhiguang/level-expansion.pdf
http://www.stat.wisc.edu/~zhiguang/Lasso_Design.pdf
http://www.stat.wisc.edu/~zhiguang/MultiStep_Revision.pdf
http://www.stat.wisc.edu/~zhiguang/NNOD-rev.pdf
http://www.stat.wisc.edu/~zhiguang/anls.pdf
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Example Latin Hypercube Design and Data Calculated with 

Branin Function from Santner, Williams and Notz (2003)

Trial x1 x2 Y_B

1 7.75 6 35.80951

2 1 3.75 14.86287

3 10 8.25 31.41880

4 4.75 4.5 19.87899

5 2.5 15 141.88566

6 -3.5 2.25 99.43335

7 3.25 0 3.88973

8 -5 6.75 97.47380

9 -4.25 12.75 6.27060

10 6.25 1.5 19.85914

11 8.5 11.25 95.50587

12 7 14.25 181.74214

13 -0.5 0.75 49.39445

14 -2 5.25 23.13762

15 0.25 10.5 43.09524

16 9.25 3 2.82392

17 -2.75 9.75 3.61474

18 5.5 9 75.79100

19 4 12 104.11175

20 -1.25 13.5 43.33586

21 1.75 7.5 23.39797
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Plot from textbook of Branin Function

Trial x1 x2 Y_B

1 7.75 6 35.80951

2 1 3.75 14.86287

3 10 8.25 31.41880

4 4.75 4.5 19.87899

5 2.5 15 141.88566

6 -3.5 2.25 99.43335

7 3.25 0 3.88973

8 -5 6.75 97.47380

9 -4.25 12.75 6.27060

10 6.25 1.5 19.85914

11 8.5 11.25 95.50587

12 7 14.25 181.74214

13 -0.5 0.75 49.39445

14 -2 5.25 23.13762

15 0.25 10.5 43.09524

16 9.25 3 2.82392

17 -2.75 9.75 3.61474

18 5.5 9 75.79100

19 4 12 104.11175

20 -1.25 13.5 43.33586

21 1.75 7.5 23.39797

Example Latin Hypercube Design, Data Calculated 

with Branin Function and Plots from Kriging Analysis

Plot from software of “Kriging” fit
400

200

0 E
C

H
IP

Y
_

B
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Comparing Surfaces for Increasingly Complex Polynomial 
Models  Fit to Data from the Branin Function 

The full cubic model closely approximates the Branin function, but still 

cannot capture the ripples seen in the fit using the Kriging method.
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Simulations Being Used had at Least 10 Variables

 Branin function example is trivial. With 2 control 
variables the full cubic model has 10 terms.

 What if your simulation has 10 control variables? 

• Full cubic model has 166 terms!

• And still may not be complex enough to accurately 
approximate the simulation
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Why Is a Sequential Approach So Useful?

60

We wanted to not just do sensitivity analysis of the factors, but provide 

an interactive surrogate model of the long-running simulation so 

that analysts could evaluate “what if?” scenarios.  

The problem was that the Computational Fluid Dynamics models we 

were looking to run could take a week on a single CPU or 12 hours on 

50 CPU cluster.  With on the order of 10 factors we expected to need 

to run on the order of 100 simulations.  This meant it could be 

weeks or months before we could start our analysis.  

Nested Latin Hypercube Designs gave us a way to start analyzing 

data after about the first 20% of the simulations were run.  We also 

wanted to be able to run just enough simulations to achieve a surrogate 

model accuracy of 90%.  
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Projections of Trial Locations in 2 factors for a 10-factor, 128-trial, 

Nested Latin Hypercube Design* (NLHD) with 4 Blocks
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Running totals of 

blocks are also Latin 

Hypercube Designs

61*Generated with Matlab Code Received from Prof. Peter Qian of U of Wi.
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Projections of Trial Locations in 3 factors for a 10-factor. 128-trial, 

Nested Latin Hypercube Design (NLHD) in 4 Blocks

Blocks 1 & 2, 32 trials Blocks 1, 2, 3 & 4, 128 trials
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Why Run Simulations in Sequential Blocks?

63

The point of running this sequence of blocks is to be able to evaluate the 

surrogate model after each stage to see how accurately it is predicting 

observed values of 3 sets of checkpoint trials.  If it proves to be sufficiently 

accurate, then subsequent blocks of simulation trials need not be run.

Without the NLHD approach one has to choose the “right” size space-

filling design in order to get useful results.  If you choose too small a 

design, one has to start over with a larger design.  
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Relative Ranges for 3 Sets of 12 Checkpoints Shown in a 
3-factor Space and Superimposed on Block 1 & 2 trials

In the full design space over 10 factors there are 10 dimensions and 1024 corners.  

The 12 trials in a Plackett-Burman design populate only about 0.1% of these 

combinations of settings. 

Today, I would use Definitive Screening Design with 21 trials for 10 factors but also 

get information at midpoints of each factor.

Data Columns rpm T4 rate

Scatterplot 3D

Data Columns T4 rate rpm

Scatterplot 3D

Half

Range

5/16ths

Range

Full Range
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Used 10-factor Process Based on a Transcendental Function 
as the “Simulation” to Evaluate Improvement in Accuracy
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Red polygon marks boundary between regions of 

interpolation (inside) and extrapolation (outside).

Statistical name for the design boundary is the 

“Convex Hull.”

The 10-dimensional design space is only sparsely 

covered by the initial 16-trial NLHD Block.  As a 

result only a small fraction of the full design region 

is valid for interpolation with the Kriging analysis.
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COEFFICIENTS        SD         P     CONDITION  TERM

18903.8                                  0 CONSTANT
-6319.34     8425.11 0.4870- 0.559      1 add1
-882.924      1658.5 0.6173- 0.703      2 add2
139.372     143.796 0.3769- 0.820      3 viscosity
-25974.4     19170.6 0.2334    0.813      4 moisture
32.8283     74.8572 0.6793- 0.515      5 t1
21.6944     79.5117 0.7959- 0.488      6 t2
61.0479     88.6668 0.5218- 0.432      7 t3
44.7973     81.6762 0.6070- 0.477      8 t4
-128.299     42.7544 0.0301    0.550      9 rate
96.4185     27.5245 0.0172    0.546     10 rpm
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add1 =  0.75

add2 =  3

viscosity =  75

moisture = 0.17

t1 =  290

t2 =  290

t3 =  290

t4 =  305

Value Low Limit High Limit
       30078.62           -1.#J            1.#J

rate=125.00 rpm=260.00

COEFFICIENTS        SD         P     CONDITION  TERM

15760.2                                  0 CONSTANT
-721.328     6720.15 0.9158- 0.958      1 add1
966.423     1647.02 0.5651- 0.974      2 add2
65.0763     163.369 0.6953- 0.986      3 viscosity
4164.81       21651 0.8497- 0.989      4 moisture
-7.23148     54.8311 0.8966- 0.973      5 t1
1.39981     54.9105 0.9800- 0.973      6 t2
-38.7242     56.0048 0.4986- 0.951      7 t3
47.8879     54.5957 0.3926- 0.981      8 t4
-49.521     32.9741 0.1515    0.976      9 rate
43.0792     21.8001 0.0646    0.971     10 rpm

N trials          = 28

NLHD, 16 + 12PB = 28

All off-axis factor 

settings @ mid 

range value

Six of 8 off-axis 

factor settings @ 

mid range value

viscosity and t4

factor settings @ 

75% of range

All off-axis factor 

settings @ mid 

range value

Six of 8 off-axis 

factor settings @ 

mid range value

viscosity and t4

factor settings @ 

75% of range

Note that this entire plot is extrapolation.

Inclusion of checkpoints – here the 12 over the full range of 

the factors – increases the size of the design boundary and 

the volume of interpolation region.

Closer to 1.000 the CONDITION 

is, the closer the term is to being 

orthogonal

Closer to 1.000 the CONDITION 

is, the closer the term is to being 

orthogonal

NLHD, 16 trials

Block 1 only
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t4 =  305

Value Low Limit High Limit
       32265.97            1.#R            1.#R

rate=125.00 rpm=260.00

COEFFICIENTS        SD         P     CONDITION  TERM

17631.9                                  0 CONSTANT
-682.306     2233.14 0.7605- 0.945      1 add1
884.808     540.923 0.1046    0.975      2 add2
300.046      54.081 0.0000    0.976      3 viscosity
-3680.05     7202.41 0.6104- 0.977      4 moisture
5.82534     18.0142 0.7470- 0.976      5 t1
-11.1487     18.0473 0.5379- 0.975      6 t2
31.8328     18.7587 0.0924    0.938      7 t3
86.4875     17.8697 0.0000    0.984      8 t4
-130.079      10.864 0.0000    0.971      9 rate
90.3335     7.22455 0.0000    0.974     10 rpm

N trials          = 128

All off-axis factor 

settings @ mid 

range value

Six of 8 off-axis 

factor settings @ 

mid range value

viscosity and t4

factor settings @ 

75% of range

NLHD, 16+16+32+64=128
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NLHD, 16+16+32+64+36ckps=164

Blocks 1- 4, & 3 sets of checkpoints

COEFFICIENTS        SD         P     CONDITION  TERM

17357                                     0 CONSTANT
-843.041        2246.05 0.7079- 0.973      1 add1
1016.04        553.662 0.0684    0.987      2 add2
226.532        55.3433 0.0001    0.987      3 viscosity
2098.09         7370.9 0.7763- 0.988      4 moisture
8.98137        18.4363 0.6268- 0.988      5 t1
-16.0393        18.4583 0.3862- 0.987      6 t2
5.38914        18.7981 0.7747- 0.969      7 t3
88.5134        18.3523 0.0000    0.992      8 t4
-106.215         11.086 0.0000    0.986      9 rate
76.3942        7.37976 0.0000    0.987     10 rpm

N trials          = 164

All off-axis factor 

settings @ mid 

range value

Six of 8 off-axis 

factor settings @ 

mid range value

viscosity and t4

factor settings @ 

75% of range
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Compare Response Surfaces for fit of 16 vs. fit of 128 
trials (left) and for fit of 64 vs. fit of 128 trials (right)

Stage 1 fit of16 trials colored green

Stage 4 fit 128 trials colored brown 

Stage 3 fit 64 trials colored purple
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Plots of Actual vs. Predicted (Simulation vs. Surrogate)
by Checkpoint Group for 4 Stages of Analysis of NLHD

69

Checkpoint Groups A & B show diminishing return 

in prediction improvement for running past stage 3
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Percent Off Target - Root Mean Square of 12 Checkpoints

Blocks 1 1 & 2 1, 2 & 3 1, 2, 3 & 4

5/16 range 9.39 2.08 1.72 1.53

1/2 range 14.94 3.33 1.79 1.27

full range 87.16 17.17 21.96 6.72

Percent Off Target - Worst Case of 12 Checkpoints

Blocks 1 1 & 2 1, 2 & 3 1, 2, 3 & 4

5/16 range 17.13 4.52 3.48 2.74

1/2 range 33.74 7.11 -3.38 2.31

full range 225.70 34.69 46.98 16.66
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Each checkpoint group consisted of a 12-trial Plackett-Burman DOE. The ranges 

of the factors relative to the ranges used for the NLHD were 5/16ths (marginal 

extrapolation), half (moderate extrapolation) and full (extreme extrapolation).

Accuracy of Surrogate Predictions for 3 Groups of Check-
points Yielding Marginal, Moderate and Extreme Extrapolation
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Accuracy of Surrogate Predictions for 3 Groups of Check-
points Yielding Marginal, Moderate and Extreme Extrapolation
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Conclusions 
Sequential Space-Filling Designs

 NLHD designs can be run sequentially so that surrogate model 
accuracy can be evaluated after each block and decision made as to 
whether or not to move forward with the next block

 Generally as more NLHD blocks are run, the surrogate model 
accuracy increases 

 Inclusion of extreme (full range) extrapolation checkpoints will 
expand interpolation volume of Kriging analysis – assuming Kriging
analysis remains stable

 Caveat: These conclusions were reached using a moderately 
complex transcendental function in lieu of a CFD simulation model 
that is believed to do a good job of stressing extrapolation with the 
surrogate model..
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Why Use Design of Experiments
Methods with Simulation Experiments?

Quicker answers, lower costs, solve bigger problems

 Obtain a fast surrogate model of the simulation
• Individual simulations can run for hours, days, weeks

− Computational Fluid Dynamics (CFD)

− Simulation runs in real-time

• Numbers of factors can be very large (40+)

• Numbers of simulations needed can be large (thousands in many cases)

• Simulations can be stochastic requiring many replications

 Surrogate model yields a fast approximation of the simulation

• more rapidly answer “what if?” questions 

• do sensitivity analysis of the control factors

• optimize multiple responses and make trade-offs

 By running efficient subsets of all possible combinations, one can –
for the same resources and constraints – solve bigger problems

 By running sequences of designs one can be as cost effective as 
possible & run no more trials than are needed to get a useful answer
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